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Colorectal cancer is the third largest cancer in worldwide and has been proven to be closely related to the intestinal

microbiota. Many reports and clinical studies have shown that intestinal microbial behavior may lead to pathological changes

in the host intestines. The changes can be divided into epigenetic changes and carcinogenic changes at the gene level, which

ultimately promote the production and development of colorectal cancer. This article reviews the pathways of microbial

signaling in the intestinal epithelial barrier, the role of microbiota in inflammatory colorectal tumors, and typical microbial

carcinogenesis. Finally, by gaining a deeper understanding of the intestinal microbiota, we hope to achieve the goal of treating

colorectal cancer using current microbiota technologies, such as fecal microbiological transplantation.

Introduction
As the world’s third-largest cancer, colorectal cancer (CRC)
retains a high morbidity and mortality in our country, which
imposes a severe burden on the health system and on
patients.1 There are hundreds of kinds of microorganisms in
human intestines, forming a symbiotic system with intestinal
cells to maintain the intestinal environment. The typical bac-
teria include Escherichia coli, Enterococcus faecalis, and

Bacteroides fragilis.2 Microbes have their own pathogenicity
and carcinogenicity. For example, a class of toxins released
from E. coli is known as cell death toxins (CDTs). They act
directly on the intestinal epithelial cells and cause a highly
proliferative epithelium in normal intestinal epithelial cells.
The proliferating intestinal epithelial cells form an adenoma
and continue to invade the submucosa of the intestinal
mucosa, eventually leading to cancerous changes. Enterococcus
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faecalis destroys DNA via free radicals, such as active oxygen
and active nitrogen.3 Some carcinogenic mechanisms may
involve a variety of different signaling pathways. Their inter-
actions, promotions, substitutions, and combinations result in
intestinal microorganism induced CRC. The role of these
mechanisms is inseparable from the subsequent inflammatory
response, which eventually leads to CRC.4 This review pro-
vides an overview of the intestinal epithelial barrier structure
and microbial signal transduction pathways, the role of
microbes in inflammation-induced colorectal neoplasms, and
a detailed review of typical microbial carcinogenesis. Finally,
we expect colorectal cancer may be treated using certain cur-
rent technologies for the typical microbiota, such as fecal
microbiological transplantation.

The Importance of the Intestinal Epithelial Barrier
and Microbial Signals in the Regulation of Intestinal
Homeostasis
Intestinal epithelial cells (IECs) are continuous physical barriers
formed by single cells that separate the intestinal flora from the
deeper intestinal tissue. Epithelial cells are networked together
by tight junctions (TJs) and provide a paracellular seal (Fig. 1).
This not only blocks the paracellular space, indicating ion flux
between tissues, but also maintains cell polarity.5 Intestinal
mucus is the first barrier between the intestinal tract and
mucous tissue. It is mainly comprises a large amount of modi-
fied glycoprotein mucus.6 Jakobsson et al.7 found that the filtra-
tion function of colonic mucus depends on the microbial
community. The intestinal microbiota are also active partici-
pants in maintaining intestinal homeostasis. Lipopolysaccharide
acts as an endotoxin, and microbiota containing lipopolysac-
charide interfere with the function of the epithelial barrier,
leading to chronic inflammation and CRC. However, the intes-
tinal microbiota can regulate the renewal and reorganization of
TJs of intestinal epithelial cells, thereby enhancing the barrier
function.8 The mucus layer of the intestinal epithelium is a ster-
ile environment containing some biomolecules, such as secre-
tory immunoglobulin A (sIgA), antimicrobial peptides
(AMPs),9 microbe-associated molecular patterns (MAMPs), tre-
foil factor peptides (TFFs), resistin-like molecules β (RELMβ),
and Fc-γ binding proteins.10 A study using aseptic mice showed
that the thickness of the mucus layer was reduced compared to
the rodents with an intact microbiota.11 On the basis of IECs,
there are also plasma cells, macrophages, and dendritic cells
(DCs). These cells have a simple nature and limited inflamma-
tory cytokine expression in the healthy state.12 However, in
inflammatory bowel disease (IBD), the number of these
immune cells will increase.13 Meanwhile, the expression of
endothelial cell adhesion molecules in IBD also increases.14

