
co
m

m
ent

review
s

repo
rts

depo
sited research

refereed research
interactio

ns
info

rm
atio

n

Open Access2006Vandepoeleet al.Volume 7, Issue 11, Article R103Research
Identification of novel regulatory modules in dicotyledonous plants 
using expression data and comparative genomics
Klaas Vandepoele, Tineke Casneuf and Yves Van de Peer

Address: Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark, 
B-9052 Ghent, Belgium. 

Correspondence: Yves Van de Peer. Email: yves.vandepeer@psb.ugent.be

© 2006 Vandepoele et al.; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Regulatory modules in dicot plants<p>A strategy combining classical motif overrepresentation in co-regulated genes with comparative footprinting is applied to identify 80 transcription factor binding sites and 139 regulatory modules in Arabidopsis thaliana.</p>

Abstract

Background: Transcriptional regulation plays an important role in the control of many biological
processes. Transcription factor binding sites (TFBSs) are the functional elements that determine
transcriptional activity and are organized into separable cis-regulatory modules, each defining the
cooperation of several transcription factors required for a specific spatio-temporal expression
pattern. Consequently, the discovery of novel TFBSs in promoter sequences is an important step
to improve our understanding of gene regulation.

Results: Here, we applied a detection strategy that combines features of classic motif
overrepresentation approaches in co-regulated genes with general comparative footprinting
principles for the identification of biologically relevant regulatory elements and modules in
Arabidopsis thaliana, a model system for plant biology. In total, we identified 80 TFBSs and 139
regulatory modules, most of which are novel, and primarily consist of two or three regulatory
elements that could be linked to different important biological processes, such as protein
biosynthesis, cell cycle control, photosynthesis and embryonic development. Moreover, studying
the physical properties of some specific regulatory modules revealed that Arabidopsis promoters
have a compact nature, with cooperative TFBSs located in close proximity of each other.

Conclusion: These results create a starting point to unravel regulatory networks in plants and to
study the regulation of biological processes from a systems biology point of view.

Background
Regulation of gene expression plays an important role in a
variety of biological processes such as development and
responses to environmental stimuli. In plants, transcriptional
regulation is mediated by a large number (>1,500) of tran-
scription factors (TFs) controlling the expression of tens or
hundreds of target genes in various, sometimes intertwined,
signal transduction cascades [1,2]. Transcription factor bind-

ing sites (TFBSs; or DNA sequence motifs, or motifs for short)
are the functional elements that determine the timing and
location of transcriptional activity. In plants and other higher
eukaryotes, these elements are primarily located in the long
non-coding sequences upstream of a gene, although func-
tional elements in introns and untranslated regions have
been described as well [3,4]. Moreover, regulatory motifs
organize into separable cis-regulatory modules (CRMs;
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modules for sort), each defining the cooperation of several
TFs required for a specific spatio-temporal expression pat-
tern (for a review, see [5]). As a consequence of this complex
organization, understanding the combinatorial nature of
transcriptional regulation at a genomic scale is a major chal-
lenge, as the number of possible combinations between TFs
and targets is enormous. On top of this, it is important to real-
ize that not all motifs present in a promoter are functional ele-
ments or simultaneously active, since the cooperation
between TFs is context dependent [6]. In the absence of
already characterized TFBSs or systematic genome-wide
location (that is, chromatin immunoprecipitation-chip) data
revealing interactions between TFs and target genes,
sequence and expression data are the only sources of infor-
mation that can be combined to identify CRMs [7-9].

The discovery of regulatory motifs and their organization in
promoter sequences is an important first step to improve our
understanding of gene expression and regulation. Since co-
expressed genes are likely to be regulated by the same TF, the
identification of shared and thus overrepresented motifs in
sets of potentially co-regulated genes provides a practical
solution to discover new TFBSs. Complementarily, the identi-
fication of significantly conserved short sequences (or foot-
prints) in the promoters of orthologous genes in related
species points to candidate regulatory motifs for a particular
gene [10]. In yeasts and animals both overrepresentation of
motifs in co-regulated genes and comparison of orthologous
sequences have been successfully applied to delineate regula-
tory elements (for an overview, see [11,12]); in plants, how-
ever, mainly analyses on co-regulated genes for particular
biological processes (for example, stress, hormone and light-
response, cell cycle control) have been reported [2].

Two problems interfering with comparative approaches for
the detection of regulatory motifs in orthologous plant
sequences are the limited amount of genomic sequence infor-
mation for related species (but see [13]) and the high fre-
quency of both small- and large-scale duplication events that
hamper the delineation of correct orthologous relationships
[14,15]. Finally, the correct identification of functional TFBS
is more complex in higher eukaryotes compared to prokaryo-
tes or yeast because of the longer intergenic sequences. Con-
sequently, characterizing properties of regulatory elements
and modules is not trivial due to the inclusion of large
amounts of false positives in sets of putative target genes. To
overcome these problems, several approaches integrate local
sequence conservation between orthologous upstream
regions to exclude non-conserved regions from the search
space and to make more accurate predictions about the pres-
ence of regulatory signals [16-21]. Nevertheless, this method-
ology requires that genomic data from closely related species
are available and that correct (one-to-one) orthologous rela-
tionships can be identified for nearly all genes.

Here, we present a detection strategy that integrates features
of classic approaches looking for overrepresented motifs with
general comparative footprinting principles for the system-
atic characterization of biologically relevant TFBSs and CRMs
in Arabidopsis thaliana, a dicotyledonous plant model sys-
tem. In a first stage, a classic Gibbs-sampling approach is
used to identify TFBSs in sets of co-expressed genes. Next,
these TFBSs are presented to an evolutionary filter to select
functional regulatory elements based on the global conserva-
tion of TFBSs in target genes in a related species, Populus tri-
chocarpa (poplar). In a second stage, a two-way clustering
procedure combining the presence/absence of motifs and
expression data is used to identify additional new TFBSs. The
Gene Ontology (GO) vocabulary combined with the original
expression data is used to functionally annotate sets of genes
containing a particular regulatory element or module. As a
result, 80 TFBSs are reported, of which more than half corre-
spond with previously described plant cis-regulatory ele-
ments. More interesting, we were able to identify numerous
regulatory modules driving different biological processes,
such as protein biosynthesis, cell cycle, photosynthesis and
embryonic development. Finally, the physical properties of
some modules are characterized in more detail.

