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Abstract  
Brain structure and cognitive function change in the temporal lobe, hippocampus, and prefrontal cortex 

of patients with mild cognitive impairment and Alzheimer‟s disease, and brain network-connection 

strength, network efficiency, and nodal attributes are abnormal. However, existing research has only 

analyzed the differences between these patients and normal controls. In this study, we constructed 

brain networks using resting-state functional MRI data that was extracted from four populations 

mal controls, patients with early mild cognitive impairment, patients with late mild cognitive impairment, 

and patients with Alzheimer‟s disease) using the Alzheimer‟s Disease Neuroimaging Initiative data set. 

The aim was to analyze the characteristics of resting-state functional neural networks, and to observe 

mild cognitive impairment at different stages before the transformation to Alzheimer‟s disease. Results 

showed that as cognitive deficits increased across the four groups, the shortest path in the rest-

ing-state functional network gradually increased, while clustering coefficients gradually decreased. 

This evidence indicates that dementia is associated with a decline of brain network efficiency. In 

tion, the changes in functional networks revealed the progressive deterioration of network function 

across brain regions from healthy elderly adults to those with mild cognitive impairment and Alzhei-

mer‟s disease. The alterations of node attributes in brain regions may reflect the cognitive functions in 

brain regions, and we speculate that early impairments in memory, hearing, and language function can 

eventually lead to diffuse brain injury and other cognitive impairments. 
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INTRODUCTION 

    

The existing medication for Alzheimer‟s dis-

ease (AD) is very limited; however, early 

detection and treatment can effectively slow 

down disease progression. Mild cognitive 

impairment (MCI) is sometimes a transitional 

stage between normal aging and AD that is 

characterized by impairments in memory or 

other cognitive faculties, but does not meet 

the criteria for dementia
[1-3]

. Amnestic MCI 

patients are a high-risk population for AD and 

it is estimated that 44% of amnestic MCI 

patients develop AD after 3 years, with an 

annual rate of up to 15%
[4-7]

. However, in the 

normal older population, the rate is only 

1–2%
[8]

. Because AD is an irreversible dis-

ease, preclinical early warning and interven-

tion for MCI patients is considered a key area 

of interest. 

 

Neuroimaging research shows that AD and 

MCI patients exhibit differences in the struc-

ture or cognitive functions of the temporal 

lobe, hippocampus, and prefrontal cortex, 

and abnormal structure or function in bilateral 

hippocampus, amygdala, entorhinal cortex, 

posterior cingulate, thalamus, and spacing of 

temporal sulci
[9-14]

. Compared with normal 

elderly groups, medial temporal cortex was 

activated much less in MCI and AD patients 

when they performed a memory task
[15]

, 

whereas the right parahippocampal gyrus 

showed more activity during a memory en-

coding task
[16-17]

. During a visual memory 

task, more brain regions were activated in AD 

and MCI patients compared with normal el-

derly subjects, primarily in the right superior 

frontal gyrus, bilateral middle temporal gyri, 

middle frontal gyrus, and bilateral cingulate 

gyri. Additionally, MCI patients showed more 

activity than AD patients in the right para-

hippocampal gyrus, right lentiform nucleus, 

right fusiform gyrus, left inferior frontal gyrus 

(IFG), left supramarginal gyrus (SMG), and 

bilateral cingulate gyri
[18]

. These findings 

indicate that cognitive impairment in AD 

does not occur in only a few regions, but 

rather involves changes to diffuse brain re-

gions. Scholars have constructed structural 

or functional brain networks, have analyzed 

the characteristics and node attributes of 

these networks using graph theory, and 

have explored changes in key brain regions 

and key path abnormalities
[19-24]

. Filippi    

et al 
[25]

 found that the default network, 

frontal top network, working-memory net-

work, and attention network were all ab-

normal in dementia patients. Delbeuck    

et al 
[26]

 revealed abnormal functional con-

nections in brain regions of MCI patients. He 

et al 
[19, 27]

 pointed out that in AD patients, 

abnormal connections were observed in 

certain brain regions or between brain re-

gions, and that topologic anomalies were 

visible in structural and functional neural 

integration among large-scale networks. 