Innate receptors, such as pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs), play an important role in the innate immune
response and are able to identify molecular patterns. These
molecular patterns include Nod-like receptors (NLRs), C-

lectin-like receptors (CLRs), Rig-I-like receptors (RLRs), and
toll-like receptors (TLRs).15 Although mice with pattern rec-
ognition receptor (PRR) and signal transduction defects have
been modeled, skin-specific PRR knockout mice are still
needed to demonstrate the role of bacterially derived signals
in intestinal homeostasis.16 Over the last few years, we have
witnessed a significant expansion in the number of reports
associated with the contribution of the NLR family members
to IBD pathobiology.17

NLRs are cytoplasmic receptors and are highly conserved
throughout evolution, attesting to their important role in host
defense.18 MAMPs activate muramyl dipeptide (MDP) and rec-
ognize NLRs. Among them, nucleotide binding oligomerization
domain containing (NOD)1 and NOD2 are active in intestinal
cells and can recognize caspase recruitment domains (card-
card).19 Under the stimulation of leucine-rich repeats (LRRs),
which are involved in bacterial-sensing during pathogenesis,
NOD1 and NOD2 interact with the receptor-interacting pro-
tein 2 (RIP2), which stimulates tumor necrosis factor (TNF)
receptor-associated factor 6 (TRAF6) and recognizes transform-
ing growth factor kinase 1(TAK1), triggering mitogen-activated
protein kinase (MAPK) and NF-kappa B (NF-κB) signaling.20

By contrast, there has been little research on CLRs.
The RLR signaling pathway induces the phosphorylation and

homodimerization of interferon regulatory factor 3 (IRF3) and
upregulates the transcription of type I IFN (IFN-β).21 Mean-
while, RLRs can be used for virus detection. RNA viral infection
plays a key role in the early production and subsequent expres-
sion of IFN-β, which induces an inflammatory response, thereby
inhibiting viral replication.22 Therefore, IFN-β identifies the virus
RNA and induces the congenital antiviral response.23 Remark-
ably, like other innate immune pathways, upon stimulation, RLR
signaling is markedly amplified by multiple feed-forward loops
in self-regulatory or autocrine/paracrine ways.24 TLRs are usually
sensitive to microbial components, DNA, and RNA fragments.25

TLRs can be located on the cell surface or in the intracellular
compartment, with the specific ligand completing the feedback
and associated with a specific adaptor that activates the cascade
of downstream signals.26

TLRs include TLR1, TLR2, and TLR4, and bind to myeloid
differentiation factor 88 (MyD88) and activate NF-κB by
binding to IL-1R-associated kinases 1, 2, and 4 (IRAK1,
2, and 4).27 TRAF6 mediates the activation of NF-κB induced
by MyD88 and IRAK.28 TLRs are strongly expressed in
human rectal adenocarcinoma cells, especially TLR2 and
TLR4.29 In addition to TLR3, MyD8830 signaling is usually
triggered by adapters, which initiates a signal cascade, which
eventually activates transcription factors, such as NF-κB,
IRF,31 and activating protein 1 (AP-1).32

Inflammatory Cytokine-Mediated Signaling Pathway
Leading to Colorectal Cancer
The occurrence of malignant tumors is inseparable from
chronic inflammation. Accumulating evidence confirms that
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the collapse of the symbiotic relationship is important in the
pathogenesis of IBD.33 It is generally believed that chronic
colon inflammation from ulcerative colitis (UC) or Crohn’s
disease (CD) may increase the risk of colon cancer.34 In the
past few decades, the incidence of UC in western countries
has been very high. However, recent studies have found that
the incidence of IBD is increasing steadily in newly industrial-
ized, non-Western countries.35 In IBD, mucosal lesions are
caused by disorders of the intestinal microbiota.36 Intestinal
microbiota also drive IBD pathogenicity through pro-
inflammatory factors or restriction of protective compounds.37

This hints at the joint induction of intestinal inflammation by
a variety of microbes and the possibility of causing CRC.38