Results and discussion
General overview
The input data for our analysis were genome-wide expression
data and the genome sequence from Arabidopsis, plus
genomic sequence data from a related dicotyledon, poplar
[22]. Whereas the expression data are required for creating
sets of co-regulated genes that serve as input for the detection
of TFBSs using MotifSampler (see Materials and methods),
the genomic sequences are used to delineate orthologous
gene pairs between Arabidopsis and poplar, forming the basis
for the evolutionary conservation filter. This filter is used to
discriminate between potentially functional and false motifs
and is based on the network-level conservation principle,
which applies a systems-level constraint to identify functional
TFBSs [23,24]. Briefly, this method exploits the well-estab-
lished notion that each TF regulates the expression of many
genes in the genome, and that the conservation of global gene
expression between two related species requires that most of
these targets maintain their regulation. In practice, this
assumption is tested for each candidate motif by determining
its presence in the upstream regions of two related species
and by calculating the significance of conservation over
orthologous genes (see Materials and methods; Figure 1a).
Whereas the same principle of evolutionary conservation is
also applied in phylogenetic footprinting methods to identify
TFBSs, it is important to note that, here, the conservation of
several targets in the regulatory network is evaluated simulta-
neously. This is in contrast with standard footprinting
approaches, which only use sequence conservation in
upstream regions on a gene-by-gene basis to detect functional
DNA motifs.
Genome Biology 2006, 7:R103
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After applying motif detection on a set of co-expressed Arabi-
dopsis genes in a first stage, all TFBSs retained by the net-
work-level conservation filter are subsequently combined
with the original expression data to identify CRMs and addi-
tional regulatory elements ('two-way clustering'; Figure 2).
Both objectives were combined because it has been demon-
strated that the task of module discovery and motif estima-
tion is tightly coupled [25]. We reasoned that, for a group of
genes with similar motif content but with dissimilar expres-

sion profiles, additional TFBSs may exist that explain the
apparent discrepancy between motif content and expression
profile.

Whereas the procedure for detecting TFBS in co-expressed
genes combined with the evolutionary filter is highly similar
to the methodology described by Pritsker and co-workers
[23], the second stage of TFBS detection using the two-way
clustering procedure is, to our knowledge, novel. The

Network-level conservation filterFigure 1
Network-level conservation filter. (a) The occurrence of a candidate TFBS in the set of orthologous Arabidopsis-poplar gene pairs was determined and the 
significance of the overlap is measured using the hypergeometric distribution [24]. The NCS is defined as the negative logarithm of the hypergeometric p 
value. (b) Distribution of NCS values for 1,000 randomly generated TFBSs (grey) and the motifs found using the co-expression (black) and the two-way 
clustering (white) procedure. The left and right y-axis show the frequency for the random and the potentially functional TFBSs, respectively.
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Figure 2 (see legend on next page)

Genome-wide
expression data

Genome-wide mapping

TFBS-based clustering

TFBS
+

gene

Expression-based c
genes

lustering
on with similar

TFBS content

TFBS detection (MotifSampler)
+

Network-level Conservation
filtering

Arabidopsis promoter
sequences

Clusters of genes with similar
TFBS content (module)

1:n

Clusters of genes
with similar TFBS content

& expression

Set of 34 TFBS identified
using co-expressed genes

new/updated TFBSset of

57
3

ge
ne

s

22 genes

39 genes

33 genes

Experiments

G
en

es

A
A AAC CC CC CGG

G

G

T
T

T T

Experiments

ST_G-box yyACrCGT
Module M713:

AT_G-box kCCACGTn

HA_HSE2
Genome Biology 2006, 7:R103



http://genomebiology.com/2006/7/11/R103 Genome Biology 2006,     Volume 7, Issue 11, Article R103       Vandepoele et al. R103.5

co
m

m
ent

review
s

repo
rts

refereed research
depo

sited research
interactio

ns
info

rm
atio

n

inference of regulatory modules is related to the work of Kre-
iman [18], although, in the current study, no a priori physical
constraints were used to exhaustively search for CRMs.

Identification of individual TFBSs using co-expressed 
genes
Applying the Cluster Affinity Search Technique (CAST) algo-
rithm to the data set measuring the expression of 19,173 Ara-
bidopsis genes over 489 different experiments (1,168
Affymetrix ATH1 slides; see Additional data file 5) yielded 122
clusters of co-regulated genes covering 5,664 genes (see
Materials and methods). After running MotifSampler, apply-
ing the network-level conservation filter and removing
redundant motifs (see Materials and methods), 34 motifs
with a significant (p value < 0.01) Network-level Conserva-
tion score (NCS) were retained (Figure 1b). Interestingly, 25
of the identified TFBSs can be functionally annotated based
on overrepresented GO Biological Process or Molecular Func-
tion terms in the set of putative target genes (Table 1). Over-
all, nearly 60% (20/34) of all motifs correspond with known
plant regulatory elements. Throughout this paper, for motifs
corresponding with known regulatory elements described in
PLACE [26] and PlantCARE [27] the original name is used,
whereas for new elements the consensus motif will be used.

The telo-box (TELOBOXATEEF1AA1) is the TFBS with the
highest NCS value (40.06), indicating that this motif is highly
conserved in orthologous target genes between Arabidopsis
and poplar. The GO annotation reveals that this motif is
highly enriched in the promoter of genes involved in ribos-
ome biogenesis and assembly (p value < 10-12; 4.4-fold
enrichment), confirming the role of the telo-box in regulating
components of the translational machinery [28]. Other
motifs with high NCS values together with their functional
annotation correspond to well-described plant TFBSs, such
as the E2F box and the MSA element involved in DNA repli-
cation and microtubule motor activity during the cell cycle
[29], the UP1 box mediating the transcription of protein syn-
thesis [30], and the G box inducing the transcription of
photosynthesis genes in response to light [31]. The observa-
tion that 71% of these motifs are located within the first 500
base-pairs (bp) upstream of the translation start site (Addi-
tional data file 1) for conserved orthologous Arabidopsis-pop-
lar targets confirms previous findings that Arabidopsis
promoters are generally compact [32,33].