Supekar et al 
[28]

 used resting-state func-

tional magnetic resonance imaging (fMRI) to 

study the local efficiency of functional brain 

networks, and showed that it was reduced in 

AD patients. Reduced connection strength 

and efficiency of resting-state functional 

brain networks as well as the loss of default 

network integration has been observed in 

MCI patients
[29-30]

. Compared with AD pa-

tients, the hub effect of the temporal cortex 

was reduced and module functions were 

changed in the parahippocampal gyrus, 

middle temporal gyrus, fusiform gyrus, and 

cingulate gyrus of MCI patients
[31]

. The net-

work node attributes in prefrontal cortex, 

insula, and white matter connectivity in the 

parietal cortex can be used to distinguish 

normal elderly from MCI patients
[32]

. These 

data collectively imply that brain networks 

vary greatly among normal elderly subjects, 

MCI patients, and AD patients. 

 

MCI can be subdivided into early MCI (EMCI) 

and late MCI (LMCI)
[33-34]

. Although we know 
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that amyloid deposition increases and hypometabolism 

develops during the process by which EMCI or LMCI 

progress into AD
[35]

, changes in brain networks during 

this transformation have yet to be studied. Here, we 

constructed resting-state functional brain networks, and 

using graph-theory method, investigated network 

changes as time and disease progressed.   

 

 

RESULTS 

 

Quantitative analysis of subjects and clinical 

information of patients 

Resting-state fMRI data were obtained from 70 subjects 

from the AD Neuroimaging Initiative (ADNI) data set, 

including 18 AD patients, 19 LMCI patients, 17 EMCI 

patients, and 16 healthy subjects (control). No signifi-

cant difference in gender or age was found among the 

subjects. General information for subjects is listed in 

Table 1. 

 

 

 

 

 

 

 

 

 

Global attributes of resting-state functional networks 

in normal subjects, MCI patients, and AD patients 

We determined the shortest path within the resting-state 

functional networks, and found that while it gradually 

decreased as sparseness increased, the clustering coef-

ficient gradually increased. The shortest path was the 

highest in the AD group, followed by LMCI and EMCI 

groups, and lowest in the control group. In contrast, the 

clustering coefficient showed the reverse pattern, being 

highest in the control group, then LMCI and EMCI groups, 

and lowest in the AD group (Figure 1). The average 

shortest path in the control group was significantly lower 

(P = 0.044), and the clustering coefficient was signifi-

cantly higher (P = 0.037) than what was observed in the 

AD group. The control group trended towards a lower 

average shortest path (P = 0.086) and a higher clustering 

coefficient (P = 0.053) than the EMCI group. The EMCI 

group showed a lower average shortest path and a 

higher clustering coefficient than the LMCI group, but the 

differences were not significant. Likewise, the LMCI 

group showed a lower average shortest path and a 

higher clustering coefficient than the AD group, but the 

differences were not significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Node attributes of resting-state functional networks 

in normal subjects, MCI patients, and AD patients 

Differences in node centrality between normal subjects 

and EMCI patients were found in the right transverse 

temporal gyrus, left superior occipital gyrus, right inferior 

parietal margin of the angular gyrus, left anterior cingu-

late and paracingulate gyrus, right rectus muscle, left 

precuneus, and right middle orbital frontal gyrus (P < 

0.05) under different degrees of sparseness. Additionally, 

Table 1  General subject information 

Item AD LMCI EMCI Controls 

Number (n)   18 19 17 16 

Female/male (n) 10/8 8/11 8/9 11/7 

Age (mean±SD, year) 73.87.6 70.59.8 74.26.5 73.65.5 

 
AD: Alzheimer‟s disease; LMCI: late mild cognitive impairment; 

EMCI: early mild cognitive impairment. 

Figure 1  Global attributes of resting-state functional 
networks in normal control (NC), early mild cognitive 

impairment (EMCI), late mild cognitive impairment (LMCI), 
and Alzheimer‟s disease (AD) groups. 

(A) The average shortest path length and clustering 
coefficient for the four groups under 11–30% of 

sparseness. The average shortest path gradually 
increased as cognitive deficits increased, while the 
average clustering coefficient gradually decreased.      

(B) The shortest path length under different degrees of 
sparseness. As the sparseness increased, the shortest 
path gradually decreased with cognitive deficits. 

(C) The clustering coefficient under different degrees of 
sparseness. As the sparseness increased, the clustering 
coefficient gradually increased with cognitive deficits. 
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node efficiency in the right transverse temporal gyrus, left 

superior occipital gyrus, and left superior parietal gyrus 

also showed significant differences (P < 0.05; Table 2, 

Figure 2). EMCI patients showed significant differences 

from LMCI patients regarding node centrality between 

the left triangular part of the IFG and the left olfactory 

cortex (P < 0.05), and between the left triangular part of 

the IFG and the left inferior orbital frontal gyrus (P < 0.05; 

Table 3, Figure 2) under different degrees of sparseness. 