The inflammatory cytokines associated with CRC are primar-
ily intermediate mediators, such as microbial metabolites. A
large amount of metabolites in the blood come from the intes-
tines, which support the important role of metabolites in for-
mation of microbial-cytokines and construction of intestinal
microenvironment.39 However, there has been little research
in this area. The symbiotic and pathogenic microbiota also
induce local inflammation by invading the normal colon tis-
sue, and accelerate tumorigenesis by promoting the genotoxi-
city of colonic epithelial cells, thus promoting the
development of CRC.40 The DNA in the IECs undergoes

modification (including nitration, oxidation, methylation and
deamination) by chronic inflammation, which leads to abnor-
mal proliferation. This process may contribute to the activa-
tion or progression of CRC.41 Innate immune cells, such as
macrophages, dendritic cells (DCs), and adaptive immune
cells are recruited in response to inflammation.42 The mitotic
immune system is further developed with the participation of
symbiotic bacteria. Macrophages, DCs, and natural killer
(NK) cells proliferate and release proinflammatory cytokines,
such as interleukin (IL)-12, IL-23, tumor necrosis factor α
(TNF-α), and INF-γ (Fig. 2). These factors activate cells of the
adaptive immune system, including T lymphocytes, B lym-
phocytes, and various inflammatory mediators.43The inflamed
colorectal epithelial cells do not form an effective surface bar-
rier to reject the invasion of the symbiotic bacteria and their
derivatives. As a result of this defect in the barrier function,
symbiotic bacteria become the driving force for inducing and
maintaining the tumor to promote inflammation.44 Genes or
cells undergo mutations, proliferation, or apoptosis under the
action of inflammation and gradually develop carcinogenic
phenotypes. Nuclear factor kappa (NF-κB) is the link between
inflammation and cancer, which mainly regulates cell survival
and immunity.45 IL-6 is one of the major cytokines induced
by NF-κB. IL-6 produced in the lamina propria activates the

Figure 1. A schematic diagram of the signaling pathways of microorganisms in the intestinal epithelium. Among them, NLR, TLR and RLR
family members provide significant microbial signaling pathways in the intestinal epithelium. DAMPs and MAMPs on the epithelial barrier
activate signaling pathways through different receptors. MAMPs activate muramyl dipeptide (MDP) and recognize NLRs. NOD1 and NOD2 are
active in intestinal cells and can recognize caspase recruitment domains (card-card). NOD1 and NOD2 interact with RIP2, stimulates TRAF6
and recognizes TAK1, triggers MAPK and NF-κB. TLRs include TLR1, TLR2, and TLR4, which bind to MyD88 and activate NF-κB by binding to
IRAK1, 2, and 4. RLRs are capable of recognizing viral RNA, releasing IFN-β, and activating NF-κB. If the signal pathways are disrupted,
inflammation may occur, leading to cancerous lesions.
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signal transduction and activator of transcription (STAT3)
signaling pathway in IECs. This pathway promotes cell prolif-
eration, inhibits apoptosis and other tumorigenic pathways to
promote tumorigenesis.46 Two transcription factors, NF-κB
and STAT3, are essential for inflammation-promoted cancer
development and progression. NF-κB signaling pathway is
activated by TNF-α and IL-17, and is associated with cyto-
kines. STAT3 is activated with the help of IL-6, IL-21, IL-22,
and IL-23.40 In a mouse model, the development of colitis was
shown to require the expression of IL-23. At the same time,
IL-23 is crucial in the regulation of T helper cell 17 (Th17)47

function and IL-17 production.48 The increase in IL-17
expression appears in the colons of patients with UC and
CD.49 The NF-κB pathway also serves as an important regula-
tor of the genes encoding TNF and Cyclooxygenase-2 (COX-
2),50 which are often highly overexpressed in inflammatory
bowel disease, as well as in colorectal adenomas and adeno-
carcinomas. Other key innate components of the inflamma-
tory response that contribute to CRC progression include
reactive nitrogen species (RNS) and reactive oxygen species
(ROS), which serve as genotoxic compounds promoting the
accumulation of mutations within proliferating epithelial
cells.51

Typical Microbial Families Contributing to Colorectal
Cancer
Enterococcus faecalis
E. faecalis is a gram-positive facultative anaerobic bacterium.
Recent research has linked E. faecalis with CRC, because the
bacterium was found to aggregate at a higher level in fecal
specimens from patients with CRC compared to that of
healthy controls, and is more abundant in the adjacent tissues
of cancer and CRC compared to healthy mucosa.52 In Il10
knockout mice, E. faecalis promoted colon inflammation,
leading to dysplasia and CRC.53 One study also showed that
E. faecalis, which can cause colitis after infection, can express
TGF-β in the intestinal epithelial cells of wild-type mice,
thereby activating the Smad signaling pathway.54 In this pro-
cess, the dedifferentiation of TGF-β signal transduction
enhances the stem cell characteristics of CRC, thereby pro-
moting its occurrence.55 This is associated with the deletion of
the expression of the TLR2 protein and the inhibition of NF-
κB-dependent pro-inflammatory gene expression54 (Fig. 3). In
contrast, Il10 gene-deficient mice in IECs fail to suppress
TLR2-mediated pro-inflammatory gene expression during col-
onization with E. faecalis.56 In addition, the Smad4 haploid
environment not only affects colitis, but also has an impact on