Combining motif and expression data to identify 
additional TFBSs
Although the motif detection approach using co-expressed
genes revealed a first set of TFBSs, it is clear that expression
data alone are insufficient to unravel the complex nature of
transcriptional regulation in higher plants. Therefore, we
applied a two-way clustering procedure combining motif and
expression data to identify additional regulatory elements.
We again used MotifSampler combined with the network-
level conservation filter to identify potential TFBSs in clusters
of co-expressed genes, but now also incorporated the prior
knowledge about the presence of particular TFBSs in a gene's
promoter. Thus, first all genes with a particular motif combi-
nation (module) in the Arabidopsis genome were identified
after which the expression profiles of these genes were used to
delineate subgroups of co-expressed genes, which were then
again presented to the motif detection routine (MotifSampler
and network-level conservation filter; Figure 2). The ration-
ale behind this approach is that additional TFBSs may exist
that explain the different expression patterns within the set of
genes containing the same module. As shown below, these
new motifs can be missed in the first detection stage on co-
expressed genes since the fraction of genes containing this
TFBS within the set of co-expressed genes is too small for reli-
able detection by MotifSampler. By evaluating all possible
combinations (from two up to four motifs) using all 34 initial
TFBSs, we found 1,249 modules containing more than 40
genes. Next, we determined groups of co-expressed genes for
each set of genes characterized by a specific module using the
CAST algorithm (as described before). In total, 695 regulons,
containing genes with a particular module and similar
expression profiles, were found, covering 4,100 Arabidopsis
genes. Note that the way of grouping genes with identical
modules is compatible with the combinatorial nature of tran-
scriptional control in higher eukaryotes, since the presence of
additional TFBSs in a gene's promoter does not interfere with
the gene clustering based on TFBS content (for example, gene
i with motifs A, B and C can theoretically occur in the clusters
containing module A-B, A-C, B-C and A-B-C; see Materials
and methods).

After running MotifSampler and the network-level conserva-
tion filter on all regulons, 46 new TFBSs were found (Addi-
tional data file 6). Again, the high fraction (25/46, or 54%) of
TFBSs with similarity to previously described ones indicates

Detection of TFBSs using two-way clusteringFigure 2 (see previous page)
Detection of TFBSs using two-way clustering. Starting from the available set of 34 TFBSs identified using sets of co-expressed genes (see text for details), 
clusters of genes with similar TFBS combinations in their promoter are delineated. Next, within each set of genes with similar TFBS content, groups of co-
expressed genes are identified. Finally, motif detection is applied and evolutionarily conserved TFBSs are retained. The panel on the right shows the 
identification of the TFBS HA_HSE2 involved in zygotic embryogenesis. The top picture depicts a subset of all 573 Arabidopsis genes containing the module 
consisting of two distinct G-boxes. The two images below show the three groups of co-expressed genes and the newly identified TFBSs found in a set of 
22 genes containing both G-boxes in their promoter and showing embryo-specific expression. Note that the section indicated with the dotted line 
corresponds with the motif-detection approach applied on co-expressed genes in the first stage.
Genome Biology 2006, 7:R103
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Table 1

Overview of the TFBSs identified using co-expressed genes

TFBS motif* NCS† Known motif Site‡ Functional enrichment targets: GO Biological 
Process or Molecular Function§

nrCAAnTC (a) 5.77 BJ_CAAT-box TGCAAATCT GO:0008152 metabolism 8.58E-04 (1.2); 
GO:0003824 catalytic activity 8.91E-05 (1.2)

GTACAwry (b) 5.64 GO:0007275 development 2.89E-02 (1.6); 
GO:0003824 catalytic activity 2.98E-03 (1.2)

TTCkwwTs 5.79 BOXIINTPATPB ATAGAA

sGCrGAGA 5.77 GO:0015980 energy derivation by oxidation of 
organic compounds 4.82E-02 (2.7); 
GO:0008152 metabolism 1.43E-03 (1.2); 
GO:0003824 catalytic activity 2.89E-03 (1.1)

kCCACGTn (4) 17.54 AT_G-box; HV_ABRE6; PH_boxII GCCACGTGGA; GCCACGTACA; TCCACGTGGC GO:0015979 photosynthesis 2.48E-04 (4.2); 
GO:0048316 seed development 2.64E-03 (3.6); 
GO:0009793 embryonic development (sensu 
Magnoliophyta) 6.15E-03 (3.5)

yCATTTnT (c) 8.7 GM_Unnamed_6 GCATTTTTATCA GO:0003700 transcription factor activity 2.94E-
03 (1.3); GO:0030528 transcription regulator 
activity 1.64E-02 (1.3); GO:0003677 DNA 
binding 3.86E-02 (1.2)

ynTTATCC 6.75 SREATMSD; AT_I-box TTATCC; CCTTATCCT

nGTTGACw (d) 5.31 ZM_O2-site GTTGACGTGA GO:0006952 defense response 2.99E-04 (1.9); 
GO:0009607 response to biotic stimulus 3.56E-
04 (1.7); GO:0016301 kinase activity 7.52E-11 
(1.7)

TTTGCnrA 6.13 GO:0016773 phosphotransferase activity, 
alcohol group as acceptor 1.14E-02 (1.6); 
GO:0016772 transferase activity, transferring 
phosphorus-containing groups 2.60E-02 (1.5)

rATyTGGG 5.58

TrTwTATA 9.35 AT_TATA-box TATATAA GO:0019748 secondary metabolism 2.76E-02 
(2.1); GO:0006519 amino acid and derivative 
metabolism 1.35E-02 (1.8); GO:0003700 
transcription factor activity 3.36E-02 (1.3)

ATArwACA (e) 5.79 OS_Unnamed_2 CCATGTCATATT

nTTCCCGC (5) 27.27 NT_E2Fa TTTCCCGC GO:0006261 DNA-dependent DNA 
replication 6.48E-04 (6.2); GO:0000067 DNA 
replication and chromosome cycle 1.06E-07 
(5.5); GO:0006260 DNA replication 3.57E-05 
(5.1)

TkAGAwnA 8.86 BO_TCA-element3 TCAGAAGAGG GO:0006464 protein modification 4.52E-02 
(1.7); GO:0003824 catalytic activity 5.20E-03 
(1.1)

