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The aims of this study were to produce mesobiliverdin IXα, an analog of anti-inflammatory
biliverdin IXα, and to test its ability to enhance rat pancreatic islet yield for allograft
transplantation into diabetic recipients. Mesobiliverdin IXα was synthesized from phyco-
cyanobilin derived from cyanobacteria, and its identity and purity were analyzed by chro-
matographic and spectroscopic methods. Mesobiliverdin IXα was a substrate for human
NADPH biliverdin reductase. Excised Lewis rat pancreata infused with mesobiliverdin IXα

and biliverdin IXα-HCl (1–100 µM) yielded islet equivalents as high as 86.7 and 36.5%,
respectively, above those from non-treated controls, and the islets showed a high degree
of viability based on dithizone staining. When transplanted into livers of streptozotocin-
induced diabetic rats, islets from pancreata infused with mesobiliverdin IXα lowered
non-fasting blood glucose (BG) levels in 55.6% of the recipients and in 22.2% of control
recipients. In intravenous glucose tolerance tests, fasting BG levels of 56 post-operative
day recipients with islets from mesobiliverdin IXα infused pancreata were lower than those
for controls and showed responses that indicate recovery of insulin-dependent function.
In conclusion, mesobiliverdin IXα infusion of pancreata enhanced yields of functional islets
capable of reversing insulin dysfunction in diabetic recipients. Since its production is scal-
able, mesobiliverdin IXα has clinical potential as a protectant of pancreatic islets for allograft
transplantation.
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INTRODUCTION
The bile pigments bilirubin (Figure 1A) and biliverdin (Figure 1B)
are best known as heme degradative intermediates associated
with erythrocyte and hemoglobin turnover (McDonagh, 2001).
They result from ring cleavage of heme catalyzed by heme oxy-
genase (HO) that occurs selectively at the α-methene bridge to
generate the IXα isomer of biliverdin. Biliverdin IXα is subse-
quently reduced via NADPH/NADH biliverdin reductase to form
the IXα isomer of bilirubin that in turn is consecutively bound
to serum albumin and glucuronic acid for excretion in bile. The
overall process serves to eliminate heme – which is toxic when
accumulated.

Biliverdin IXα and bilirubin IXα are also cytoprotectants
(Stocker et al., 1987; Sedlak and Snyder, 2004; Soares and Bach,
2009; Kapitulnik and Maines, 2012). Bilirubin IXα is well known
to quench the propagation of reactive oxygen species (ROS) and
consequently to confer protection against cellular oxidative dam-
age. Biliverdin IXα is less appreciated as an anti-oxidant but equally
effective (Stocker et al., 1987), and examples of its cytoprotective
capabilities are accumulating (Nakao et al., 2004, 2005; Yamashita

et al., 2004; Overhaus et al., 2006; Fujii et al., 2010; Bellner et al.,
2011). The cytoprotective effects of biliverdin IXα also result from
interaction with biliverdin reductase that plays a pivotal role in
multiple downstream pathways related to cell survival and stress
responses (Gibbs and Maines, 2007; Gibbs et al., 2012; Wegiel and
Otterbein, 2012). Examples of biliverdin reductase mediated cyto-
protective pathways are PI3K/Akt pathway-dependent protection
against hypoxia/reoxygenation (Pachori et al., 2007), regulation
of anti-apoptotic transcription factor NF-κB (Gibbs and Maines,
2007), induction of anti-inflammatory cytokine interferon-10
(Wegiel et al., 2009) and the nitrosylation-dependent inhibition of
pro-inflammatory TLR4 expression (Wegiel and Otterbein, 2012).
Thus, biliverdin IXα is increasingly recognized as a potential anti-
inflammatory therapeutic agent (Florczyk et al., 2008; Wang et al.,
2011; Gibbs et al., 2012; Wegiel and Otterbein, 2012). Examples
of its potential use are for ischemia/reperfusion injury follow-
ing liver (Fondevila et al., 2003; Nakao et al., 2004), small bowel
(Nakao et al., 2004), cardiac, renal (Nakao et al., 2005), and lung
(Zhou et al., 2011) transplants, vascular injury (Ollinger et al.,
2005), endotoxic shock (Sarady-Andrews et al., 2005), vascular
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FIGURE 1 | Chemical structures of bilirubin IXα (A), biliverdin IXα (B),
mesobiliverdin IXα (C), and phycocyanobilin (D).

intimal hyperplasia (Nakao et al., 2005), nephropathy (Fujii et al.,
2010), infection by hepatitis C (Zhu et al., 2010) and other viruses
(Nakagami et al., 1992; McPhee et al., 1996), and reversal of
type 2 diabetes by diets supplemented with biliverdin IXα (Ikeda
et al., 2011). Barriers to the therapeutic use of biliverdin IXα are
limited availability, uncertain purity of commercial preparations
and derivation from mammalian materials (McDonagh, 2005)
prompting attempts to substitute other bile pigments to achieve
therapeutic effects (Zheng et al., 2012).