Compared with LMCI patients, node centrality of AD 

patients between the bilateral triangular part of the IFG, 

left opercular part of the IFG, and left angular gyrus was 

significantly different (P < 0.05). Node efficiency in the 

opercular part of the IFG, left SMG, bilateral triangular 

part of the IFG, and the right superior temporal gyrus   

(P < 0.05; Table 4, Figure 2) also showed significant 

differences in AD patients under different degrees of 

sparseness, compared with LMCI patients. 

 

 

DISCUSSION 

 

We constructed resting-state functional brain networks in 

normal elderly subjects, EMCI patients, LMCI patients, 

and AD patients. Analysis showed significant differences 

in the global and nodal attributes across groups. 

 

The resting-state functional brain networks in the four 

groups were characterized by a high clustering coeffi-

cient and a low shortest path length, indicating that the 

brain is a complex and efficient network, with small 

world characteristics. Comparison of the global 

attributes across the four groups revealed that as cog-

nitive deficits increased, small world characteristics 

gradually degraded, clustering coefficients decreased, 

and the shortest path length increased. The clustering 

coefficient followed the pattern control > EMCI > LMCI > 

AD, and the average shortest path followed the pattern 

control < EMCI < LMCI < AD. Comparison of AD, MCI, 

and control groups revealed that the clustering coeffi-

cient was lowest and the shortest path was highest in 

the AD group
[36]

. Breitner et al 
[37]

 found that small world 

characteristics of resting-state functional brain networks 

were lower in AD patients, suggesting that whole-brain 

information integration is abnormal in AD patients. Sim-

ilar results were also observed in electroencephalogram 

networks, cortical thickness, and diffusion tensor im-

aging networks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2  Number of sparseness with different node attributes between the control group and the early mild cognitive 

impairment group  
 

Number of brain region Abbreviation of brain region Full name of brain region Betweenness centrality Efficiency 

 3 SFGdor Superior frontal gyrus (dorsal) 1  0 

 8 MFG Middle frontal gyrus 1  3 

10 ORBmid Middle frontal gyrus, orbital part 4  1 

12 IFGoperc Inferior frontal gyrus, opercular part 0  2 

22 OLF Olfactory cortex 1  0 

23 SFGmed Medial superior frontal gyrus 1  0 

28 REC Rectus muscle 5  2 

31 ACG Anterior cingulate and paracingulate cingulate gyrus   6  3 

33 DCG Middle cingulated and paracingulate cingulate gyrus 1  3 

34 DCG Middle cingulated and paracingulate cingulate gyrus 0  1 

37 HIP Hippocampus  3  2 

39 PHG Parahippocampal gyrus 5  5 

42 AMYG Amygdale  4  4 

46 CUN Cuneus  1  1 

47 LING Lingual gyrus 0  1 

49 SOG Superior occipital gyrus 8 16 

52 MOG Middle occipital gyrus 0  1 

54 IOG Inferior occipital gyrus 3  0 

57 PoCG Postcentral gyrus 1  0 

59 SPG Superior parietal gyrus 0  6 

62 IPL Inferior parietal lobule 8  2 

64 SMG Supramarginal gyrus 1  0 

65 ANG Angular gyrus 2  1 

67 PCUN Precuneus 4  2 

68 PCUN Precuneus 0  1 

71 CAU Caudate nucleus 1  0 

76 PAL Globus pallidus 1  0 

80 HES Transverse temporal gyrus 17 15 

86 MTG Middle temporal gyrus 1  0 

 
Even brain-region numbers are located in the right cerebral hemisphere and odd numbers in the left. There were significant differences in node 

attributes between the normal control group and the early mild cognitive impairment group, P < 0.05. 
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Figure 2  Nodes with differences in the 
resting-state functional network in normal 
control (NC), early mild cognitive impairment 

(EMCI), late mild cognitive impairment (LMCI), 
and Alzheimer‟s disease (AD) groups.  

Each panel compares betweenness centrality 
and node efficiency across groups. P < 0.05 

indicates differences among different groups. 
(NC-EMCI) Red color, values are higher in the 
NC group. Green color, values are higher in 

the EMCI group. (EMCI-LMCI) Red color, 
values are higher in the EMCI group. Green 
color, values are higher in the LMCI group. 