Figure 2. Inflammation oncogenic signaling pathways. PAMPs recognize surface PRRs such as macrophages and dendritic cells. The
inflammatory cells release cytokines such as IL-6, IL-23, TNF-α et al. IL-6 activates the NF-κB and signal transducer and STAT3 pathways,
which in turn induce cancer. IL-17 is an important cytokine that also activates the NF-κB and STAT3 signaling pathways, but requires the help
of IL-23. At the same time, the release of ROS and RNS, and chemical modifications such as methylation and amination, can damage DNA
and promote the development of cancer.
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CRC.57 In addition to inducing chronic inflammation,
E. faecalis can also generate extracellular superoxide and
hydrogen peroxide. In vitro, DNA damage was induced by
free radicals generated outside the cells.58 Infection by
E. faecalis induced an intracellular ROS reaction that was
independent of the oxphos system and impaired the mito-
chondrial genome in gastric cell culture. Finally, the micro-
biota can induce NF-κB through DNA damage, leading to
inflammation.59 ROS can cause chromosome instability
(CIN), which may be related to the occurrence of CRC. In
mammalian cells, E. faecalis can induce CIN via the produc-
tion of superoxide. At the same time, E. faecalis seems to be
involved in the bystander effect of COX-2.60 These results val-
idate a novel mechanism for CRC induction that involves
endogenous CIN and cellular transformation arising through
a microbiome-driven bystander effect.61 At the same time, the

extracellular superoxide formation of E. faecalis can enhance
the expression of COX-2 in macrophages and promote the
CIN in IECs. The macrophages polarized by E. faecalis can
induce malignant tumor aneuploidy or chromosome instabil-
ity in primary colonic epithelial cells.62 These findings can
explain the effect of E. faecalis on the incidence of CRC.

Escherichia coli
E. coli has a predominant place among aerobic-anaerobic
gram-negative bacteria in the normal intestinal microbiota.
Some virulent strains of E. coli that contain pathogenicity
islands can infect the human gastrointestinal system and
induce disease. E. coli is divided into four phylogenic groups
(A, B1, B2, and D) according to the acquisition of virulence
factors.63 Interestingly, some strains of E. coli from phylo
group B2 are associated with CD, a chronic IBD that is a risk

Figure 3. The carcinogenic mechanisms of six major microorganisms. E. faecalis causes colitis after infection and expresses TGF-β in
intestinal epithelial cells, thereby activating SMAD4 signaling pathway. E. faecalis also produces extracellular superoxide and hydrogen
peroxide,inducing DNA damage. Meanwhile, it also appears to be involved in the bystander effect of COX-2, the endogenous CIN and cell
transformation caused by the release of TNF-α from macrophages, results in cancer. Some strains of E. coli B2 produce CDT and CNF, which
can directly lead to a DNA damage response and genomic instability. At the same time, the mismatch repair pathway is inhibited, leading to
tumorigenesis. E. coli can also induce late bridges and chromosomal aberrations by genomic toxin-containing pks islands and catalyze the
synthesis of colibactin by clbP. Eventually it leads to CIN, MSI and CIMP, which leads to cancer. ETBF synthesizes BFT. BFT binds to CECs and
stimulates the cleavage of E-cadherin, thereby amplifying the Wnt and NF-κB pathway and releasing pro-inflammatory mediators to destroy
DNA. At the same time, ETBF activates the signal transducer and activator of STAT3 signaling pathway, induces the production of Th17,
releases interleukin IL-17, and promotes colon tumor formation. BFT rapidly causes the expression of SMO and promotes SMO-dependent
ROS production and damages DNA in intestinal epithelial cell lines. These reactions cause tumor formation. By complexing with E-cadherin
on epithelial cells, F. nucleatum stimulates FadA, which activates wnt/β-catenin/TLR4/p-PAK1 signaling and upregulates oncogene
expression. By releasing RNA into host cells and activating NF-κB, F. nucleatum stimulates inflammation. F. nucleatum also inhibits natural
killer (NK) cell activity in the tumor microenvironment, leading to colorectal tumorigenesis. Helicobacter pylori causes the metastasis of
colorectal cancer caused by chronic gastritis. In addition, H. pylori infection may cause colorectal epithelial damage through inflammatory
reactions such as IL-8 mediated inflammatory responses. H. pylori virulent strains induce enhanced inflammatory responses, and expression
of the cytotoxin-associated gene A (CagA) gene may also lead to colorectal cancer. The S. bovis antigen induces the expression of COX-2.
With the help of prostaglandins, COX-2 promotes cell proliferation and angiogenesis, and inhibits apoptosis, thus stimulating the cancer
pathway.
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factor for CRC.64 At the same time, E. coli in group B2 can
also contain the polyketone acid synthetase (pks) island con-
taining the genotoxin. This hybrid peptide-polyketone geno-
toxin is generated by a multi-enzyme factory, which is
encoded by the 54 kb pks genotoxicity island65 (Fig. 3). Infec-
tion with pks+ E. coli induces anaphase bridging, chromosome
aberrations, aneuploidy, and tetraploidy.66 Mucus degradation
enables an increase in pks+ E. coli adhesion, triggering
increased DNA damage in colonic epithelial cells by colibac-
tin.67 Bacteria-host cell contact is required for the genotoxic
effect of pks; therefore, an environment where bacteria can
more readily take root in the epithelial layer could deliver
more of the pks product colibactin to host cells in the epithe-
lium.68 Deletion of the pks island decreased tumor number
without altering inflammation, suggesting that colibactin con-
tributes to tumor promotion independently of inflammation.69

