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Connexin43 Modulation of Osteoblast/Osteocyte Apoptosis: A

Potential Therapeutic Target?

Roberto Civitelli

GAP JUNCTIONS ARE arrays of transcellular channels that
allow aqueous continuity between the cytoplasms of

two adjacent cells. A gap junction channel is established by
docking of two “hemichannels” or connexons present on
juxtaposed cells, thus forming a transcellular conduit
through which ions and small molecules can diffuse from
cell to cell.(1) Each connexon is composed of a hexameric
array of gap junction proteins, called connexins.(2) Gap
junctions are abundantly present in osteoblasts and osteo-
cytes, and in vitro studies have shown that they can propa-
gate signals among osteoblasts and between osteocytes and
osteoblasts.(3,4) A large body of in vivo and in vitro data
have established that connexins, and in particular con-
nexin43 (Cx43), the most abundant in bone, are involved in
many aspects of bone cell function, including control of
osteoblastic cell proliferation, differentiation, and survival,
as well as in skeletal development and postnatal bone mass
acquisition.(5,6) The finding of a genetic link between the
human disease oculodentodigital dysplasia and loss-of-
function mutations of the Cx43 gene, GJA1(7,8) shows that
the skeletal tissue is one of the main sites of action of Cx43.
Such a link has been confirmed by mouse mutants modeling
the disease.(9,10)

In addition to the ability to form gap junctions, evidence
has accumulated indicating that gap junction hemichannels
can exist without docking to another hemichannel, thus
functioning in the guise of membrane channels of large
permeability.(11) For example, Cx43 hemichannels have
been shown to regulate the release of ATP and prostaglan-
din E2 (PGE2) in response to mechanical stimulation in
osteocytes.(12) Elegant earlier work of Plotkin et al.(13) had
shown that Cx43 hemichannels are intimately involved in
the mechanism of action of bisphosphonates in osteoblasts
and osteocytes. Such observations have given impetus to
the idea that connexin may represent pharmacologic tar-
gets, because bisphosphonates are the most widely used
pharmacologic agents in osteoporosis. Potent bone resorp-
tion inhibitors, bisphosphonates may also affect survival of
cells of the osteoblast lineage,(13,14) although the contribu-
tion of the latter action to their therapeutic efficacy is un-
known. In a series of high profile articles, Plotkin and col-

leagues(15,16) showed that the bisphosphonate alendronate
can prevent pharmacologically induced apoptosis in osteo-
blasts and osteocyte-like cells and that this effect requires
Cx43. Specifically, this anti-apoptotic action of alendronate
is dependent on not gap junctional communication, but
stimulation of src-ERK-dependent opening of Cx43 hemi-
channels.(17) These novel and intriguing findings are not
only important for fully understanding the mechanisms of
bisphosphonate action on bone remodeling, but they also
disclose a potentially new direction for pharmaceutical de-
velopment.

In the current issue of JBMR, Plotkin et al.(18) report
results of a study where they tested their hypothesis in vivo
in an model of corticosteroid-induced bone loss. They used
mice in which they induced conditional ablation of the Cx43
gene (Gja1) in osteoblasts and osteocytes and showed that
they can achieve effective and selective gene ablation. Al-
though this powerful in vivo approach does not allow dis-
tinguishing between hemichannels or gap junctions as
mechanisms by which Cx43 may function in this pharma-
cologic response, it does allow one to fully test the involve-
ment of Cx43 in bisphosphonate action in vivo. The results
of the study are bittersweet in that, although they confirm
that Cx43 is involved in the anti-apoptotic effect of alen-
dronate, they also show that neither this anti-apoptotic ef-
fect nor Cx43 is relevant for the pharmacologic effect of this
bisphosphonate on prevention of bone loss induced by cor-
ticosteroid treatment. Mice genetically deficient in Gja1 in
osteoblasts and osteocytes did not exhibit, as predicted by
the hypothesis, the preventative action of alendronate on
prednisolone-induced apoptosis; nonetheless, they were
protected from prednisolone-induced bone loss just as well
as their wild-type littermates.(18) In fact, BMD was higher
in both steroid-treated and untreated groups after alendro-
nate administration, in both wild-type and mutant animals,
further suggesting that the presence or the absence of Cx43
is uninfluential for responsiveness to alendronate, at least in
terms of BMD. One could argue that a higher number of
apoptotic cells may ultimately be detrimental for bone
strength, independently of BMD, and that prevention of
accumulating apoptotic cells with time may represent a
positive factor. However, prolonged treatment with bis-
phosphonates in subjects receiving corticosteroids is notThe authors state that they have no conflicts of interest.
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desirable, considering the suppressive effect of corticoste-
roids on bone formation. The complete dissociation be-
tween the anti-apoptotic effect and protection from steroid-
induced bone loss emerging from the work of Plotkin et al.
constitutes a strong argument against a role of anti-
apoptosis and Cx43 in the pharmacologic action of alendro-
nate. As the authors comment, the antiresorptive action of
alendronate is most likely preponderant relative to other
effects.

Of course, these conclusions are limited to steroid-
induced bone loss, a complex condition characterized by
inhibition of bone formation and relative increase of bone
resorption. It would be interesting to see whether similar
results occur in other forms of osteoporosis, and in particu-
lar, estrogen-dependent bone loss, a condition also associ-
ated with increased osteoblast/osteocytes apoptosis.(19) It is
also possible that not all bisphosphonates have the same
anti-apoptotic effect or function through Cx43-mediated
mechanisms. A recent study reported that aminobisphos-
phonates actually increase osteoblast apoptosis, although at
high concentrations, and inhibit osteoblast differentiation.(20)

The role of Cx43 for bone anabolism is much clearer.
Based on earlier in vitro data showing that interference
with Gja1 expression diminishes PTH stimulation of cAMP
production(21) and matrix mineralization by osteoblasts,(22)

our laboratory has shown that treatment with daily doses of
teriparatide (PTH fragment 1-34) results in severely attenu-
ated increments in bone mass and reduced activation of
bone formation rates in another model of conditional Gja1
deletion, relative to wild-type mice.(23) More recently, we
have also shown that stimulation of mineral apposition rate
at the endocortical surface by application of a three-point
bending protocol to tibiae in vivo is significantly reduced in
the same mouse mutants relative to wild-type animals.(24)

These results suggest that Cx43, either through gap junc-
tions or hemichannels, or even functioning as a docking
platform for signaling molecules, is important for equalizing
or potentiating cell responses,(5,25) thus affecting survival,
differentiation, and/or function of bone-forming cells.
Therefore, despite this initial setback with bisphosphonate
action, the idea of Cx43 as a pharmacologic target remains
appealing. Compounds that modulate gap junction function
have been produced, and one such compound is currently
being developed as an antiarrhythmic agent.(26) Interest-
ingly, this prototype compound had been shown to prevent
deterioration of bone biomechanical properties in estrogen-
dependent bone loss in rats.(27) The availability of several
genetic models of tissue and cell-specific Gja1 ablation or
mutation makes it possible to test the potential effective-
ness of gap junction modifiers in conditions of altered bone
remodeling and their possible interactions with other bone
active agents. The work of Plotkin et al. represents the first
example of this novel therapeutic avenue, and its future
potential should soon emerge.
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