(LMCI-AD) Red color, values are higher in the 
LMCI group. Green color, values are higher in 
the AD group. Abbreviations of brain regions 
are shown in Tables 2–4. 

Nodes with differences in betweenness centrality Nodes with differences in efficiency 

NC-EMCI 

EMCI-LMCI 

LMCI-AD 

Table 3  Number of sparseness with different node attributes between the early mild cognitive impairment group and the late 

mild cognitive impairment group  
 

Number of brain regions Abbreviation of brain regions Full name of brain regions Betweenness centrality Efficiency 

 3 SFGdor Superior frontal gyrus (dorsal) 0 3 

 6 ORBsup Superior frontal gyrus, orbital part 0 1 

 8 MFG Middle frontal gyrus 3 1 

11 IFGoperc Inferior frontal gyrus, opercular part 1 2 

14 IFGtriang Inferior frontal gyrus, triangular part 9 9 

15 ORBinf Inferior frontal gyrus, orbital part 3 5 

17 ROL Central sulcus 0 1 

21 OLF Olfactory cortex 4 0 

27 REC Rectus muscle 3 0 

30 INS Insula  1 2 

37 HIP Hippocampus  2 0 

42 AMYG Amygdale  3 0 

43 CAL Calcarine fissure 1 0 

45 CUN Cuneus  1 0 

46 CUN Cuneus  0 3 

47 LING Lingual gyrus 1 0 

48 LING Lingual gyrus 1 1 

49 SOG Superior occipital gyrus 0 4 

51 MOG Middle occipital gyrus 3 3 

57 PoCG Postcentral gyrus 1 0 

58 PoCG Postcentral gyrus 1 0 

63 SMG Supramarginal gyrus 2 1 

67 PCUN Precuneus  1 0 

73 PUT Putamen  0 1 

74 PUT Putamen 2 0 

76 PAL Globus pallidus 1 4 

77 THA Thalamus  2 1 

81 STG Superior temporal gyrus 0 2 

82 STG Superior temporal gyrus 1 0 

84 TPOsup Temporal pole: superior temporal gyrus 1 1 

85 MTG Middle temporal gyrus 1 4 

86 MTG Middle temporal gyrus 0 2 

 
Even brain-region numbers are located in the right cerebral hemisphere and odd numbers in the left. There were significant differences in node 

attributes between the early mild cognitive impairment group and the late mild cognitive impairment group, P < 0.05. 
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Stam et al 
[38]

 constructed brain networks based on EEG 

signals and found that the shortest path length con-

structed in the beta band of AD patients was significantly 

longer than that of normal controls. The clustering coef-

ficient of brain networks in AD patients has been re-

ported as significantly less than that in normal controls
[28]

. 

He et al 
[39]

 constructed structural networks based on 

cortical thickness and found that clustering coefficients 

were low and shortest paths were high in patients with 

AD. Another diffusion tensor imaging study showed that 

neural networks of AD patients had higher shortest path 

values and a lower clustering coefficients than normal 

elderly subjects, and that global efficiency decreased 

primarily in the frontal cortex, and was associated with 

verbal working-memory capacity
[40]

. The white matter 

structure of patients with MCI has been reported to be 

similar to that of AD patients
[41]

. Yao et al 
[31]

 compared 

structural networks among normal controls, MCI patients, 

and AD patients, and found that clustering coefficients 

and average shortest paths in MCI patients ranged be-

tween those found in normal subjects and AD patients. 

Our findings support these conclusions. Additionally, in 

our study we found that the clustering coefficient was 

higher and the shortest path was lower in EMCI patients 

than in LMCI patients. Although the difference was not 

significant, this could be due to the small sample size. 

We speculate that cognitive impairment in AD patients is 

not caused by damage to only a few brain regions, but 

rather, it may result from the decline of local efficiency in 

functional brain networks, leading to cognitive impair-

ment, and ultimately to the development of dementia. 

 

Changes in global network attributes are triggered by 

changes in network topology, and analysis of net-

work-node attributes can help find nodes with differences. 