Recent evidence shows that colibactin is synthesized via the
peptidase activity of the editing enzyme, clbP, which is present
in the pks island, indicating that the colibactin is synthesized
as a prodrug.69 Vizcaino and others have used nuclear mag-
netic resonance spectroscopy and bioinformatics-guided isoto-
pic markers to describe the colibactin warhead. The warhead
crosslinks duplex DNA in vitro, which is evidence for colibac-
tin’s DNA-damaging activity.70 Some toxins can cause DNA
damage, and then affect the cell cycle. E. coli harboring cyto-
toxic necrotizing factor (CNF) and cytolethal distending toxin
(CDT) are particularly associated with CRC biopsies.71 In
addition, DNA mismatch repair (MMR) plays a key role in
sustaining genomic stability,72 which is a highly conserved
biological pathway. MMR acts in the DNA damage response
pathway, which degrades severely damaged cells and prevents
both short-term mutagenesis and long-term tumorigenesis.
Using a method involving depletion of DNA mismatch repair
proteins,73 an E. coli effector protein stimulates host mutation.
The pathogenic mechanisms that cause this condition
included in three pathways: CIN, microsatellite instability
(MSI), and the CpG island methylator phenotype (CIMP),74

which eventually lead to the occurrence of CRC.

Bacteroides fragilis
B. fragilis usually exists symbiotically and is believed to con-
tribute to the host’s nutritional status, together with mucosal
and systemic immunity. By contrast, B. fragilis also induces
human disease when colonic integrity is interfered with, which
allows it to escape into the sterile peritoneum where it acts as
an opportunistic pathogen.75 Among B. fragilis strains, only
enterotoxigenic B. fragilis (ETBF) is associated with diarrheal
disease. Alternatively, nonenterotoxigenic B. fragilis (NTBF)
strains are believed to be a possible pro-biotics but with the
potential to induce colonic inflammation.76 The central part
of the pathogenicity of ETBF is the synthesis of the B. fragilis
toxin (BFT) (Fig. 3). BFT is a 20-kDa zinc-dependent metallo-
protease toxin that binds to colonic epithelial cells (CECs)
and stimulates cleavage of the tumor suppressor protein,