Another possible application for biliverdin IXα is improvement
of pancreatic islet allograft transplantation efficacy (Najarian et al.,
1977; Matsumoto et al., 2007). In this procedure, normal islets are
excised from donor pancreata, preserved in solution, and injected
into the intraportal ducts of type 1 diabetic recipients leading
to insulin independence and hypoglycemia awareness. The pro-
cedure is historically hindered by allograft rejection and oxidative
damage of islet beta cells. Immunosuppressive strategies have low-
ered islet rejection rates (Shapiro et al., 2000; Ryan et al., 2004;
Matsumoto et al., 2007; Kenmochi et al., 2008), but the procedure
is still hampered by oxidative-stress induced apoptosis that reduces

the number of transplanted islets (Emamaullee and Shapiro, 2006;
Wang et al., 2011). Anti-inflammatory strategies that improve the
number of effective transplanted islets include stimulation of HO
expression (Ribeiro et al., 2003), bilirubin IXα administration to
recipient or donor islets during processing (Wang et al., 2011),
and administration of p38 MAPK inhibitor to donor pancreata
(Ito et al., 2008). Biliverdin IXα as an anti-inflammatory islet pro-
tectant has not yet been reported due at least partly to the limited
amounts of commercially available biliverdin IXα.

Here we report the production of mesobiliverdin IXα

(Figure 1C), a close analog of biliverdin IXα, and determination
of its ability to protect islets. Mesobiliverdin IXα occurs natu-
rally in non-vertebrates and mammals, and in the latter from
bacterial transformations of non-conjugated bilirubin (Green-
berg et al., 1971; Tiribelli and Ostrow, 2005; Vitek et al., 2006).
Mesobiliverdin IXα and biliverdin IXα share important structural
features (e.g., bridging propionate groups) that permit similar sub-
strate interaction with biliverdin reductase (Cunningham et al.,
2000; Fu et al., 2012) and suggesting similar cytoprotective capa-
bilities against cellular damage by ROS. Importantly, the described
method for mesobiliverdin IXα production is scalable and uses an
abundant non-animal source feedstock – cyanobacteria. Finally,
we show the abilities of the produced mesobiliverdin IXα as well
as biliverdin IXα-HCl to protect pancreatic islet preparations for
allograft transplantation.

MATERIALS AND METHODS
MESOBILIVERDIN IXα

Mesobiliverdin IXα was produced from the phycocyanin
chromophore, phycocyanobilin (Figure 1D), recovered from
lyophilized powders of the cyanobacterium Spirulina platensis.
Phycocyanin was obtained by adding 160 g of Spirulina powder
(Bio-Alternatives, Oregon, USA) to 2 L water, shaking the mixture
on a rotary shaker overnight (16 h) at 200 rpm and 37˚C, and cen-
trifuging (90 min, 1597× g ) the mixture at 4˚C. The supernatant
fluid was recovered and 530 g of (NH4)2SO4 was slowly added
with stirring to give a 50% saturated solution. The solution was
incubated in ice water for 30 min. After centrifugation (15971× g,
30 min), the dark-blue phycocyanin was collected and washed with
700 mL methanol. The centrifugation and washing (with 300 mL
methanol) was repeated four times. Phycocyanobilin was obtained
by cleavage of thioether bonds between the bile pigment and phy-
cocyanin apoprotein. Washed phycocyanin generated from 160 g
Spirulina powder was added to 600 mL methanol and reflux boiled
with stirring for 16 h. After centrifugation at 6371× g for 5 min,
the supernatant fluid containing phycocyanobilin was recovered
and concentrated to ∼40 mL by rotary evaporation. The concen-
trated phycocyanobilin solution was mixed with 25 mL chloro-
form and the mixture added to and shaken with 200 mL purified
water (previously acidified with 300 µL 0.5 N HCl) in a separatory
funnel. Phycocyanobilin was recovered in the chloroform layer.
The pigment extraction was repeated three times with 10 mL vol-
umes of chloroform. The chloroform fractions were combined and
reduced to∼10 mL by evaporation with nitrogen gas. The reduced
pigment solution was added to 60 mL hexane and centrifuged for
3 min at 4500× g and the pigmented pellet was air-dried. Typi-
cal yields were ∼100 mg phycocyanobilin 160/g Spirulina powder.
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Phycocyanobilin (180 mg) was added to 40 ml methanol with
400 mg K2CO3 (10 mg/mL) and 400 mg NaHCO3. After boiling
under reflux for 8 h, the solution was added to 200 mL water.
Mesobiliverdin IXα was recovered by readjusting the pH to 4.0 fol-
lowed by re-centrifugaton at 4500× g for 5 min. The supernatant
fluid was discarded and 20 mL H2O was added to wash the meso-
biliverdin IXα pellet. The centrifugation and washing steps were
repeated twice more. Mesobiliverdin IXα (160 mg) was obtained
after freeze-drying (FreeZone Plus 4.5L Cascade Benchtop Freeze
Dry System, Labconco, MO, USA).