AAACCCTA 
(13) (f)

40.06 TELOBOXATEEF1AA1 AAACCCTAA Ribosome biogenesis and assembly 9.86E-13 
(4.4); ribosome biogenesis 5.67E-12 (4.3); pre-
mRNA splicing factor activity 3.20E-04 (3.9)

mGnyAAAG (g) 6.38 GO:0003824 catalytic activity 2.93E-02 (1.1)

GAnCnkmG 6.29 GO:0003729 mRNA binding 1.00E-02 (3.1); 
GO:0003735 structural constituent of 
ribosome 3.69E-02 (1.7); GO:0006412 protein 
biosynthesis 3.15E-03 (1.7)

TCnCTCTC 8.98 LE_5UTRPy-richstretch TTTCTCTCTCTCTC GO:0003777 microtubule motor activity 9.90E-
03 (2.7); GO:0050789 regulation of biological 
process 2.27E-03 (1.4); GO:0016772 
transferase activity, transferring phosphorus-
containing groups 7.89E-03 (1.4)

wmGTCmAm 7.16 GO:0003824 catalytic activity 4.51E-03 (1.1)

ynCAACGG 8.39 CR_MSA-like YCYAACGGYYA GO:0003777 microtubule motor activity 3.17E-
03 (3.4); GO:0003774 motor activity 8.55E-03 
(2.9)

nmGATyCr 5.66 GO:0006944 membrane fusion 2.32E-02 (4.5); 
GO:0003735 structural constituent of 
ribosome 2.77E-03 (1.9); GO:0005198 
structural molecule activity 7.11E-04 (1.9)

CGkCGmCn 7.68 OS_GC-motif5 CGGCGCCCT

AGGCCCAw 
(9)

21.94 UP1ATMSD GGCCCAWWW GO:0007046 ribosome biogenesis 3.56E-14 
(4.3); GO:0042254 ribosome biogenesis and 
assembly 2.28E-14 (4.3); GO:0003735 
structural constituent of ribosome 8.66E-29 
(3.3)

AykyATwA 6.09
Genome Biology 2006, 7:R103
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that we most probably identified an extra set of genuine reg-
ulatory elements. As an illustration, we discuss the discovery
of the HA_HSE2 motif, which is an element inducing gene
expression during zygotic embryogenesis [34]. Initially, 573
Arabidopsis genes were grouped containing a combination of
two distinct G-boxes in their promoters (AT_G-box
kCCACGTn and ST_G-box yyACrCGT; Table 1). Subsequent
clustering of the expression profiles of these genes, enriched
for the GO terms embryonic development (sensu Magnolio-
phyta) and seed development (both with p value < 10-2; 7.4-
fold and 8.1-fold enrichment, respectively), yielded three reg-
ulons, of which one showed expression in seeds, a second one
expression in leaves and shoots, and a third one expression in
the globular and heart stage embryo. Running the motif
detection routine on the 22 genes in this last regulon resulted
in the discovery of the HA_HSE2 motif (NCS 7.91). This motif
was not identified in the first TFBS detection run using
expression data only, since the genes in this regulon were part
of a big set of 645 co-expressed genes not yielding any signif-
icant TFBSs. This finding confirms that splitting up co-
expressed genes into smaller subsets based on prior knowl-
edge of motif content can enhance the identification of new
TFBSs.

Inferring functional regulatory modules
To get a general overview of the involvement of all 80 TFBSs
(34 from co-expressed genes in the first stage plus 46 from
two-way clustering in the second stage) and the derived
CRMs in different biological processes, we identified all mod-
ules with two to four motifs (containing at least 20 Arabidop-
sis genes) and again used overrepresented GO terms for
functional annotation. Briefly, we selected all Arabidopsis
genes with a particular motif combination present in their

upstream regions and verified whether any GO Biological
Process term was significantly enriched within this set of
putative target genes. Figure 3 shows the motif synergy map
depicting the cooperation of different TFBSs for which the GO
enrichment score is stronger for the module than for the indi-
vidual TFBS (within that module). Applying this criterion is
necessary to specifically identify the functional properties of
the module, because the GO enrichment for many modules is
caused by the presence of an individual TFBS and not by the
specific TFBS combination in the CRM. In total, 139 modules
with significant functional GO Biological Process enrichment
were identified, of which 97 consist of a combination of two
and 42 of three TFBSs (Additional data file 7). Moreover, 69
identified TFBSs in this study could be allocated to one or
more CRM with significant functional annotation. The mod-
ule with the strongest GO enrichment in the synergy map con-
sists of a telo-box and the UP1 motif and targets protein
biosynthesis (p value < 10-51) and ribosome biogenesis (p
value < 10-25) genes (for example, 40S and 60S ribosomal
proteins, translation initiator factors). In total, 851 Arabidop-
sis genes contain this module and the expression coherence
[9] of these genes (EC = 0.14; see Materials and methods)
illustrates that this module is responsible for similar expres-
sion profiles in a large number of these genes. Detailed infor-
mation about target genes and functional annotation for the
different CRMs can be consulted on our website [35].

Analyzing the topology of the motif synergy map reveals some
highly connected TFBSs (for example, UP1ATMSD,
TELOBOXATEEF1AA1, sGCrGAGA, BOXIINTPATPB,
AT_G-box kCCACGTn), which control, in cooperation with
other TFBSs, different biological processes. A set of modules
contain a G-box and confirm its role in controlling light-

CTGnCTCy 6.91 GO:0016301 kinase activity 3.44E-02 (1.3); 
GO:0003676 nucleic acid binding 3.48E-02 
(1.2); GO:0005488 binding 2.60E-03 (1.2)

TsTCGnTT 7.22 GO:0003824 catalytic activity 5.10E-03 (1.1)