E-cadherin.77 E-cadherin cleavage enhances procarcinogenic
triggering, including Wnt signaling, CEC proliferation, and
epithelial barrier disruption, which stimulate mucosal inflam-
mation and the formation of colon tumors, as illustrated in
murine models of colon carcinogenesis.78 At the molecular
level, BFT binds to a specific colonic epithelial receptor, acti-
vating the Wnt and NF-κB pathways. ETBF induces rapid
activation of STAT3, both in the colonic epithelial cells, which
are the targets of transformation in the colon, and in a subset
of mucosal immune cells. STAT3 activation is required for
Th17 cell development and, consistent with this, ETBF
induces a rapid mucosal Th17 inflammatory response within
1 week of colonization.79 Colon tumors induced by ETBF also
have a marked increase in STAT3 activation. IL-17 is pro-
duced by a subpopulation of Th17 cells.80 The IL-
17-dependent signaling pathway promotes NF-κB and Wnt
activation, and establishes an inflammatory tumor microenvi-
ronment in the gut.81,82 Furthermore, administration of an IL-
17-blocking antibody had an inhibitory effect on excess tumor
formation, indicating that IL-17 is necessary for tumorigenesis
in this model.83 Spermine oxidase (SMO), a polyamine cata-
bolic enzyme, is an epithelial source of inflammation-induced
ROS and DNA damage. BFT rapidly triggers SMO expression
and contributes to SMO-dependent ROS and DNA damage in
intestinal epithelial cell lines. Mice that are infected with ETBF
show elevated intestinal SMO expression.84 It has been sug-
gested that SMO acts as a potential source of inflammation-
associated ROS, which is produced during polyamine catabo-
lism. This causes apoptosis, DNA damage, and consequently,
the formation of cancer.85

Streptococcus bovis/Streptococcus gallolyticus
S. bovis is implicitly associated with an expanded of a variety
of cell and molecular modifications that may be linked with
the appearance of CRC.86 The wall-extracted S. bovis antigen
induces the expression of COX-2 (Fig. 3). With the help of
prostaglandins, COX-2 promotes cell angiogenesis and
inhibits apoptosis. Thus, it can stimulate the cancer path-
way.87 Using human CRC patient’s feces and mucosa samples,
Abdulamir and his colleagues showed enrichment of the bac-
teria compared to the healthy control group, without gastroin-
testinal lesions, which strengthened the connection between
S. bovis and CRC.88 Thus, it appears that Streptococcus can
provide a growth advantage in the tumor microenvironment
and induce inflammation to promote carcinogenesis.

Fusobacterium nucleatum
F. nucleatum is an opportunistic commensal obligate anaero-
bic gram-negative bacterium that is indigenous to the human
oral cavity and has a role in periodontal disease. Recent data
provide experimental support for tumor induction by
F. nucleatum. F. nucleatum is more abundant in CRC tumor
versus normal tissue.89 This bacterium induces the expansion
of bone marrow-derived immune cells, and promotes the
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expression of inflammatory genes in the small intestine and
colon.90 Recent studies have uncovered oncogenic mecha-
nisms that support a tumorigenic role of F. nucleatum. While
Kostic’s90 study unveiled an indirect method of interaction
with tumor sites, Rubinstein’s91 study demonstrated a direct
interaction between F. nucleatum and host cells. F. nucleatum
and other intestinal microbiota can also directly adhere to
enterocytes, altering endothelial integrity, with possible onco-
genic consequences. The best-characterized associated factor
is the external adhesin, FadA92 (Fig. 3). The unique FadA
adhesin of F. nucleatum can bins to E-cadherin, which acti-
vates β-catenin signaling, inducing oncogenic responses in
CRC cells.93 This is accompanied by increasing expression of
transcription factors, oncogenes, Wnt, and inflammatory
genes, together with growth promotion of CRC cells.94 By
releasing RNA into the host cell and activating NF-κB,
F. nucleatum induced inflammation.95 NF-κB is an internal-
ized signal of the above process. Rubinstein et al. used FadA-
knock-out mutants to demonstrate the effect of adhesion, and
its effect on β-catenin signaling cascades.65 A series of cyto-
kines trigger the activation of NK cells, including IFN, IL-2,
IL-12, IL-15, and IL-18. They recognize uncoordinated ligands
to activate and/or suppress receptors. Alternatively, activation
can be further accomplished by directly identifying pathogen-
associated molecular patterns. However, F. nucleatum inhibits
NK cell activity in the tumor microenvironment, resulting in
colorectal tumorigenesis.96 Fap-2, which is a lactobacillus-
resistant nucleolus, is an inhibitor of lactose binding, and is
involved in cell adhesion.97 Fap-2 defends tumors from host
immune attack. Abed et al. showed that F. nucleatum Fap-2
attaches to beta-D-galactosyl(1–3)-N-acetyl-D-galactosamine
(Gal-GalNAc) as a polysaccharide receptor for CRC, reducing
the ability of F. nucleatum to enhance CRC.98 T Cell immu-
noreceptor with Ig and ITIM domains (TIGIT) is an impor-
tant inhibitory receptor on NK and T cells.99 Gur et al.
proved that Fap-2 binds to TIGIT on NK and T cells and
interferes with the attack by the host immune system on
F. nucleatum-associated tumors.100 At the same time, under
the control of TLR4/p-PAK1/p-β-catenin S675 cascade,
F. nucleatum enhances intestinal tumorigenesis in vivo.101