BILIVERDIN IXα

Biliverdin IXα-HCl was purchased from Frontier Scientific, Inc.,
Logan, UT (USA) and produced from recombinant E. coli (Chen
et al., 2012).

ANALYTICAL METHODS
Absorbance spectra were obtained using a SpectraMax Plus384
Absorbance Microplate Reader (Molecular Devices, Sunnyvale,
CA, USA). Mesobiliverdin IXα samples (20 µL) were injected into
an Alliance HPLC system (Waters, Manchester, UK) using a Sym-
metry®C18 column (4.6 mm× 75 mm) and elution gradient with
solvent A (99.9% H20, 0.1% trifluoroacetic acid) and solvent B
(99.9% methanol and 0.1% trifluoroacetic acid). The elution gra-
dient program was: 100% solvent A,1 min; 0–60% solvent B,1 min;
60–100% solvent B, 8 min, 0–100% solvent A, 1 min; 100% sol-
vent A, 4 min, with a flow rate of 1 ml/min. Proton NMR and
two-dimensional COZY spectra of phycocyanobilin and meso-
biliverdin IXα were collected on a Bruker AV400 with an inverse
probe. For two-dimensional COZY experiments, 1024× 256 data
points were collected on F2 and F1, respectively, and the data were
apodized with a Sinebell function and zero filled to 1K× 1K prior
to Fourier transformation. Data were processed with Mnova NMR
software (Mestrelab Research, Santiago de Compostela, Spain).
For mass spectroscopy, samples were analyzed on a NanoAC-
QUITY UPLC (Waters, Manchester, UK) and a Q-Tof Primer
tandem mass spectrometer (Waters, Manchester, UK). Samples
(3 µL) were introduced into a Symmetry®C18 trapping col-
umn (180 µm× 20 mm) with NanoACQUITY Sample Manager
(Waters, Manchester, UK) washed with 99% solvent A and 1%
solvent B for 3 min at 15 µL/min. Solvent A was 99.9% H20, 0.1%
formic acid and solvent B was 99.9% acetonitrile and 0.1% formic
acid. Chemicals were eluted from the trapping column over a
BEH300 C4 column with a 70 min gradient (1% solvent B, 5 min;
1–50% solvent B, 15 min; 50–65% solvent B, 2 min; 65–85% sol-
vent B, 21 min, 87% solvent B, 15 min, 87–1% solvent B, 3 min,
and 1% solvent, 22 min) with flow rate 0.4 µL/min. Spectral scan
time was 1.0 s.

NADPH BILIVERDIN REDUCTASE ACTIVITY
The enzymatic conversion of mesobiliverdin IXα to mesobilirubin
was measured using the Biliverdin Reductase Assay Kit (Sigma-
Aldrich, St. Louis, MO, USA). One mg of mesobiliverdin IXα

was dissolved in 2 mL methanol, and 0.2 mL was mixed with
1 mL of the kit assay buffer. The kit-supplied recombinant human
biliverdin reductase A enzyme was suspended in 800 µL water,
and 160 µL of the enzyme suspension was added to 480 µL of

assay buffer. Assay buffer containing 200 µg/mL of mesobiliverdin
IXα, E. coli produced biliverdin IXα or phycocyanobilin (50 µL),
biliverdin reductase solution (200 µL), and NADPH solution
(0.24 mg/mL NADPH in assay buffer, 750 µL) were combined
and the absorbance spectrum between 300–800 nm was measured
at 0, 15, 30, 45, 60, 90, 145, 240, and 360 min using a Spectra-
Max Plus384 Absorbance Microplate Reader (Molecular Devices,
Sunnyvale, CA, USA).