TmAsTGAn 7.76 OS_GTCAdirectrepeat TAAGTCATAACTGATGA GO:0016491 oxidoreductase activity 3.85E-03 
(1.5); GO:0008152 metabolism 5.74E-03 (1.2); 
GO:0003824 catalytic activity 5.70E-04 (1.2)

yyACrCGT (2) 6.56 ST_G-box TCACACGTGGC GO:0009605 response to external stimulus 
4.80E-02 (1.6); GO:0006950 response to stress 
3.42E-02 (1.6)

mATATTTT 5.51 GM_Nodule-site1 GATATATTAATATTTTATTTTATA

CCAATnCm 5.78 CAATBOX1; HV_ATC-motif CAAT; GCCAATCC GO:0008152 metabolism 2.01E-02 (1.2)

rkTCAwGm 5.42 GO:0003824 catalytic activity 6.17E-05 (1.2)

ssCGCCnA (2) 9.13 E2F1OSPCNA GCGGGAAA GO:0000067 DNA replication and 
chromosome cycle 4.74E-02 (3.0); 
GO:0006259 DNA metabolism 2.15E-03 (2.3); 
GO:0007049 cell cycle 4.29E-02 (2.2)

TTTATGnG 7.1

TCAwATAA 6.74

*Numbers in parentheses indicate the number of clusters (containing co-expressed genes) in which the motif was independently identified. The 
letters in parenthesis refer to the updated TFBS identified using the two-way clustering: (a) GCAAnTCn; (b) GTACmwGy; (c) yCATTTAT; (d) 
mkTTGACT; (e) ATrrwACA; (f) AAACCCTA; (g) mGnCAAAG. †Network-level Conservation score. ‡Residues in bold indicate the matching 
position between the known motif and the motif found in this study. Known motifs were retrieved from PLACE [26] and PlantCARE [27]. §Only the 
first three GO categories according to the highest enrichment score are shown. The enrichment score is shown as number in parentheses.

Table 1 (Continued)

Overview of the TFBSs identified using co-expressed genes
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Figure 3 (see legend on next page)
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dependent processes such as photosynthesis (module
2.M6107, AT_G-box kCCACGTn + I-box-like ATAATCCA;
module 2.M6144, AT_G-box kCCACGTn + OS_AACA_motif;
module 2.M6069, AT_G-box kCCACGTn + SREATMSD) and
embryonic development (module 2.M6103, AT_G-box
kCCACGTn + CGAsCnAn; module 2.M6125, AT_G-box
kCCACGTn + BO_HSE3 box). The cooperation between the
G-box and the I-box-like motif in the module with GO enrich-
ment 'photosynthesis' targets genes coding for chlorophyll
binding proteins, different photosystem I reaction center sub-
units, photosystem II associated proteins, and ferredoxin.
The high expression of these genes in plant tissues exposed to
light suggests a function for this module as a composite light-
responsive unit [36]. Combining the clusters of co-expressed
genes used in the first detection stage with the targets of the
different modules (Figure 4) shows a highly significant over-
lap of expression cluster 3 with the photosynthesis modules
2.M6069, 2.M6144, 2.M6107 and 2.M6081 (AT_G-box
kCCACGTn + UP1 box). These strong associations indicate

that these motif combinations are involved in (light-regu-
lated) primary energy production.

Three modules (2.M6086, 2.M6103 and 2.M6125) targeting
genes involved in embryonic development (>7-fold GO
enrichment; Additional data file 7) are strongly associated
with expression cluster 9, which shows high transcriptional
activity in seedlings and embryo (Figure 4). The presence of
these modules, all containing a G-box, in some well-described
embryogenesis genes within this expression cluster (for
example, late embryogenesis-abundant proteins, zinc-finger
protein PEI1 and NAM transcriptional regulators [37,38])
confirms our finding that these modules play an important
role in transcriptional control during embryo development.

The motif sGCrGAGA is involved in 26 different modules and
is, to our knowledge, a new TFBS. Whereas the full set of Ara-
bidopsis genes containing this motif shows a functional
enrichment for 'energy derivation by oxidation of organic

Motif synergy map for 139 modules with significant GO Biological Process annotationFigure 3 (see previous page)
Motif synergy map for 139 modules with significant GO Biological Process annotation. The full and dotted lines connect motifs cooperating in modules 
containing two and three TFBSs, respectively. Line colors indicate the GO Biological Process enrichment for Arabidopsis genes containing this module (see 
also Additional data file 7).

Correlation between cis-regulatory modules and clusters of co-expressed genesFigure 4
Correlation between cis-regulatory modules and clusters of co-expressed genes. Rows depict co-expression clusters with their corresponding cluster 
number and brief description, if available, whereas columns show modules with their corresponding GO descriptions. The number of genes within each 
co-expression cluster is indicated in parentheses. Only expression clusters enriched for one (or more) modules are shown. Enrichment was calculated 
using the hypergeometric distribution and p values were corrected for multiple hypotheses testing with the false discovery rate method (q-value) [76].

7 very highly expressed during cell cycle progression (201)
18 widely expressed + very highly expressed during cell cycle progression (90)
36 very highly expressed during cell cycle progression (15)
51 constitutively expressed (54)
64 constitutively expressed (17)
3 widely expressed, not in roots, not stress-responsive (516)
9 expression in seeds w/o siliques, embryo and whole seedlings (278)
29 (153)
55 constitutively expressed (31)
34 highly expressed during cell cycle progression (33)
62 M-phase specific expression during cell cycle, expressed in shoot apex (43)
85 response to heat stress (46)
19 very highly expressed during cell cycle progression (52)
44 expression in shoot apex and during S-phase of cell cycle (20)
93 expressed during cell cycle progression (13)
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compounds' (Table 1), more than a quarter of all modules (7/
26) containing this regulatory element seem to have a role in
transcriptional control of sugar, amino acid or alcohol metab-
olism. Examples of biosynthesis pathways mediated by these
modules according to the GO Biological Process annotation
include glycolysis, amine catabolism and branched chain
family amino acid metabolism (Additional data file 7).

