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Staphylococcus aureus is a major cause of infective endocarditis (IE) and sepsis. Both
methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains cause these illnesses.
Common S. aureus strains include pulsed-field gel electrophoresis (PFGE) types USA200,
300, and 400 types where we hypothesize that secreted virulence factors contribute to
both IE and sepsis. Rabbit cardiac physiology is considered similar to humans, and rabbits
exhibit susceptibility to S. aureus superantigens (SAgs) and cytolysins. As such, rabbits are
an excellent model for studying IE and sepsis, which over the course of four days develop IE
vegetations and/or fatal septicemia. We examined the ability of MRSA and MSSA strains (4
USA200, 2 USA300, 2 USA400, and three additional common strains, FRI1169, Newman,
and COL) to cause vegetations and lethal sepsis in rabbits. USA200, TSST-1+ strains that
produce only low amounts of α-toxin, exhibited modest LD50 in sepsis (1 × 108 – 5 × 108)
colony-forming units (CFUs), and 3/4 caused significant IE. USA200 strain MNPE, which
produces high-levels of α-toxin, was both highly lethal (LD50 5 × 106 CFUs) and effective in
causing IE. In contrast, USA300 strains were highly effective in causing lethal sepsis (LD50s
1 × 106 and 5 × 107 CFUs) but were minimally capable of causing IE. Strain Newman,
which is phylogenetically related to USA300 strains, was not highly lethal (LD50 of 2 × 109

CFUs) and was effective in causing IE. USA400 strains were both highly lethal (LD50s of
1 × 107 and 5 × 107 CFUs) and highly effective causes of IE. The menstrual TSS isolate
FRI1169, that is TSST-1+, produces high-levels of α-toxin, but is not USA200, was both
highly lethal and effective in causing IE. Additional studies showed that phenol soluble
modulins (PSMs) produced by FRI1169 were important for sepsis but did not contribute to
IE. Our studies show that these clonal groups of S. aureus differ in abilities to cause IE and
lethal sepsis and suggest that secreted virulence factors, including SAgs and cytolysins,
account for some of these differences.
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INTRODUCTION
Recently, the Centers for Disease Control and Prevention and
collaborators published that Staphylococcus aureus is the most
common cause of serious infectious diseases in the United States
(Klevens et al., 2007). S. aureus is a common organism found in
humans, with estimates of up to 40% of the population being
colonized asymptomatically on mucosal and skin surfaces (Lowy,
1998; Schlievert et al., 2010). From these sites the organism
causes many illnesses, ranging from benign soft tissue infections
to life-threatening illnesses such as infective endocarditis (IE),
sepsis, pneumonia, extreme pyrexia, and toxic shock syndrome
(TSS) (Lowy, 1998; McCormick et al., 2001; Kravitz et al., 2005;
Assimacopoulos et al., 2009). S. aureus is a serious pathogen both
in hospital (Lowy, 1998) and community settings (Herold et al.,
1998) with large numbers of severe infections emerging in the
last decade.

In order to cause serious illnesses, S. aureus has many vir-
ulence factors that enable the microbe to interact with host
tissues, defend itself from the immune system, and persist to
cause organ dysfunction. Among the secreted virulence factors
are multiple cytolysins and superantigens (SAgs) (Dinges et al.,
2000; McCormick et al., 2001). The cytolysin α-toxin has been
known for many years to be required for S. aureus strains to
cause dermonecrotic and inflammatory skin infections. Recently,
α-toxin has been shown to be important for causation of necrotiz-
ing pneumonia in mice (Bubeck Wardenburg et al., 2007; Bubeck
Wardenburg and Schneewind, 2008). Other cytolysins include the
hot:cold cytolysin β-toxin, which is a sphingomyelinase, biofilm
ligase (Huseby et al., 2007, 2010), and participant in IE; δ-toxin
and other phenol soluble modulins (PSMs) (Otto, 2010), which
lyse cells as either surfactants or by forming small pores; and
the hetero-heptamer pore-forming toxins, including γ-toxin and
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Panton-Valentine leukocidin (Labandeira-Rey et al., 2007), may
also contribute to serious illnesses.