PANCREATA TREATMENT AND ISLET EQUIVALENTS
Male Lewis rats, 300–350 g, were purchased from Charles River
Laboratories, Inc. (Japan). All rats were maintained in specific
pathogen-free conditions of the animal care facility and handled in
accordance with institutional guidelines of the Animal Care Com-
mittee of Chiba-East National Hospital, Japan. The pancreata from
rats were procured 30 min after dissection of inferior vena cava as
a warm ischemic injury. Islets were isolated and quantitated using
described procedures (Ito et al., 2010). Briefly, pancreata were
distended by the infusion of Hanks’ balanced salt solution supple-
mented with 0.1% bovine serum albumin (HBSS/BSA), 1 mg/mL
of Liberase (Roche Diagnostics GmbH, Mannheim, Germany),
and 1, 10, or 100 µM of commercial biliverdin IXα-HCl (Frontier
Scientific, Inc., Logan, UT, USA), E. coli produced biliverdin IXα-
HCl (Chen et al., 2012) or mesobiliverdin IXα. Control pancreata
corresponding to each experimental test set with either commer-
cial or E. coli produced biliverdin IXα-HCl or mesobiliverdin IXα

were treated with the same solution mixture but with no bile pig-
ment. The distended and treated pancreata were incubated at 37˚C
for 30 min. After incubation, ice-cold HBSS/BSA was added to stop
enzymatic digestion. The pancreatic tissues were dissociated by
repeated shaking and washing and islets were then purified by gra-
dient centrifugation on Histopaque-1077 (Sigma-Aldrich, Japan)
(Ito et al., 2010). The islets were then handpicked and the num-
ber of islets converted to the standard number of islet equivalents
(IEQs) after dithizone staining (Hansen et al., 1989; Fiedor et al.,
1996; Ching et al., 2001). Islet yields were expressed as IEQs/g pan-
creatic tissue. Photomicrographs of dithizone stained islets were
obtained using a Nikon ECLIPSE TE2000-S microscope at x40
magnification. Average IEQ/g differences between groups were
analyzed by the 2-tailed unpaired Student’s t -test and considered
statistically significant when p values were<0.05.

ISLET TRANSPLANTATION AND IN VIVO EVALUATION OF
ENGRAFTMENT ISLET FUNCTION
Recipient Lewis rats were made diabetic with intravenous admin-
istration of streptozotocin (STZ, 70 mg kg−1) 7 days before trans-
plantation. Diabetes was indicated by non-fasting blood glu-
cose (BG) levels of >350 mg/dL in two consecutive measure-
ments. Islets (∼500 IEQs) isolated from donor pancreata with
30 min warm ischemia treated with or without mesobiliverdin
IXα were infused into the portal vein of a diabetic recipient
rat using a 1 mL-capacity syringe with 25-gage winged needle
under general anesthesia. Non-fasting BG levels were measured
every 2 days before and after transplantation to monitor the
engraftment of islets. Reversal of diabetes was indicated when
BG levels of <200 mg/dL were determined in two consecutive
measurements. To evaluate the effect of mesobiliverdin IXα on
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transplanted islet function, intravenous glucose tolerance tests
were performed 56 post-operative days after transplantation.
Under general anesthesia, test and control recipient rats were intra-
venously injected with 1 mL/kg of 50% (wt/vol) glucose, and BG
levels were determined at 0, 2, 5, 10, 20, 30, and 45 min intervals.