Another module (2.M6825) controls the progression through
the cell cycle and consists of a combination of the known MSA
element together with the OS_GC motif. A large number of
genes associated with mitosis and cytokinesis, such as those
encoding B-type cyclins, kinesin motor proteins and microtu-
bule and phragmoplast-associated proteins, contain this
CRM and are linked with expression cluster 62 (Figure 4).
Comparing the occurrence of this module in a set of approxi-
mately 1,000 periodically expressed genes determined in
Arabidopsis cell suspensions by Menges and co-workers [39]
confirms a strong enrichment towards M-phase specific
genes (hypergeometric probability distribution; p value < 10-

21). Nevertheless, because the frequency of the individual
MSA element is higher in the set of M-phase specific genes
compared to the occurrence of the module (87/198 MSA ele-
ment and 40/198 module, respectively), this indicates that
the presence of the individual MSA box is sufficient for M-
phase expression during cell division and that additional
cooperative elements only moderately mediate the level of
transcription, as recently shown [40]. Likewise, despite the
fact that several modules (for example, 2.M547, 2.M6460 and
2.M6451) consisting of the NT_E2Fa motif and one or more
cooperative TFBS are targeting genes involved in DNA repli-
cation (>10-fold enrichment) and are strongly associated
with expression cluster 44 (Figure 4) containing many DNA
replication genes (for example, DNA replication licensing fac-
tor, PCNA1-2), it is currently unclear whether additional
motifs, apart from one or more E2F elements, are essential
for transcriptional induction during S-phase in plants [33].

Another module driving endogenous light-regulated
response contains the ST_4cl-CMA2a and OS_TGGCA boxes
and targets genes involved in circadian rhythm (2.M8255,
'circadian rhythm' >24-fold enrichment). Examples of genes
containing this module are CONSTANS, a zinc finger protein
linking day length and flowering [41], as well as APRR5 and
APRR7, pseudo-response regulators subjected to a circadian
rhythm at the transcriptional level [42]. One of the TFBSs
within this module, motif OS_TGGCA with sequence [GT]C
[AT]A [AG]TGG, is highly similar to the SORLIP3 motif
(CTCAAGTGA; Pearson correlation coefficient (PCC) = 0.56
between linearized PWM and SORPLIP3), a sequence found
to be overrepresented in light-induced promoters [43].

Properties of cis-regulatory modules
Due to the frequent nature of large-scale duplication events in
plants, a one-to-one orthologous relationship with poplar
could be ensured for only a minority of Arabidopsis genes

(17%). Therefore, applying across-species conservation on a
genome-wide scale to predict functional TFBSs, as done in
mammals and yeast, is not straightforward in plants. Simi-
larly, studying cooperative TFBSs within regulatory modules
also suffers from the inclusion of potentially false-positives
when selecting genes in one species containing a putative
module. Therefore, we exploited the conservation of TFBSs
between Arabidopsis and poplar orthologs to study the
properties of some modules in more detail. Based on all 139
modules and the set of 3,167 (one-to-one) orthologous genes
between Arabidopsis and poplar, we only retained 30 mod-
ules with five or more conserved target genes for further
analysis. By applying this stringent filtering step of five or
more conserved orthologous targets, we wanted to study the
physical properties - motif order and spacing - of CRM in a set
of Arabidopsis target genes enriched for functional TFBSs
(and with a minimum number of false-positives; data not
shown). Since no a priori information about such properties
was included in the identification of TFBSs and CRMs, we
used this data set to verify whether such constraints exist and
are used by the transcriptional apparatus to control gene
expression in plants.

First, for each module the overrepresented motif order was
quantified in all conserved target genes (for example, 9/11 of
all conserved Arabidopsis target genes for module 2.M7010
contain pattern [TELOBOXATEEF1AA1 spacer UP1ATMSD
spacer start codon]). Grouping all these results indicates that,
on average, 68% (136/200) of all Arabidopsis targets contain
an overrepresented motif order (Additional data file 8). Nev-
ertheless, the observation that, on average, approximately
64% of the orthologous poplar targets contain the same motif
order suggests that, although a preferred motif order might
be present for some modules (Additional data file 2), this con-
figuration is evolutionarily rather weakly conserved. Measur-
ing the distance between cooperative TFBSs reveals that, for
11/30 modules, the average distance is significantly smaller
than expected by chance (Additional data file 8). Moreover,
the overall distribution of distances between TFBSs measured
for all 200 targets within these 30 modules is, in both Arabi-
dopsis and poplar, significantly different from a random dis-
tribution (Mann-Whitney U test p value < 0.001; Figure 5).
This indicates that, like in other eukaryotic species (for exam-
ple, [18,44,45]), the distance between cooperative motifs
within a module is important for functionality.

Conclusion
The results of this study confirm that TFBS detection using
expression data within an evolutionary context offers a pow-
erful approach to study transcriptional control [18,20,23].
Especially, the exploitation of sequence conservation between
related species offers a good control against false-positives
when performing motif detection on co-regulated genes [46-
49]. Using clusters of co-expressed genes, MotifSampler, two-
way clustering and the network-level conservation principle,
Genome Biology 2006, 7:R103
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80 distinct TFBSs could be identified, of which 45 correspond
to known plant cis-regulatory elements. From these, 139 reg-
ulatory modules with biological functional annotation could
be inferred and several CRMs were highly associated with dis-
tinct expression patterns. Despite the limited amount of com-
parative sequence data for dicotyledonous plants, which
hinders the systematic identification of conserved and proba-
bly functional binding sites within a promoter, the regulatory
modules identified here suggest that, like in yeast and ani-
mals, combinatorial transcriptional control plays an impor-
tant role in regulating transcriptional activity in plants. For
sure, the application of more advanced CRM detection meth-
ods (for example, [25,50,51]) integrating physical constraints
acting on CRMs (as shown here) on more detailed expression
data will lead to the discovery of additional plant CRMs.
Finally, the sequencing of additional and less diverged plant
species in the near future [52] should provide a more solid
comparative framework to study the organization and evolu-
tion of transcriptional regulation within the green plant
lineage.

Materials and methods
Expression data
A total of 1,168 Affymetrix ATH1 microarrays monitoring the
transcriptional activity of more than 22,000 Arabidopsis
genes in different tissues and under different experimental
conditions were retrieved from the Nottingham Arabidopsis
Stock Centre (NASC [53]; 1,151 slides) and The Arabidopsis
Information Resource (TAIR [54]; 17 slides). An overview of
all data sets is shown in Additional data file 5. Raw data were
normalized using the MicroArray Suite 5.0 (MAS) implemen-
tation in Bioconductor ('mas5' function) [55]. To remove
potentially cross-hybridizing probes, only genes for which a
unique probe set is available on the ATH1 microarray (probe
sets with a '_at' extension without suffix) were retained. Next,

the genes were filtered based on the detection call that is
assigned to each gene by the 'mas5calls' function imple-
mented in Bioconductor. This software evaluates the abun-
dance of each transcript and generates a detection p value
indicating whether a transcript is reliably detected (p value <
0.04 for present value). Only genes that were called present in
at least 2% of the experiments were retained for further anal-
ysis. Finally, the mean intensity value was calculated for the
replicated slides, resulting in 489 measurements for 19,173
genes in total.