Our study found that cognitive impairment in MCI and AD 

patients is associated with different degrees of damage 

in several brain regions, including the frontal cortex 

(rectus muscle, inferior orbital frontal gyrus, bilateral tri-

angular part of the IFG, opercular part of the IFG, and 

middle frontal gyrus), parietal lobe (left precuneus ,left 

angular gyrus, bilateral SMG, and right parietal inferior 

angular gyrus), temporal lobe (right transverse temporal 

gyrus, left middle temporal gyrus, and right superior 

Table 4  Number of sparseness with different node attributes between the late mild cognitive impairment group and the 
Alzheimer‟s disease group  

 
Number of brain region Abbreviation of brain region Full name of brain region Betweenness centrality Efficiency 

 3 SFGdor Superior frontal gyrus (dorsal)  1  0 

 5 ORBsup Superior frontal gyrus, orbital part  1  0 

 7 MFG Middle frontal gyrus  1  0 

11 IFGoperc Inferior frontal gyrus, opercular part  9 10 

13 IFGtriang Inferior frontal gyrus, triangular part  2  1 

14 IFGtriang Inferior frontal gyrus, triangular part 10  9 

15 ORBinf Inferior frontal gyrus, orbital part  0  1 

16 ORBinf Inferior frontal gyrus, orbital part  2  1 

17 ROL Central sulcus  2  1 

25 ORBsupmed Superior frontal gyrus, orbital part  0  1 

29 INS Insula  2  3 

31 ACG Anterior cingulate and paracingulate cingulate gyrus  2  1 

33 DCG Middle cingulated and paracingulate cingulate gyrus  1  2 

35 PCG Posterior cingutate gyrus  0  1 

36 PCG Posterior cingutate gyrus  2  0 

48 LING Lingual gyrus  1  0 

51 MOG Middle occipital gyrus  1  0 

57 PoCG Postcentral gyrus  2  0 

58 PoCG Postcentral gyrus  0  1 

60 SPG Superior parietal gyrus  2  3 

63 SMG Supramarginal gyrus  1 10 

65 ANG Angular gyrus  5  0 

69 PCL Paracentral lobule  0  1 

70 PCL Paracentral lobule  1  0 

73 PUT Putamen  0  1 

74 PUT Putamen  4  2 

76 PAL Globus pallidus  1  0 

78 THA Thalamus  2  0 

80 HES Transverse temporal gyrus  0  1 

82 STG Sperior temporal gyrus  4  5 

85 MTG Middle temporal gyrus  1  1 

 
Even brain-region numbers are located in the right cerebral hemisphere and odd numbers in the left. There were significant differences in node 

attributes between the late mild cognitive impairment group and the Alzheimer‟s disease group, P < 0.05. 
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temporal gyrus), occipital lobe (right inferior occipital 

gyrus, left superior occipital gyrus, left middle occipital 

gyrus, and occipital lobe), limbic system and basal gan-

glia (anterior cingulate, posterior cingulate, hippocampus 

and parahippocampal gyrus, bilateral thalamus, and pu-

tamen nucleus). These brain regions are highly involved 

in memory, hearing, language, attention, and other cog-

nitive functions
[42-45]

. Increasing evidence indicates that 

the hippocampus, olfactory cortex, and temporal pole are 

critically associated with learning and memory. The 

precuneus is involved in many high-level cognitive func-

tions such as episodic memory, self-related information 

processing, and consciousness. The superior temporal 

gyrus, inferior orbital frontal gyrus, parietal inferior an-

gular gyrus, and angular gyrus are associated with lan-

guage processing and understanding. The superior 

temporal gyrus and transverse temporal gyrus correlate 

with auditory perception, with the transverse temporal 

gyrus being the auditory center. The superior occipital 

gyrus is closely associated with visual-spatial processing. 

The hypothalamus is not only an important sensory inte-

gration center, but also participates in emotion, memory, 

and maintenance of wakefulness
[46-53]

. In our study, the 

abnormal brain regions coincided with regions asso-

ciated with the types of cognitive dysfunctions found in 

AD patients, indicating that in addition to memory im-

pairments, other cognitive functions such as language, 

attention, and visual-spatial ability are also damaged to 

varying degrees in AD patients. Through structural MRI 

of brain-region volume, positron emission tomography 

(PET) detection of brain-region metabolism, and fMRI 

studies of brain-region activation during cognitive 

processes, brain structure and cognitive functions have 

been found to be altered in frontal, temporal, parietal, 

and occipital lobes of patients with MCI and AD. This 

study found similar evidence regarding the nodal 

attributes in brain regions and the brain networks of MCI 

and AD patients. For example, Yao et al
 [31] 

constructed 

brain networks using gray matter volume in Automated 

Anatiomical Labeling (AAL) brain regions according to 

ADNI data, and found that the inferior orbital frontal gyrus 

was abnormal in MCI and AD patients, and the intensity 

of connections with other brain regions also changed. 