RESULTS
MESOBILIVERDIN IXα PRODUCTION AND IDENTIFICATION
Mesobiliverdin IXα (Figure 1C) was produced by NaHCO3-
K2CO3 – dependent isomerization of phycocyanobilin (Figure 1D)
that in turn was derived and purified from dried preparations of
the cyanobacterium S. platensis (Spirulina powder). Its identity
and purity were determined by absorbance spectroscopy, TOF-
ESI mass spectra, and two-dimensional NMR COZY analyses
(Figure 2). Upon reaction with K2CO3 and NaHCO3, the phy-
cocyanobilin 600 nm absorbance peak shifted to 640 nm and a
420 nm peak emerged (Figure 2A) indicating formation of a
biliverdin-like compound. The HPLC retention time of the prod-
uct was 0.07 min longer than phycocyanobilin (Figure 2B). In
the phycocyanobilin two-dimensional NMR COZY spectrum,
there were characteristic=CH-CH3 COZY correlations at 6.5 and
1.9 ppm that were absent in the product spectrum (Figure 2D)

indicating the conversion of phycocyanobilin to mesobiliverdin
IXα. Its molecular mass (587.4) (Figure 2C) confirmed the iden-
tity as mesobiliverdin IXα and occurrence in the free acid form.
Its “IXα” analog designation was based on structural similarities
to biliverdin IXα and specifically the replacement of ethyl groups
in place of vinyl groups in the terminal pyrrole rings of biliverdin
IXα. The mesobiliverdin IXα product was >90% pure as judged
by HPLC (Figure 2B) and mass spectroscopy (Figure 2C). The
latter also revealed small amounts of contaminant material with
molecular mass 619.5 judged to be a phycocyanobilin-methanol
adduct (Beuhler et al., 1976). Yields of purified mesobiliverdin IXα

were linearly scalable at the rate of ∼100 mg/160 g of dry Spirulina
powder.

MESOBILIVERDIN IXα AS SUBSTRATE FOR NADPH BILIVERDIN
REDUCTASE
As substrate for recombinant human NADPH bilirubin reduc-
tase, mesobiliverdin IXα was reduced to mesobilirubin [λmax,
440 nm (Terry et al., 1993)] at rates that were equivalent to
those for catalytic conversion of biliverdin IXα to bilirubin IXα

(λmax, 460 nm) (Figure 3). In contrast, phycocyanobilin, the
synthetic precursor to mesobiliverdin IXα, was a relatively poor

FIGURE 2 | Identification and structural analysis of mesobiliverdin IXα

derived from phycocyanobilin. Analyses performed were absorbance
spectroscopy (A) of mesobiliverdin IXα (red) and phycocyanobilin (blue), HPLC
(B) of mesobiliverdin IXα (top panel) and phycocyanobilin (bottom panel),
mass spectroscopy (C) of mesobiliverdin IXα, and two-dimensional NMR

COZY spectra (D) of mesobiliverdin IXα (mesoBV, right panel) and
phycocyanobilin (pcb, left panel). The red arrow in (C) indicates a molecular
mass of 587.4 for mesobiliverdin IXα. The black arrow in (D) indicates
a=CH-CH3 functional group (at f 1: 9 ppm; f 2:6.5 ppm) in phycocyanobilin that
is absent in mesobiliverdin IXα.
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FIGURE 3 |Time-course of reactions catalyzed by human recombinant
NADPH biliverdin reductase with E. coli produced biliverdin IXα-HCl
(BVIXα), mesobiliverdin IXα (meso-BVIXα), and phycocyanobilin (pcb)
as substrates. NADPH-dependent reduction was monitored
spectrophotometrically for 6 h.

substrate as judged by the inability to detect catalytic conversion
to phycocyanorubin [λmax, 420 nm (Terry et al., 1993)].

EFFECT ON PANCREATIC ISLET YIELD AND VIABILITY
Pancreata were infused with HBSS/BSA solutions containing
mesobiliverdin IXα, commercial biliverdin IXα-HCl or E. coli
produced biliverdin IXα-HCl, followed by islet isolation and deter-
mination of IEQs/g yields. Solutions containing mesobiliverdin
IXα (at 1–100 µM) yielded IEQ/g increases ranging between 54
and 86.7% over controls (without mesobiliverdin IXα) (Table 1).
The highest average IEQ/g (86.7% over controls) was achieved
with 1 µM mesobiliverdin IXα. Infusion with solutions contain-
ing commercial biliverdin IXα-HCl gave IEQ/g average increases
as high as 35.5% (at 10 µM) over controls and with recombi-
nant E. coli produced biliverdin IXα-HCl, as high as 36.5% (at
100 µM). High degrees of islet viabilities as judged by dithizone
staining were observed with mesobiliverdin IXα and E. coli pro-
duced biliverdin IXα-HCl and a comparatively lower degree of
viability was observed with no treatment (Figure 4).