Clustering of expression data
To group genes with similar expression profiles, we used the
CAST algorithm with the PCC as affinity measure [56].
Advantages of CAST clustering over more classic algorithms
such as hierarchical or K-means clustering are that only two
parameters have to be specified (the affinity measure, here
defined as PCC ≥ 0.8, and the minimal number of genes
within a cluster, here set to 10) and that it independently
determines the total number of clusters and whether a gene
belongs to a cluster. We used an additional heuristic to choose
the gene with the maximum number of neighbors (that is, the
total number of genes having a similar expression profile) to
initiate a new cluster. An overview of the cluster stability
when randomly removing experiments from the complete
expression data set is given in Additional data file 3.

Detection of transcription factor binding sites
For each cluster S, grouping nS co-regulated genes returned
by the CAST algorithm, we used MotifSampler [57] to identify
an initial set of TFBSs. We restricted the search to the first
1,000 bp upstream of the translation start site. For some
genes the upstream sequence was shorter because the adja-
cent upstream gene is located within a distance smaller than
1,000 bp. The parameters used were 6th order background
model (computed from all Arabidopsis upstream sequences),

Motif distance distributions for 30 conserved modules in orthologous target genes between Arabidopsis and poplarFigure 5
Motif distance distributions for 30 conserved modules in orthologous target genes between Arabidopsis and poplar. For all modules, the distance (in bp) 
between cooperative TFBS was measured in 200 conserved orthologous target genes and plotted in a histogram for Arabidopsis and poplar. The white 
boxes denote the cumulative fraction.
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-n 2 (number of different motifs to search for), -r 100
(number of times the MotifSampler should be repeated) and
-w (length of the motif) set to 8nt. For each cluster, the 20
best and non-redundant motifs (represented as a position
weight matrix (PWM)) according to their log-likelihood score
were retained using MotifRanking (default parameters; shift
parameter -s set to 2).

To create a non-redundant set of all motifs found in the dif-
ferent clusters of co-expressed genes, we first compared the
similarity between two motifs as the PCC of their correspond-
ing PWM. Each motif of length w was represented using a sin-
gle vector, by concatenating the rows of its matrix (obtaining
a vector of length 4*w). Subsequently, the PCC between every
alignment of two motifs was calculated, as they are scanned
past each other, in both strands [18,58]. Then, all motifs with
a PCC >0.75 were considered as similar and only the motif
with the highest NCS (see below) was retained.

The presence of a motif (represented by its corresponding
PWM) in a DNA sequence was determined using MotifScan-
ner, which uses a probabilistic sequence model (default
parameters; prior probability -p set to 0.1). Both MotifRank-
ing and MotifScanner, together with MotifSampler, are part
of the INCLUSIVE package [59].

Clustering based on TFBS content
To group genes containing similar motifs in their promoter
and incorporating the possibility that not all motifs in a pro-
moter are functional, we generated all groups of genes having
two or more motifs in common. Starting from the set of non-
redundant motifs mapped on all promoters, all motif combi-
nations from two to four motifs were generated and only clus-
ters with at least 20 genes containing that combination were
retained. Note that, for a particular motif combination, the
presence of additional motifs in a gene's promoter was
ignored, resulting in the creation of overlapping clusters.

Network-level conservation score
We identified 3,167 orthologous Arabidopsis-poplar gene
pairs through phylogenetic tree construction (see below). Due
to the high frequency of gene duplication in both Arabidopsis
and poplar [60-62], we preferred to apply phylogenetic tree
construction to delineate orthologous relationships instead of
sequence similarity approaches based on reciprocal best hit
(for example, [24,63]). Whereas the latter only uses similarity
or identity scores to define putative orthology and is highly
sensitive to incomplete associations due to in-paralogs, tree
construction methods use an evolutionary model to estimate
evolutionary distances and give a significance estimate
through bootstrap sampling.

For each candidate TFBS and for all Arabidopsis-poplar
orthologs, we first identified the set of Arabidopsis genes that
have at least one occurrence matching the PWM in their
upstream regions. Then, we also identified the poplar genes

that have at least one occurrence matching the PWM in their
upstream regions. Next, we calculated the overlap of matches
in orthologs between both sets of sequences. Note that the
matches can be anywhere in the upstream region and on any
strand. For both Arabidopsis and poplar, the search was
again restricted to the first 1,000 bp upstream from the trans-
lation start site or to a shorter region if the adjacent upstream
gene is located within a distance smaller than 1,000 bp. The
statistical significance of the overlap, which will be high for
PWM representing functional TFBSs according to the net-
work-level conservation principle, is measured using the
hypergeometric distribution (for details, see [24]). Because
the NCS, which is defined as the negative logarithm of the
hypergeometric p value, is a relative measure of network-level
conservation, the observed scores are compared against a dis-
tribution of scores obtained from random motifs. Thousand
random motifs were generated by running the MotifSampler
on clusters containing randomly selected genes. All NCS val-
ues larger than 5.3, which correspond to the 99th percentile
of the random NCS distribution, were considered as
significant.