Invasive F. nucleatum activates catenin signaling through the
TLR4/p-PAK1/p-β-catenin S675 cascade, leading to CRC.102

Helicobacter pylori
H. pylori is a major factor in the development of stomach dis-
orders and gastric cancer (GC).103 Some reports have indi-
cated a potential relationship between H. pylori infection and
colorectal neoplasms; however, this has been disputed by
others. The pathophysiological mechanism of how H. pylori
induces colorectal neoplasm remains unclear. Various mecha-
nisms have been proposed to explain the correlation between
H. pylori infection and CRC. First, H. pylori inhibits the gas-
tric mucosal proton pump to reduce the secretion of gastric
acid and increase the chances of the proliferation of other

microbes.104 A meta-analysis also showed that H. pylori may
increase the risk of CRC; however, the evidence is insuffi-
cient.105 Second, H. pylori infection may cause damage to the
colorectal epithelium through an inflammatory reaction, such
as an inflammatory response mediated by IL-8,49 which is a
factor that corresponds with CRC (Fig. 3). In addition, viru-
lent H. pylori strains expressing the CagA gene could also con-
tribute to CRC by inducing enhanced inflammatory
responses.106 To determine whether there is a correlation
between colorectal cancer and CagA, Shmuely et al. detected
the expression of serum IgG antibodies and CagA protein in
67 cases of colorectal adenocarcinomas. They found that
CagA+ seropositivity was related to additional risk of gastric
cancer and colonic cancer.107 Third, H. pylori infection pro-
motes the secretion of gastrin, which may induce the prolifer-
ation of mucosal cells in the colon, leading to CRC.108

Increased plasma gastrin levels may induce higher mucosal
cell proliferation in the colon and contribute to the develop-
ment of CRC.109

Clinical Applications
We have shown that microbes are essential in the process of
CRC development. Therefore, the protection of intestinal
microbes can effectively reduce the occurrence of CRC.
Although antibiotics and probiotics are frequently used,
researchers have developed certain technologies to treat CRC
associated with the above-mentioned typical bacterial groups.
Fecal microorganism transplantation (FMT) has recently been
re-evaluated as a promising method to treat diseases associated
with microorganisms. Colonic enema or endoscopy is often
used to introduce the distal gut flora from healthy donors into
unhealthy recipients.110 FMT is most commonly used to treat
recurrent Clostridium difficile infection (CDI) to replace the
commensal microbiota that has been eliminated by antibiotic
treatment.111 Reducing the adhesion of E. coli and targeting the
host metabolism can affect the colonization of E. coli and pre-
vent the occurrence of CRC.112 In the case of B. fragilis,
researchers developed a biologically active recombinant BFT-2
in vitro and found that a low dose of bioactive BFT-2 could
inhibit the formation of colorectal tumors when administered
gastrically.113 In the case of F. nucleatum, xenografted mice with
CRC were treated with antibiotics, which reduced the load of
F. nucleatum and could reduce the overall growth of the
tumor.114 CRC prediction based on fecal microbiota can provide
accurate CRC prediction noninvasively with high accuracy.
Although colonoscopy can visually observe the lesion, preopera-
tive preparation is cumbersome. Moreover, the accuracy of the
examination results can be affected by the skill and experience
of the surgeon, and certain complications may occur. Painless
colonoscopy reduces discomfort, but increases the risks associ-
ated with anesthesia. In addition, a limitation of short colonos-
copy is that the working range is narrow and the examination is
not comprehensive. Computed tomography (CT) colonoscopy
may cause radiation damage and is expensive. Therefore, FMT,
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assisted by fecal DNA testing, could further improve the accu-
racy of CRC screening, and is a good choice for early screening
and prognosis of CRC. We expect that these technologies will
move out of the laboratory in the future and be applied in the
treatment of colorectal cancer.
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