RECIPIENT IN VIVO ISLET FUNCTION AFTER TREATMENT OF DONOR
PANCREATA WITH MESOBILIVERDIN IXα

Islets (∼500 IEQs) obtained as described above with or with-
out mesobiliverdin IXα (100 µM) treatment were transplanted by
infusion into recipient livers of STZ induced diabetic rats through
the portal vein. Subsequent recipient BG levels revealed diabetes
reversal in 55.6% (five of nine) of the rats receiving islets from
mesobiliverdin IXα 100 µM) – treated pancreata (Figure 5 lower
panel); 22.2% (two of nine) of the non-treated control recipi-
ents showed diabetes reversal (Figure 5 upper panel). Intravenous
glucose tolerance tests on day 56 also revealed improved islet
function with mesobiliverdin IXα infusion of donor pancreata.

Table 1 | Islet yields from pancreata infused with biliverdin IXα-HCl

and mesobiliverdin IXα.

Treatment1 IEQs g−1 (average,

std, range, no. of values)

P value % above

control

1 µM BVFS
2 1328±358 (591–1705) (8) 0.426 11.3

10 µM BVFS 1617±451 (1006–2519) (8) 0.037 35.5

100 µM BVFS 1527±403 (942–2363) (9) 0.050 28.0

Control 1193±223 (931–1307) (9)

1 µM BVEC
3 1345±629 (662–2234) (7) 0.860 4.3

10 µM BVEC 1603±1073 (901–4117) (8) 0.480 24.4

100 µM BVEC 1759±703 (658–2593) (8) 0.163 36.5

Control 1289±559 (579–2182) (8)

1 µM mesoBV4 1599±475 (1004–2053) (7) 0.005 86.7

10 µM mesoBV 1318±805 (655–2946) (8) 0.156 54.0

100 µM mesoBV 1535±287 (1145–1923) (8) 0.0002 79.3

Control 856±229 (539–1166) (8)

20 µM p38IH5 2134±297 (997–2837) 0.037 45.1

Control5 1477±145 (1118–1889) 0.037

1Seven to nine organs per infusion treatment.
2Biliverdin IXα-HCl purchased from Frontier Scientific, Inc., Logan, UT, USA.
3Biliverdin IXα-HCl produced by recombinant E. coli as previously described (Chen

et al., 2012).
4Mesobiliverdin IXα (this work).
5p38 MAPkinase inhibitor; data from canine experiments (six organs per infusion

treatment) reported in Ito et al. (2008).

Fasting BG levels measured at zero and 2 min indicated recovery
of insulin-dependent function and were significantly lower with
transplanted islets from pancreata treated with mesobiliverdin IXα

as compared to controls with islets from non-treated pancreata
(Figure 6).

DISCUSSION
Growing evidence suggests the therapeutic potential of biliverdin
IXα against acute and chronic inflammatory conditions such as
diabetes (Florczyk et al., 2008; Wang et al., 2011; Gibbs et al.,
2012; Wegiel and Otterbein, 2012). Its current development as
an anti-inflammatory pharmaceutical, however, is hampered by
its commercial scarcity, contamination by isomers, and derivation
from animal sources. The recently reported scalable production
of biliverdin IXα by E. coli represents an attempt to address these
issues (Chen et al., 2012). With the goal of producing a pharma-
ceutical equivalent of biliverdin IXα that also overcomes these
limitations, the production of the mesobiliverdin IXα from a
non-animal source (i.e., cyanobacteria) was developed. The syn-
thesis of mesobiliverdin IXα from phycocyanobilin facilitated by
NaHCO3-K2CO3 is efficient, as is the methanolic cleavage of phy-
cocyanobilin from the apoprotein of phycocyanin. Phycocyanin
itself is an abundant, water-soluble pigment-protein complex that
in turn is easily extracted from photosynthetic microbes of the
groups cyanobacteria, rhodophyta, and cryptophyta. Hence, the
procedure is scalable for the production of large quantities of
mesobiliverdin IXα.
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FIGURE 4 | Photomicrographs of dithizone stained islet preparations
derived from donor Lewis rat pancreata infused with HBSS/BSA
solution (A) and HBSS/BSA solution containing 100 µM
mesobiliverdin IXα (B) or 100 µM E. coli produced biliverdin IXα-HCl
(C). Viable islets are stained red. The bar designates a length of 150 µm.