Connection intensity between orbital frontal cortex and 

ipsilateral inferior temporal gyrus was decreased in AD 

patients compared with normal controls. He et al 
[27, 54]

 

measured cortical thickness to investigate brain struc-

tures in AD patients, and found that, compared with 

normal subjects, the correlation coefficient of cortical 

thickness between bilateral parietal lobe was reduced in 

AD patients, while that of cortical thickness between 

lateral temporal lobe and parietal lobe and between cin-

gulate gyrus and medial frontal lobe was higher. In addi-

tion, the node centers in the temporal lobe and parietal 

lobe association cortex of AD patients were reduced, and 

the number of central nodes in the occipital cortex   

increased. 

 

Our main interest lies in the following four findings. (1) A 

significant difference between normal subjects and EMCI 

patients and insignificant differences between EMCI and 

LMCI patients and between LMCI and AD patients were 

observed in brain regions including the transverse tem-

poral gyrus, superior occipital gyrus, rectus muscle, 

middle orbital frontal gyrus, precuneus, and hippocam-

pus. (2) An insignificant difference between normal con-

trols and EMCI patients, a significant difference between 

EMCI and LMCI patients, and an insignificant difference 

between LMCI and AD patients was observed in brain 

regions including the triangular part of the IFG, olfactory 

cortex, rectus muscle, inferior orbital frontal gyrus, and 

thalamus. These data imply that compared with normal 

elderly, cognitive functions were not apparently changed 

in EMCI patients, gradually worsened as the disease 

progressed into LMCI, but remained unchanged in the 

AD phase. (3) An insignificant difference between normal 

controls and EMCI patients and between EMCI and 

LMCI patients, but significant differences between LMCI 

and AD patients was observed in brain regions including 

the opercular part of the IFG. These discrepancies indi-

cate that some brain regions are not damaged at the 

initial MCI stage, but may be gradually become so as 

deficits increase and develop into AD. (4) An insignificant 

difference between normal controls and EMCI patients, 

and significant differences between EMCI and LMC pa-

tients and between LMCI and AD patients was observed 

in brain regions including the middle temporal gyrus, 

superior temporal gyrus, lenticular putamen, SMG, mid-

dle occipital gyrus, lingual gyrus, triangular part of the 

IFG, and opercular part of the IFG. These differences 

reflect that impairments of node attributes may become 

aggravated as cognitive deficits worsen. We tentatively 

put forward that regional damage in MCI and AD patients 

is induced by two causes. One is that brain impairment on 

one side triggers a complementary injury on the opposite 

side, and the other is that certain regional damage affects 

other brain regions that are responsible for cognitive func-

tion. The data also suggest that auditory/visual processing 

and episodic memory functions are reduced during the 

early MCI stage, which progresses to impaired language 

and other memory functions, ultimately resulting in diffuse 

brain injury that triggers decline in other cognitive faculties, 

and ultimately dementia. However, little evidence is 

available because most current research focuses on 
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normal controls, and MCI and AD patients, while studies 

addressing EMCI and LMCI are rare. 

 

In summary, this study extracted resting-state fMRI data 

in AAL-template brain regions of normal controls, EMCI 

patients, LMCI patients, and AD patients, and con-

structed brain networks using the ADNI data set. Analy-

sis of the global and nodal attributes showed that brain 

networks of all four groups presented a small-world 

network property characterized by large clustering coef-

ficients and small shortest path lengths. The clustering 

coefficient was largest in normal controls, followed by 

EMCI, LMCI, and AD patients. The shortest path length 

was smallest in normal controls, began to increase in 

EMCI and LMCI patients, and was the longest in AD 

patients. This indicates that severe dementia is asso-

ciated with the decline of general brain network efficiency, 

not a deficit in a single brain region. This also illustrates 

the necessity of multi-modal neuroimaging techniques 

and human neural-connection research. Many brain re-

gions had different node attributes and these brain re-

gions were associated with memory, language, reason-

ing, and other high-level cognitive functions, a finding 

consistent with cognitive impairment in AD patients as 

well as data from PET and structural MRI research. 