Among the most studied secreted virulence factors are
the SAgs, so named because of their unusual mechanism of
dysregulating immune function (Marrack and Kappler, 1990;
McCormick et al., 2001). SAgs include toxic shock syndrome
toxin-1 (TSST-1), the emetic staphylococcal enterotoxins (SEs)
serotypes A–E and I, and the non-emetic (or not tested)
staphylococcal enterotoxin-like SAgs serotypes G, H, and J–X
(McCormick et al., 2001). The biological activities of SAgs have
been well described (Barsumian et al., 1978; Schlievert et al.,
1981; Marrack and Kappler, 1990), and at least three (TSST-
1, SEB, and SEC) cause the majority of cases of staphylococcal
TSS (Schlievert et al., 2004). SAgs cause high fever (Schlievert
et al., 1981; Schlievert, 1982), enhance host susceptibility to gram-
negative lipopolysaccharide (Schlievert et al., 1981; Schlievert,
1982), and induce massive T-cell proliferation (Schlievert et al.,
1981; Marrack and Kappler, 1990). SAgs stimulate T-cell prolif-
eration by forming cross-bridges between the variable portions
of the β-chains of the T-cell receptors (Vβ-TCRs) and invariant
regions of the α- or β-chain of MHC II molecules on antigen
presenting cells (Kotzin et al., 1993; Li et al., 1999; McCormick
et al., 2001). SAg stimulation results in production of many
cytokines, consequently leading to TSS. Recently, SAgs have been
shown to induce proinflammatory responses in epithelial and
endothelial cells, stimulating production primarily of chemokine
responses, such as IL-8 and MIP-3α, which may play important
roles in the early stages of infection through outside-in signaling
from mucosal surfaces (Brosnahan et al., 2009; Brosnahan and
Schlievert, 2011).

IE is a life-threatening infection of the heart endothelium most
often caused by gram-positive bacteria (Bashore et al., 2006), with
S. aureus being one of the most common (Fowler et al., 2005).
IE is characterized by the formation of “cauliflower-like” vege-
tations, comprised of host factors and microorganisms, on the
damaged endothelium of heart valves. There are two major ani-
mal models for the study of IE, rats, and rabbits. Both models
require that the aortic valves of animals be damaged, usually with
hard plastic catheters threaded through the left carotid arteries
and against the aortic valves for two or more hours. Often in the
rat model, investigators leave the catheters in place for the dura-
tion of experimentation. It is suggested that in using this method,
the ability of S. aureus to form biofilms on the catheters as well as
aortic valves is being studied, complicating assessments of endo-
carditis; it is well recognized that foreign bodies greatly increase
the ability of S. aureus to cause illness and make it difficult to
determine the contribution of individual virulence factors. This
model also suffers from the inability to assess the role of SAgs in
IE since rodents are highly resistant to SAgs (Schlievert, 2009).
We and others have extensively used rabbits where catheters are
removed in the animals after aortic valves are damaged (Schlievert
et al., 1998), and rabbits are highly susceptible to secreted vir-
ulence factors produced by S. aureus that have been tested thus
far (Schlievert, 2009). In rabbits, vegetations can be seen as early
as one day after intravenous microbial challenge, and vegetations
can become large enough in four days to obstruct the aortas com-
pletely. Since S. aureus is administered to animals intravenously,

we also gain important information on ability to cause lethal
septicemia.

This study was undertaken to compare abilities of various
S. aureus clonal lineages to cause IE and lethal sepsis in rabbits. We
also examined the possible roles of selected cytolysins and SAgs in
these infections.

MATERIALS AND METHODS
BACTERIA
Well-characterized S. aureus isolates were tested for capacity
to induce IE and lethal sepsis. Pulsed-field gel electrophoresis
(PFGE) clonal group USA200 strains included menstrual TSS
strains MN8 and CDC587 (Schlievert and Kelly, 1984), men-
strual TSS community-associated methicillin-resistant (MRSA)
S. aureus (CA-MRSA) MNWH, and post-influenza pneumo-
nia TSS isolate MNPE (MacDonald et al., 1987). These strains
produce TSST-1, and all except MNPE have a mutation in the
α-toxin gene that reduces the amount of the cytolysin pro-
duced by approximately 50-fold (see Table 1 for strains). We also
studied menstrual TSS isolate FRI1169 and its naturally derived
non-cytolytic variant termed JY3000. The variant emerged in
biofilms from strain FRI1169, which is a TSST-1+, α-toxinhigh