Mesobiliverdin IXα differs from biliverdin IXα by the
replacement of vinyl groups with ethyl groups at positions 3 and
18 of the linear tetrapyrrole structure (Figure 1). The differences
are not expected to significantly affect substrate specificity binding
to the active site of human biliverdin reductase for catalytic reduc-
tion to the corresponding product (i.e., mesobilirubin or bilirubin

FIGURE 5 | Non-fasting blood glucose (BG) level profiles of STZ
induced diabetic Lewis rats measured for up to 56 post-operative days
(pod) following transplantation with islets (∼500 IEQs) from donor
pancreata infused with HBSS/BSA solution containing 100 µM
mesobiliverdin IXα (n=9) (lower panel) or without mesobiliverdin IXα

(n=9) (upper panel).

FIGURE 6 | Fasting blood glucose (BG) levels following intravenous
tolerance tests of STZ induced diabetic Lewis rats. Tests were
performed on day 56 following transplantation with islets from donor
pancreata infused with HBSS/BSA solution containing 100 µM
mesobiliverdin IXα (n=7) (filled circles) or without mesobiliverdin IXα

(n=9) (open circles). BG levels at 0 and 2 min correlated with first-phase
insulin function. *p values<0.05.

IXα) (Cunningham et al., 2000; Fu et al., 2012) as supported
in the present study (Figure 3). Substrate binding to biliverdin
reductase appears central to the downstream anti-inflammatory
and anti-pro-inflammatory effects of biliverdin IXα (Gibbs et al.,
2012; Wegiel and Otterbein, 2012). These considerations suggest
that mesobiliverdin IXα may have therapeutic effects similar to
those shown experimentally for biliverdin IXα in numerous animal
studies. In comparison to mesobiliverdin IXα and biliverdin IXα,
phycocyanobilin appeared to be a weaker substrate for NADPH
biliverdin reductase (Figure 3) suggesting that it may have less
effective anti-inflammatory capabilities (Zheng et al., 2012).

Both biliverdin IXα and mesobiliverdin IXα had protective
effects against islet degradation following pancreatectomy. The
degree of protection by mesobiliverdin IXα exceeded those pro-
vided by biliverdin IXα (Table 1). Pancreatic infusion with as low as
1 µM mesobiliverdin IXα gave nearly twofold higher IEQs/g than
10 and 100 µM biliverdin IXα and p38 MAPkinase inhibitor previ-
ously observed in canine islet transplant experiments (Table 1) (Ito
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et al., 2008). Mesobiliverdin IXα at 1 µM gave an average 86.7%
increase in IEQs/g over non-treatment controls. This degree of
improvement in islet yield is clinically significant since currently
two or more pancreatic donor organs are required per recipient to
achieve insulin independence (Shapiro et al., 2005; Ito et al., 2008;
Wang et al., 2011).

In STZ induced diabetic rat transplantation experiments,
mesobiliverdin IXα infusion with 30 min warm ischemic injury
improved graft function of rat islets (Figures 5 and 6). Changes in
fasting BG levels at 0 and 2 min in intravenous glucose tolerance
tests indicated recovery of insulin-dependent function against a
glucose load, and the overall levels were significantly lower than
controls receiving islets from untreated pancreata. Thus improved
yields of functional islets were achieved with mesobiliverdin IXα

infusion of donor pancreata.
Why mesobiliverdin IXα at lower concentration (1 µM) pro-

tected better than commercial biliverdin IXα and E. coli pro-
duced biliverdin IXα is not known. Reasons may lie in dif-
ferences of their chemical state and purity. The biliverdin IXα

preparations used were of the hydrochloride form whereas the
mesobiliverdin IXα was produced as the free acid – differences

that could have bearing on tissue and cell accessibility. Com-
mercial biliverdin IXα preparations derived from animal sources
and produced from conjugated bilirubin often contain inac-
tive isomers (McDonagh, 2005). The E. coli derived biliverdin
IXα could possibly contain lipopolysaccharide endotoxin that
would compromise its anti-inflammatory capabilities. Alterna-
tively, the more cytoprotective effect of mesobiliverdin IXα

may result from as yet unknown variations of the anti-
inflammatory mechanisms of this bioactive porphyrin. Further
investigations are needed to better understand the cytoprotec-
tive mechanisms of mesobiliverdin IXα in comparison to those
for biliverdin IXα and other anti-inflammatory heme derived
porphyrins.
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