Orthology determination
The full proteomes (that is, all proteins in a genome) of Ara-
bidopsis, poplar, rice, and Ostreococcus tauri, together with
proteins inferred from cDNA sequences for Pinus taeda,
Pinus pinaster and Physcomitrella patens were used to delin-
eate gene families using protein clustering. First, an all-
against-all sequence comparison was performed using
BLASTP [64] and relevant hits were retained [65]. Briefly,
two proteins are considered homologous only when they
share a substantially conserved region on both molecules
with a minimum amount of sequence identity. In this man-
ner, multi-domain proteins for which the sequence only par-
tially overlaps because of shared single protein domains,
which occasionally leads to significant E-values in BLAST
searches, are not retained as homologs. The proportion of
identical amino acids in the aligned region between the query
and target sequence is recalculated to I' = I × Min(n1/L1, n2/
L2), where Li is the length of sequence i and ni is the number
of amino acids in the aligned region of sequence i. This value
I' is then used in the empirical formula for protein clustering
proposed by Rost [66]. Finally, all valid homologous protein
pairs are subject to a simple-linkage clustering routine to
delineate protein gene families. Arabidopsis and rice
sequences were downloaded from TIGR (releases 5.0 and 3.0,
respectively), Ostreococcus sequences from [67,68], poplar
sequences from the JGI consortium [69], and pine and moss
data from the Sequence platform for Phylogenetic analysis of
Plant Genes database (SPPG) [70]. The coding sequences for
Ostreococcus and poplar correspond to the genes predicted
by the EuGene gene prediction software [71].

For all 7,038 gene families containing one or more Arabidop-
sis and poplar gene (and covering in total 20,273 and 31,894
genes, respectively), protein multiple alignments were cre-
Genome Biology 2006, 7:R103
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ated using T-coffee [72]. Alignment columns containing gaps
were removed when a gap was present in >10% of the
sequences. To reduce the chance of including misaligned
amino acids, all positions in the alignment left or right of the
gap were also removed until a column in the sequence align-
ment was found where the residues were conserved in all
genes included in our analyses. This was determined as fol-
lows: for every pair of residues in the column, the BLOSUM62
value was retrieved. Next, the median value for all these val-
ues was calculated. If this median was ≥0, the column was
considered as containing homologous amino acids. Neigh-
bor-Joining phylogenetic trees were constructed with
PHYLIP [73] using the Dayhoff PAM matrix and 100 boot-
strap samples. Trees were rooted if a non-dicotyledonous spe-
cies was present within the gene family. In total, 3,167
orthologous gene pairs were identified as speciation nodes in
the trees grouping one Arabidopsis and one poplar gene with
high bootstrap support (≥70). An overview of the one-to-
many and many-to-many orthologous relationships is shown
in Additional data file 4. Note that these 3,167 orthologous
gene pairs are not biased towards a particular functional GO
class and thus can be used to estimate the conservation of
candidate TFBSs between both plant genomes.

Functional annotation
GO [74] associations for Arabidopsis proteins were retrieved
from TIGR [75]. The assignments of genes to the original GO
categories were extended to include parental terms (that is, a
gene assigned to a given category was automatically assigned
to all the parent categories as well). All GO categories contain-
ing less than 20 genes were discarded from further analysis.
Enrichment values were calculated as the ratio of the relative
occurrence in a set of genes to the relative occurrence in the
genome. The statistical significance of the functional enrich-
ment within sets of genes was evaluated using the
hypergeometric distribution adjusted by the Bonferroni cor-
rection for multiple hypotheses testing. Corrected p values
smaller than 0.05 were considered significant. Only CRMs
with significant GO Biological Process annotation and an
enrichment score higher than 5 were retained in the final data
set.

Expression coherence
The expression coherence, which is a measure of the amount
of expression similarity within a set of genes, was calculated
as described by Pilpel and co-workers [9]. Here, the PCC was
used as a measure for similarity between expression profiles
instead of the Euclidian distance used in the original imple-
mentation. Based on the similarity between expression pro-
files for 1,000 random genes (1,000 × 999 × 0.5 gene pairs),
a PCC threshold of 0.5 (corresponding with the 95th percen-
tile of this random distribution) was used to detect signifi-
cantly co-expressed genes.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 is a figure showing
the location of 34 conserved motifs (found in co-expressed
genes) in Arabidopsis promoters (2,445 genes) and of all con-
served motifs in Arabidopsis promoters with more than 3 kb
un-annotated upstream space (with distance <1,000 bp
between position in Arabidopsis and poplar; 125 genes).
Additional data file 2 is a figure giving an overview of the
motif organization in orthologous Arabidopsis (left) and pop-
lar (right) targets for module 2.M7010. Additional data file 3
is a figure showing the stability of clusters of co-expressed
genes when randomly removing experiments from the com-
plete expression data set. Additional data file 4 is a figure that
gives an overview of the number of one-to-many and many-
to-many orthologous relationships in the phylogenetic trees.
Additional data file 5 is a table giving an overview of the 489
Arabidopsis microarray experiments. Additional data file 6 is
a table giving an overview of the TFBSs identified using two-
way clustering. Additional data file 7 is a table giving an over-
view of the 139 cis-regulatory modules. Additional data file 8
is a table showing the motif order and spacing for 30 cis-reg-
ulatory modules.
Additional data file 1Location of 34 conserved motifs in Arabidopsis promoters and of all conserved motifs in Arabidopsis promoters with more than 3 kb un-annotated upstream space(a) Location of 34 conserved motifs (found in co-expressed genes) in Arabidopsis promoters (2,445 genes). (b) Location of all con-served motifs in Arabidopsis promoters with more 3 kb un-anno-tated upstream space (with distance <1,000 bp between position in Arabidopsis and poplar; 125 genes)Click here for fileAdditional data file 2Overview of motif organization in orthologous Arabidopsis and poplar targets for module 2.M7010Overview of motif organization in orthologous Arabidopsis (left) and poplar (right) targets for module 2.M7010Click here for fileAdditional data file 3Stability of clusters of co-expressed genes when randomly remov-ing experiments from the complete expression data setStability of clusters of co-expressed genes when randomly remov-ing experiments from the complete expression data setClick here for fileAdditional data file 4Overview of the number of one-to-many and many-to-many orthologous relationships in phylogenetic treesOverview of the number of one-to-many and many-to-many orthologous relationships in phylogenetic treesClick here for fileAdditional data file 5Overview of the 489 Arabidopsis microarray experimentsOverview of the 489 Arabidopsis microarray experimentsClick here for fileAdditional data file 6Overview of the TFBS identified using two-way clusteringOverview of the TFBS identified using two-way clusteringClick here for fileAdditional data file 7Overview of the 139 cis-regulatory modulesOverview of the 139 cis-regulatory modulesClick here for fileAdditional data file 8Motif order and spacing for 30 cis-regulatory modules.plotted in a histogram for Arabidopsis and poplarThe white boxes denote the cumulative fractionClick here for file
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