isolate (Yarwood et al., 2007); although from a patient with men-
strual TSS, this strain does not belong to the USA200 clonal
group based on dissimilarities in PFGE profiles. When cultured
in the presence of serum and glucose, strain JY3000 became
the dominant member of the FRI1169 population. Sequencing
the agr locus in the organism yielded a single point mutation
in agrA; however, this mutation did not explain the phenotype
and gene expression patterns observed in the non-hemolytic
variant. Microarray data confirmed that multiple virulence deter-
minants were down-regulated, including agrACDB (9-fold), β-
toxin (18-fold), RNAIII/δ-toxin (33-fold), γ-toxin (11-fold), and
TSST-1 (5-fold). The following PFGE USA300 strains were
used in our studies: CA-MRSA strain LAC, generously pro-
vided by Dr. F. R. DeLeo, NIH Rocky Mountain Laboratories,
Hamilton, MT, and methicillin-sensitive (MSSA) strain MNLevy
from a Minnesota case of extreme pyrexia complicating necro-
tizing pneumonia. USA400 strains included CA-MRSA MW2
and c99–529, both from the original description of necrotiz-
ing pneumonia in the upper Midwest (CDC, 1999). Finally,
strain Newman, phylogenetically related to USA300 strains (Baba
et al., 2008), and hospital-associated (HA)-MRSA strain COL
were also evaluated. All strains used in these studies are main-
tained in the Schlievert laboratory as lyophilized stocks. For use
in experimentation, the organisms were cultured on blood agar
plates to ensure purity and then in Todd Hewitt broths (Difco
Laboratories, Detroit, MI) at 37◦C with 200 revolutions/min
shaking.

RABBIT MODEL OF IE AND LETHAL SEPSIS
IE and lethal sepsis were evaluated using New Zealand white
rabbits with approval from IACUC (protocol 0908A71722)
(Pragman and Schlievert, 2004; Pragman et al., 2004a). Rabbits
were anesthetized with ketamine and xylazine. Once anesthetized,
the aortic valves were mechanically damaged with hard plas-
tic catheters inserted into the left carotid arteries. Two hours
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Table 1 | Lethality and infective endocarditis production by Staphylococcus aureus.

S. aureus strain PFGE designation (α-Toxin LD50 after intravenous Vegetation size

and Superantigen Profile) injection after four days

Pulmonary TSS MSSA MNPE USA200 (α-Toxinhigh, TSST-1+, SEC+) 5 × 106 Up to 100 mg

Menstrual TSS MSSA CDC587 USA200 (α-Toxinlow, TSST-1+, SEC+) 1 × 108 20–50 mg

Menstrual TSS MSSA MN8 USA200 (α-Toxinlow, TSST-1+) 5 × 108 Up to 100 mg

Menstrual TSS CA-MRSA MNWH USA200 (α-Toxinlow, TSST-1+) 2 × 108 0

Menstrual TSS MSSA FRI1169 (α-Toxinhigh, TSST-1+) 5 × 106 Up to 100 mg

CA-MRSA LAC USA300 (α-Toxinhigh, SEl-X+) 1 × 106 0

Extreme Pyrexia and Necrotizing Pneumonia MSSA Levy USA300 (α-Toxinhigh, SEl-X+) 5 × 107 Up to 20 mg

MSSA Newman (α-Toxinlow, SEA+) 2 × 109 Up to 100 mg

Necrotizing Pneumonia CA-MRSA MW2 USA400 (α-Toxin+, SEC4+) 5 × 107 Up to 100 mg

Necrotizing Pneumonia CA-MRSA c99529 USA400 (α-Toxin+, SEB+) 1 × 107 Up to 100 mg

HA-MRSA COL (α-Toxinlow, SEB+) 2 × 109 Up to 200 mg

Note: We investigated the ability of a number of representative clonal strains to cause IE and lethal sepsis in a rabbit model. Strains were grown overnight in Todd

Hewitt broths at 37◦C shaking at 200 rpm. Dilutions were made (from 105 /ml to 4 × 109/ml), and upon completion of surgery each rabbit was given a dose of 2 ml

of the appropriate strain. Numbers for the LD50s are given as the full 2 ml dose and were calculated to be the dose at which half of the rabbits died before the end

of the 4-day trial.

later, catheters were removed, the rabbits were divided into
groups, and the groups received varying doses of S. aureus strains
washed one time and suspended in phosphate-buffered saline
(PBS) intravenously in the marginal ear veins. The rabbits were
allowed to awaken and were monitored daily for survival; rab-
bits were prematurely euthanized if they displayed symptoms
100% predictive of lethality (incapacity to right themselves and
simultaneously failure to exhibit escape behavior) or eutha-
nized (Beuthanasia D, Schering-Plough Animal Health Corp.,
Union, NJ) at the termination of experimentation after four
days. Hearts were immediately removed to examine the aortas
and aortic valves for the presence of vegetations, which were
weighed.