Further, regional brain impairment is regarded as the 

physiological basis of cognitive impairment during the 

progression of MCI to AD. We presume that memory 

impairment in MCI is caused by hearing and language 

dysfunctions, and that other cognitive impairments result 

from further diffuse brain injury. 

 

It should be noted that we used a small sample size and 

failed to perform multiple comparisons and correction. 

Therefore, this exploratory study can only give prelimi-

nary conclusions, and future studies with larger sample 

sizes are required for results that are more definitive. In 

addition, measurement data for some subjects were not 

available in the ADNI data set, and thus we did not per-

form correlation analysis between the global network 

attributes and the scale, another topic that deserves at-

tention in future investigations. 

 

 

SUBJECTS AND METHODS 

 

Design 

A comparative analysis of fMRI data. 

 

Time and setting 

Experiments were performed from June 2012 to March 

2013 at Taiyuan University of Technology, China. 

Subjects  

All data were obtained from the ADNI2 data set 

(www.loni.ucla.edu/ADNI). ADNI2 is a revision of ADNI1, 

and includes the additions of the EMCI and LMCI cate-

gories. LMCI is characterized by dysfunctions in logical 

memory and delayed recall, which are not present in 

EMCI. Therefore, we can use this discrepancy to distin-

guish LMCI and EMCI. Both LMCI and EMCI are often 

early stages of AD
[31-32]

, and the EMCI patients bridge the 

gap between normal controls and LMCI patients. 

 

Inclusion criteria 

Normal control: (1) Mini-Mental State Examination 

(MMSE) score between 24 and 30 points. (2) Clinical 

Dementia Rating (CDR) score of 0. (3) Non-depressed. 

(4) Non-MCI. (5) No dementia.  

 

EMCI subjects: (1) MMSE score between 24 and       

30 points. (2) CDR score of 0.5. (3) Wechsler Memory 

Scale (WMS, Logical Memory I) score between 9 and 11 

points.  

 

LMCI subjects: (1) MMSE score between 24 and 30 points. 

(2) CDR score of 0.5. (3) WMS score less than 8 points.  

 

AD subjects: (1) MMSE score between 22 and 26 points. 

(2) CDR score of 0.5 or 1.0. (3) Met the diagnostic crite-

ria of the National Institute of Neurological and Commu-

nicative Disorders and Stroke and the AD and Related 

Disorders Association
[33-34]

. 

 

The resting-state functional data obtained in the first 

scans were adopted for every subject to exclude the 

impact of changes due to the disease course
[36, 55]

. 

 

Methods 

Data acquisition and pre-processing  

All the resting-state fMRI data were collected using 3.0 T 

MRI equipment (Philips, the Netherlands). During the 

scanning, subjects were kept conscious and clear headed 

and stationary. Scan parameters were as follows: repeti-

tion time = 3 000; slice thickness = 3.3; field strength = 3.0; 

echo time = 30.0, other parameters can be found on the 

ADNI website (http://adni.loni.ucla.edu/). Resting-state 

fMRI data were pre-processed as previously described
[56]

. 

In brief, data sets were subjected to tome-slice correction 

and motion correction, with head motion limited to less 

than 2 mm or 2°. The corrected images underwent spatial 

standardization, and conformed to MNI standard space 

with 3-mm voxels. Finally, images were filtered at low 

frequency (0.01–0.08 Hz), to reduce low-frequency drift 

and high-frequency biological noise. 
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Construction of functional brain networks 

Using the AAL template
[34]

, the whole brain was divided 

into 90 brain regions (45 in each hemisphere), each brain 

region was defined as a node in the network. The average 

time sequence of all voxels in the same brain region was 

calculated, as were the partial correlation coefficients be-

tween any two regions, and a 90 × 90 incidence matrix 

was obtained. According to the set threshold, the inci-

dence matrix was transformed into a binary adjacency 

matrix. Thus, if the partial correlation coefficient between 

node i and node j was greater than a certain threshold, the 

matrix element aij was 1, indicating a connection between 

node i and node j. Otherwise, the value of aij was 0. If the 

correlation coefficient threshold was the same among all 

four groups, the number of connection lines and the size 

of the networks were different between the four groups, 

making it meaningless to analyze network and node 

attributes. Previous studies adopted sparseness as a 

means to determine the connection lines between nodes, 

so that different brain networks have the same size. 