IMMUNIZATION STUDIES
New Zealand white rabbits were immunized against a cocktail of
PSMs α1, PSM α4, and δ-toxin (PSMγ) and then challenged in the
IE/sepsis model with strain FRI1169 as above. Peptides were syn-
thesized and purified at the University of Minnesota Biomedical
Genomics Center (>90% purity by rHPLC). The lyophilized pep-
tides were reconstituted in sterile distilled water. Rabbits received
a series of three injections (days 0, 14, and 28) with the cock-
tail (120 μg of each per injection) diluted in PBS and then
emulsified with incomplete Freund adjuvant (Difco Laboratories,
Detroit, MI). Hyperimmunization (antibody titers > 2000) was
verified by measuring the serum antibody titers to each antigen in
all rabbits by ELISA. The immunized and non-immunized rab-
bits received ∼107 CFUs of wildtype FRI1169 in the marginal
ear veins.

SUPERNATE PREPARATION
Sterile supernates from 7 and 14 h cultures of strain FRI1169
and its non-cytolytic variant JY3000 grown in Todd Hewitt
broths were collected by centrifugation followed by filtration
(0.22 μm; Millipore, Carrigtwohill, Co. Cork, Ireland). Protein

was measured by Bio-Rad Protein Assay (Hercules, CA). To col-
lect ethanol-insoluble exoproteins, supernates were treated with
80% final concentration 4◦C ethanol and centrifuged (1000 × g,
15 min). The ethanol-soluble fraction was lyophilized to collect
exoproteins that did not precipitate. Ethanol (80%) insoluble
exoproteins were collected and dried. Both ethanol-soluble and
insoluble fractions were reconstituted in ultrapure water to their
original volumes.

EXOPROTEIN CHARACTERIZATION
Supernate proteins from FRI1169 and JY3000 were analyzed by
sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) on 4–20% gradient gels (Mini-PROTEAN TGX, Bio-Rad
Laboratories, Inc.) and then either stained with Coomassie bril-
liant blue or silver (SilverXpress, Invitrogen, Carlsbad, CA).
Unique protein bands were cut from the Coomassie-stained gels,
analyzed using MALDI-MS, and compared against the database
staphylococcus_NCBI_952306_CTM, to determine protein iden-
tity (University of Minnesota Center for Mass Spectrometry and
Proteomics).

TISSUE CULTURE EXPERIMENTS
A549 human lung epithelial cells (ATCC, Manassas, VA) were
grown in 96-well plates (Nalco, Naperville, IL) to 80% conflu-
ence in RPMI 1640 medium (Gibco, Invitrogen), supplemented
with 10% fetal bovine serum (Sigma-Aldrich, St. Louis, MO) and
an antibiotic cocktail (25 μg/ml of penicillin, streptomycin, and
fungizone; MP Biomedicals, Solon, OH), and then changed to
antibiotic-free medium overnight. The next day, strain FRI1169
or JY3000 supernates were diluted to 20 μg/ml protein in RPMI
medium and used to replace the medium on the A549 cells.
After 4 h, interleukin-8 (IL-8) production was measured by ELISA
(R&D Systems, Minneapolis, MN), and cell viability was mea-
sured with the MTT-based reagent (Cell Titer 96 AQeous One,
Promega, Madison WI).
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α-TOXIN WESTERN IMMUNOBLOTTING
Ten microliters of filtered overnight culture supernates from
strain FRI1169 or JY3000 were analyzed by 12% SDS-PAGE,
proteins transferred onto polyvinylidene fluoride (PVDF) mem-
branes, and membranes immunoblotted with antiserum to
α-toxin (Sigma-Aldrich). Secondary, anti-rabbit IgG horseradish
peroxidase-conjugated antibodies (Cell Signaling Technology,
Danvers, MA), were employed for detection via chemolumines-
cence using SuperSignal West Dura Extended Duration substrate
(Thermo Scientific).

LD50 AND STATISTICAL ANALYSES
The LD50 of S. aureus strains following intravenous administra-
tion of washed bacteria, suspended in PBS, was determined by the
method of Reed and Muench (Reed and Muench, 1938). Briefly,
varying doses of S. aureus strains were administered to rabbits
(3 per dose; 2 ml per rabbit), with doses ranging from 105/ml
to 4 × 109/ml. Deaths were recorded over a 4-day time period.
Tests for significance between means were carried out using
Student’s t-test or One-Way ANOVA with Dunnett post-test in
Graph Prism (GraphPad Software, San Diego, CA). Significance
in survival experiments was determined using Log-Rank Test
(GraphPad Software).

RESULTS
COMPARATIVE ABILITIES OF S. aureus STRAINS TO CAUSE IE
AND LETHAL SEPSIS
We evaluated the ability of multiple S. aureus isolates to cause IE
and lethal sepsis (Table 1). CDC clonal groups USA200, USA300,
and USA400 strains, as well as other commonly used strains, were
evaluated. All studies were performed in accordance with IACUC
approval.

USA200 isolates are common strains found in IE patients
(Xiong et al., 2006). USA200 strains, nearly all of which in our
large collection produce 3–20 μg/ml of TSST-1 in vitro in Todd
Hewitt broths, were variably effective in causing vegetations of up
to 100 mg, and there were differences in ability to cause lethal sep-
sis. The LD50 of the four USA200 strains, as determined by the
method of Reed and Muench, ranged between 5 × 106 colony-
forming units (CFU), for strain MNPE that has the wildtype
α-toxin gene, and 1–5 × 108 CFUs, for the strains that have muta-
tions in the α-toxin gene, thereby reducing α-toxin production
50-fold (Lin et al., 2011). Interestingly, one vaginal isolate, CA-
MRSA MNWH, had an LD50 of 2 × 108 CFUs, comparable to
the other strains with the α-toxin gene mutation, but did not
cause IE.

The prototypical USA300 strains differed from the USA200
strains in ability to cause illnesses. CA-MRSA LAC especially had
a low LD50 of 1.2 × 106 CFUs, like USA200 strain MNPE, but
did not cause vegetations, unlike MNPE. The lethal sepsis activity
of LAC and MNPE correlated with high-level production of α-
toxin and production of SAgs, but the basis for lack of the ability
of LAC to cause IE is unknown. MSSA USA300 strain MNLevy
had a higher LD50 at 5 × 107 CFUs, but similarly caused only
small vegetations. We have sequenced the genome of MNLevy and
compared the sequence to the USA300 strain of Diep et al. (Diep
et al., 2006); they are closely related, having a similar genome

organization, except for the presence of the SCCmec DNA ele-
ment in LAC. Strain Newman is not a USA300 strain but is
phylogenetically related, and this organism appears to be unusu-
ally cardiotrophic in our studies, compared to other S. aureus
tested. When injected intravenously, the organism caused exten-
sive heart abscesses. Strain Newman caused IE, with large veg-
etations forming of up to 100 mg, but required more organ-
isms to cause lethal sepsis (LD50 2 × 109 CFUs) than the two
USA300 strains.

CA-MRSA USA400 strains MW2 and c99–529 was highly
capable of causing both IE and lethal sepsis. MW2 had an LD50 of
5 × 107 CFUs and the ability to cause vegetations of up to 100 mg.
C99–529 was similar, with an LD50 of 1 × 107 CFUs and similar
ability to cause IE. MW2 is known to produce α-toxin and the SAg
SEC (Diep et al., 2008; Strandberg et al., 2010) and c99–529 pro-
duces α-toxin, as determined by lysis of rabbit erythrocytes (data
not shown), and SEB in high amounts (Strandberg et al., 2010)
(50–100 μg/ml in Todd Hewitt broths).

The HA-MRSA COL strain, which is not a USA400 strain
but like many USA400 strains produces SEB in high amounts
(Yarwood et al., 2002), was evaluated for its ability to cause IE
and lethal sepsis; the strain was better at causing IE compared to
other S. aureus strains, with vegetations reaching 200 mg in agree-
ment with a prior publication (Huseby et al., 2010), but doing so
with a high LD50 of 2 × 109 CFU.

Collectively, our data suggest that USA200 and USA400 strains
are generally better able to cause IE than USA300 strains. The
presence of high-levels of cytolysins and SAgs correlates with
increased ability to cause lethal sepsis.