Sparseness (S) is the ratio of the actual number of con-

nection lines in a network to the maximum number (N) of 

possible connection lines
[37]

. In this experiment, we com-

pared brain networks under the same sparsenesses. After 

the sparseness threshold was defined, the correlation 

coefficient of incidence matrix is arranged in a decreased 

manner. For example, if the correlation coefficient be-

tween nodes i and j is lower than S × N, a unidirectional 

connection line can be plotted between the nodes. There 

is no gold standard for the definition of the single sparse-

ness threshold, and different sparsenesses lead to differ-

ent experimental results
[36, 39, 54]

. Here we chose 11–30% 

sparseness at an interval of 0.01. 

 

Network statistics, characteristics, and analysis 

The characteristics of complex networks generally in-

clude global network attributes and node attributes. Node 

attributes consist of betweenness centrality and efficien-

cy. The intermediate betweenness centrality (BC) of 

node i (BCi) is defined as the number of the shortest path 

lengths among other node pairs in network which cross 

through node i, and reflects the importance of node i in 

network
[57]

. The efficiency at node k (Ek) is defined as the 

average sum of the shortest path reciprocal between 

node k and other nodes in network, and reflects the de-

gree of difficulty in transferring information from node k to 

other nodes. The higher the efficiency, the easier it is for 

information to be transmitted from node k to other nodes, 

and the fewer resources are consumed
[58]

. Global net-

work attributes include the clustering coefficient and the 

average shortest path. Clustering coefficient (Cp) is the 

average clustering coefficient of all nodes in the network. 

The clustering coefficient of node i (Ci) is the ratio of the 

actual number of lines of other nodes (except node i) that 

connect with node i in network to the number of maxi-

mum possible lines for those nodes. Cp is used to 

measure the local information transmission efficiency in a 

network, with higher Cp values indicating a more efficient 

network. The shortest path length (Lp) is the average of 

the shortest path lengths of all nodes in the network. The 

shortest path on node i (Lpi) is the average of the shortest 

path lengths from node i to other nodes in network. Lp is 

used to measure the global information transmission 

efficiency in network, with lower shortest path lengths 

indicating faster information transmission. The ability to 

transmit information lays the base for network functional 

integration
[59]

. 

 

According to these definitions, the global attributes (the 

Lp and Cp) and node attributes (BCi and Ei) of each sub-

ject were calculated under each sparseness level. Owing 

to the small size and abnormal distribution of samples, 

many studies addressing brain network analysis use 

non-parametric tests
[60-61]

. Here we applied a 

non-parametric permutation test to compare the differ-

ences of global and node attributes between normal 

controls and EMCI patients, between EMCI and LMCI 

patients, and between LMCI and AD patients. The Cp and 

the Lp were averaged and significant differences were 

detected using a non-parametric two-sample Kolmogo-

rov-Smirnov test. As for node attributes, BC and effi-

ciency, we also performed non-parametric two-sample 

Kolmogorov-Smirnov test at different sparsities to de-

termine the significant differences in brain region (P < 

0.05), then found out the number of sparsities which 

existed significant difference of each brain region. Fur-

thermore the number of subjects with significant differ-

ences under different sparseness levels was statistically 

analyzed (P < 0.05 was considered significant). 

 

Research background: A means of finding early signs of Alz-

heimer‟s disease by imaging brain networks. 

Research frontiers: When certain brain regions or subsystems 

are injured, the properties of brain networks change. Exploring 

the relationship between changes in brain network properties 

and neuropsychiatric disorders using imaging technology is a 

key topic in current research. 

Clinical significance: Mild cognitive disorder and Alzheimer‟s 

disease-associated cognitive impairments are not caused by 

damage in only a few brain regions. Rather, they result from 

differing extents of damage to several brain regions, leading to 

alterations in the properties of brain networks. Changes in brain 

network properties or nodes might be good measures for clini-

cal diagnoses. 
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Academic terminology: Resting-state functional brain network: 

a functional network constructed using fMRI data obtained while 

subjects lay quietly in the scanner, without performing any task 

or giving any responses. The observed activity is therefore 

spontaneous. 

Peer review: Brain networks were constructed from resting- 

state fMRI data from four groups that were obtained using the 

Alzheimer‟s disease Neuroimaging Initiative data set. Data 

analysis revealed progressive changes in network function 

across groups (from health elderly to those with mild cognitive 

impairment and Alzheimer‟s disease), thus exploring the causes 

of diffuse brain injury and cognitive dysfunctions. 
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