PSMS CONTRIBUTE TO LETHAL SEPSIS BUT NOT IE
Studies have shown that cytolysins and SAgs contribute to IE
(Cheung et al., 1994; Pragman et al., 2004a; Huseby et al., 2010).
However, studies have not evaluated the role of PSMs in IE.
Through studies initiated with S. aureus FRI1169 and a non-
cytolytic, natural variant JY3000, we evaluated the role. Our
studies showed that wildtype FRI1169 is both highly lethal (LD50

5 × 106 CFUs) and capable of causing IE (Table 1).
Based on our past experience with USA200 strain MNPE, in

which lethal sepsis appeared to correlate with high α-toxin pro-
duction, we hypothesized that FRI1169 lethality would be due
to its wildtype α-toxin production. We thus initiated studies
to compare the cytotoxicity of wildtype FRI1169 and the nat-
ural biofilm mutant JY3000 organism. A549 cells were exposed
to early (7 h) and late stationary phase (14 h) culture super-
nates from both organisms for 4 h to compare cytotoxicity and
pro-inflammatory responses. Supernates from two time points
of growth were used to ensure that exoproteins expressed at
different points were included. Epithelial cells were selected
because they serve as a primary barrier to S. aureus infection
on mucosal surfaces. Application of the 7 h supernates from
wildtype FRI1169 resulted in approximately 50% reduction in
cell viability, and the 14 h supernates resulted in over 90%
reduction in cell viability (Figure 1A). In contrast, neither of
the variant JY3000 supernates caused viability changes relative
to media controls. The pro-inflammatory response, measured
by IL-8 production to attract polymorphonuclear leukocytes,
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FIGURE 1 | In vitro comparison of wildtype FRI1169 and variant JY3000

cytotoxicity. A549 cell cytotoxicity (A) and IL-8 response (B) after 4 h
exposure to S. aureus broth culture supernates of FRI1169 (wildtype
cytolytic) and JY3000 (biofilm-derived variant, non-cytolytic) grown for 7 or
14 h. ∗Indicates p < 0.05 compared to medium control (RPMI medium
alone) by One-Way ANOVA, data plotted as mean ± standard deviation.

also confirmed difference between wildtype FRI1169 and vari-
ant JY3000 (Figure 1B). Supernates from JY3000 at both time
points did not alter IL-8 production relative to the medium-only
control. However, supernates from wildtype FRI1169 caused sig-
nificant increases in IL-8 production. We hypothesized that the
major differences between FRI1169 and JY3000 cytolytic and pro-
inflammatory activities depended on differential production of
α-toxin, but as shown below the major differences were related
to differential production of PSMs, including δ-toxin.

Supernates from 7 and 14 h broth cultures of FRI1169 and
JY3000 were diluted to 20 μg/ml protein and subjected to SDS-
PAGE. A unique band was observed for wildtype FRI1169 that
was not present in the variant JY3000 fluids. This was a thick
band containing low molecular weight species present in abun-
dance in the 14 h FRI1169 supernates, and to a lesser extent in the
7 h FRI1169 supernates (Figure 2A). Aside from the difference in
pattern, in three independent experiments we observed less total
exoprotein in variant JY3000 supernates than in wildtype FRI1169
fluids (p = 0.005, Figure 2B).

Secreted virulence factors such as α-toxin and TSST-1 are
known to be insoluble in 80% ethanol while smaller molecules
are soluble in 80% ethanol, including cytolytic peptides known

FIGURE 2 | Characterization of exoprotein production by wildtype

FRI1169 and variant JY3000. (A) 14 and 7 h broth culture supernates
(20 μg of protein loaded per lane) were separated by SDS-PAGE and
silver-stained. Media denotes lane electrophoresed with Todd Hewitt media
alone. Arrow denotes small molecular weight (<10 kDa) band only present
in FRI1169 cultures. (B) Total protein content measured in three separate
overnight broth culture supernates from JY3000 and FRI1169 via Bio Rad
reagent. (∗P = 0.005 by Student’s t-test). (C) Western immunoblot results
showing differences in α-toxin amounts produced by wildtype FRI1169 and
JY3000.

as PSMs. We demonstrated that wildtype FRI1169 and variant
JY3000 produced detectable α-toxin by Western immunoblot,
with FRI1169 producing more than JY3000. Late stationary
phase supernates of wildtype FRI1169 were prepared and sub-
jected to 80% ethanol treatment. Both the ethanol-insoluble
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and ethanol-soluble fractions were reconstituted to their original
volumes and compared using SDS-PAGE. The low molec-
ular weight band observed in Figure 2 was present exclu-
sively in the ethanol-soluble fraction (Figure 3A). A549 cells
were exposed to the reconstituted ethanol-soluble and ethanol-
insoluble fractions, as well as the whole supernates. After 4 h,
A549 cells exposed to the wildtype FRI1169 ethanol-soluble
fractions and whole supernates showed reduced cell viability
(Figure 3B). Surprisingly, no reduction in viability was detected
for the re-solubilized wildtype FRI1169 ethanol precipitate, where
α-toxin and TSST-1 were present. None of the JY3000 supernates
demonstrated cytotoxicity (Figure 3B).

FIGURE 3 | Ethanol (80%) separation of exoprotein and determination

of cytotoxicity. (A) 14 and 7 h broth culture supernatant fluids (20 μg of
protein was loaded per lane) were treated with 80% (final concentration)
ethanol and total, ethanol-insoluble, and ethanol-soluble fractions were
separated by SDS-PAGE and Coomassie brilliant blue-stained. Arrow
denotes small molecular weight (<10 kDa) band only present in total
supernatant fluid or ethanol soluble fraction of FRI1169 culture (B) A549
cells were exposed to total, ethanol insoluble, and ethanol soluble fractions
of FRI1169 and JY3000. Cytotoxicity was measured and plotted relative to
media only (untreated) control. (∗ Indicates P < 0.05 relative to media
control).

Because of the association between the presence of the low
molecular weight species in wildtype FRI1169 and cytotoxicity
for A549 cells, we analyzed the band via MALDI-MS analy-
sis to identify the protein(s). Unique peptides were mapped to
three, (potentially four) virulence elements: PSMα-1, PSMα-2
(redundant sequence with α-1), PSMα-4, and δ-toxin (PSMγ).

The rabbit IE/sepsis model was selected to understand pre-
liminarily whether the in vitro cytotoxicity observations were
predictive of in vivo virulence. Rabbits were injected with either
wildtype FRI1169 or variant JY3000 at a concentration of ∼108

CFUs/injection. After developing symptoms of serious infec-
tions, rabbits administered wildtype FRI1169 died within 24 h
(n = 5) as a result of sepsis. Conversely, rabbits administered an
equivalent dose of variant JY3000 survived with mild symptoms
over the same time period. This experiment was terminated on
day 2, as no FRI1169-inoculated rabbits survived long enough to
develop significant aortic vegetations.

Since there are 3–4 PSMs that could account for cytotox-
icity of strain FRI1169, and because one of these is δ-toxin
in which its mRNA is RNA III, a global regulator of exotoxin
production, it was straightforward to do immunization studies
to assess their role in virulence, rather than attempt to make
knockouts in the 3–4 PSMs. We thus immunized rabbits against
PSM α-1, PSM α-4, and δ-hemolysin (PSMγ), verified that the
animals were hyperimmunized by ELISA, and then challenged
them and non-immune controls with ∼2.5 × 107 CFUs wildtype
FRI1169. By 36 h post-inoculation, 5/5 of the non-immunized
rabbits succumbed, while 4/4 immunized rabbits remained alive.
Over the next 36 h, the immunized rabbits also died, indicat-
ing immunization delayed death, but ultimately did not block
lethality (p value = 0.008, Figure 4). The rabbits presumably
ultimately succumbed to TSS due to wildtype production of
TSST-1. Vegetations on the aortic valves were recovered from
all of the non-immunized rabbits (ranging from 1.0 to 9.0 mg
per valve) and from 3/4 immunized rabbits (ranging from 0.5

FIGURE 4 | Effect of immunization against PSMs on lethal

sepsis/infectious endocarditis. Rabbits (n = 4 or 5 per group) were either
immunized against a cocktail of PSMα-1, PSMα-4, and PSMγ/δ-toxin
(squares) or left unimmunized (circles). Aortic valves were then
mechanically damaged, and rabbits were challenged with ∼107 CFUs of
wildtype FRI1169 in the marginal ear veins. Rabbits were monitored for up
to four days and were prematurely euthanized if displayed signs predictive
of lethal illness. P -value determined by log rank test.
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to 11.7 mg per valve). There was no significant difference in the
number or weights of vegetations between the immunized and
non-immunized rabbits.

DISCUSSION
The present studies have shown that there are differences among
clonal groups of S. aureus with respect to causing IE and fatal
sepsis. In general USA200 strains cause IE and have modest
lethal activity in rabbits. In contrast, USA300 strains are only
weakly able to cause IE, but the strains are highly lethal to
rabbits. USA400 strains interestingly are both effective in caus-
ing IE and fatal sepsis. Our studies also show that PSMs, at
least as produced by strain FRI1169, are important in causa-
tion of fatal sepsis in rabbits but do not contribute in major
ways to IE.

We and others suggest that important cytolysins and SAgs
contribute to the ability of strains to cause these and other ill-
nesses. For example, USA200 isolates are the primary causes
of TSS, accounting for nearly all menstrual TSS cases and
50% of non-menstrual TSS cases, including post-influenza cases
(Bergdoll et al., 1981; Schlievert et al., 1981; MacDonald et al.,
1987). These isolates and the additional menstrual TSS strain
FRI1169 all produce TSST-1 as their dominant SAg. These strains
lack the recently described SAg SEl-X which has been asso-
ciated with necrotizing pneumonia caused by USA300 strains
(Wilson et al., 2011). The majority of vaginal USA200 iso-
lates, have a stop codon in the α-toxin gene (hla), preventing
them from making wildtype amounts of α-toxin. Interestingly,
these isolates have developed a mechanism by which they read
through the stop codon and produce small amounts of α-toxin
(Lin et al., 2011). MNPE and FRI1169 produce high-amounts
of α-toxin as tested in vitro (up to 50 μg/ml). USA300 and
USA400 strains, mainly CA-MRSA, are especially capable of
causing skin and soft tissue abscesses and necrotizing pneu-
monia. Staphylococcal α-toxin is required for causation of skin
infections (Kobayashi et al., 2011), and both α-toxin and SAgs,
including a newly described SAg SEl-X, are required for fatal
necrotizing pneumonia (CDC, 1999; Fey et al., 2003; Bubeck
Wardenburg et al., 2007; Strandberg et al., 2010; Wilson et al.,
2011).

The role of exotoxins in IE and lethal sepsis is only partially
defined. In 1994, Cheung et al. showed that sar−/agr− mutants
were reduced in their abilities to colonize heart endothelium and
cause IE, indicating that the regulation of production of exo-
toxins by these two component regulatory systems is critical for
S. aureus to cause IE in a rabbit model (Cheung and Projan, 1994).
Similarly, Xiong et al. showed that α-toxin regulation by sae is
critical in vivo in the rabbit model for IE in that mutants, that
had reduced sae activity and concurrent reduced hla production,
were reduced in their abilities to cause IE compared to a wild-
type isolate (Xiong et al., 2006). The SAg TSST-1 has been shown
to be critical for IE in a rabbit model. Pragman et al. showed
that TSST-1− strains of S. aureus have much lower abilities to
cause endocarditis than isogenic TSST-1+ strains (Pragman et al.,
2004b). The TSST-1+ strains had much larger vegetations and
on average 1 × 106 CFUs more per vegetations than TSST-1−

strains (Pragman et al., 2004b). It is not known why the TSST-1+
CA-MRSA USA200 MNWH did not cause vegetations, but clearly
the pro-IE role of TSST-1 can be modified by other factors in
this strain.

In recent studies, Huseby et al. showed the pivotal role of
β-toxin in IE (Huseby et al., 2010). Strain COL, known to pro-
duce β-toxin, was better able to cause vegetations than the COL
strain knocked-out for β-toxin through bacteriophage integration
into the β-toxin structural gene. While many S. aureus strains
causing human illness do not produce β-toxin, many USA200
strains produce the toxin. USA200 strains are generally highly
effective in causing endocarditis, and this may in part be due to
the biofilm ligase activity of β-toxin (Huseby et al., 2010).

The data from our studies indicate that for S. aureus strain
FRI1169, PSMs are important in determination of lethal sep-
sis, but are not critical for production of IE. These data are
in agreement with prior studies of CA-MRSA USA300 strains
that suggest PSMs contribute significantly to serious illnesses
(Otto, 2010).

Finally, in agreement with the above studies, Seidl et al.
recently showed that the ability of a S. aureus strain to induce
endothelial damage in vitro was positively correlated to its abil-
ity to cause disease in a rabbit model of IE (Seidl et al., 2011).
Taken together these data suggest that SAgs, cytolysins, and their
regulatory mechanisms make for a highly virulent combination
and are required for the progression of IE.

Recently, the Interscience Conference on Antimicrobial Agents
and Chemotherapy published a historical account of their first
50 years. In that publication, it was noted that major symposia
have been held each year to assess progress in management of IE.
Additionally, large numbers of manuscript are published yearly
studying IE. These symposia and papers indicate a clear need
to continue research into understanding the fundamentals of IE
caused by S. aureus to better treat patients and reduce the num-
ber of cases each year. We stress the importance of evaluating the
role of the secreted virulence factors in these diseases, as many
published studies have shown that both SAgs and cytolysins play
definitive roles. It is only through a thorough understanding of
their contributions in sensitive animal models that we will be able
to find novel strategies to manage the illness. Our studies also
demonstrate that different clonal groups, and even within clonal
groups, variation in disease potential exists, making it difficult
to make global statements about causative factors for groups of
strains.
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