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Background: Optimal sampling is critical for the performance of blood cultures
(BCs). Most guidelines recommend collecting 40 ml of blood, divided between two
venipuncture sites, i.e., multi-sampling strategy (MSS). Sampling through a single
venipuncture site, i.e., single-sampling strategy (SSS) is easier; however, the diagnostic
performance of SSS compared to MSS remains unknown. Thus, we aimed to study if
SSS is non-inferior to MSS for detection of pathogenic microorganisms.

Methods: A prospective, paired, non-inferiority design was used. Patients with clinically
suspected sepsis admitted to an Emergency Department were included. Six BC bottles
were simultaneously collected, consisting of four BC bottles from the first arm and two
from the other arm. SSS consisted of BC bottles 1, 2, 3, and 4, and MSS consisted of
BC bottles 1, 2, 5, and 6. Samples were incubated in a BacT/ALERT BC system.

Results: The final analysis included 549 episodes. Pathogenic microorganisms were
detected in 162 cases (29.5%) with MSS and 160 cases (29.1%) with SSS, yielding an
absolute difference of 0.36%, with a 95% confidence interval of -1.33 to 2.06%, which
did not exceed the predefined non-inferiority margin of 5%. MSS tended to produce
more contaminant growth (7.3% of cases) than SSS (5.3% of cases; p = 0.072).

Conclusion: The study showed that SSS was non-inferior to MSS in detecting
pathogenic microorganisms and supports the use of SSS as a routine method.

Keywords: bloodstream infection, blood culture, sampling, sepsis, bacteria, contamination

INTRODUCTION

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response
to infection (Singer et al., 2016; Seymour et al., 2017). Early optimal blood culture (BC) sampling
followed by initiation of antibiotic therapy is a cornerstone of sepsis management (Rello et al., 2017;
Levy et al., 2018), and BC is widely accepted as the gold standard for microbiological diagnostics in
sepsis (Lamy et al., 2016; Rello et al., 2017).
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The goal of BC sampling should be to collect a sufficient
volume of blood to optimize the chance to detect pathogenic
microorganisms and minimize sample contamination risk.
The diagnostic yield of BC is strongly correlated to the
volume of blood collected and cultured (Cockerill et al.,
2004; Patel et al., 2011; Banerjee et al., 2016; Henning
et al., 2019). Currently, a total of 32–40 ml blood is
recommended for BC to achieve relevant detection rates
(Cockerill et al., 2004; Lee et al., 2007; Patel et al., 2011).
Most guidelines recommend at least two sets of BCs, each
consisting of one aerobic and one anaerobic bottle (Patel
et al., 2011; Lee et al., 2007; Patel et al., 2011). However,
recommendations are scarce regarding the optimal number
of bottles and venipunctures also referred to as sampling
strategy. This includes recent international guidelines for
sepsis, which do not specify a recommended sampling strategy
(Rhodes et al., 2017).

Two main sampling strategies are in current clinical use,
i.e., the well-established multi-sampling strategy (MSS), with
sampling from two venipuncture sites, and the newer single-
sampling strategy (SSS), with the whole desired volume of
blood collected from one venipuncture site. Because of collection
from two sites, MSS has been claimed to allow for better
discrimination between true bacteremia and contamination than
SSS (Lamy et al., 2016). However, the two venipunctures of MSS
may result in a higher risk of contamination (Dargere et al.,
2014). In addition, it is reasonable to assume that MSS may
also result in the collection of only two BC bottles through
one venipuncture due to heavy workload or patient-related
factors. In contrast, SSS theoretically implies less contamination
rates because of fewer venipunctures and a higher rate of four
BC bottles sampled (Lamy et al., 2016). The major difference
between SSS and MSS in clinical practice is that SSS is
related to reduced patient discomfort and less labor-intensive
sampling. Currently, MSS is the predominant approach in most
countries, but SSS is gaining approval as a safe alternative
(Lamy et al., 2016).

Hitherto published studies on comparison of BC sampling
strategies are scarce and include heterogeneous patient groups
undergoing BC sampling. A recent comparative study including
245 patients with signs of infection suggested that SSS
may be superior to MSS by a composite outcome defined
as detection rate of both clinically relevant growth and
contamination (Dargere et al., 2014). However, in this study,
the second venipuncture was not taken simultaneously but
allowed to occur up to 24 h after the first venipuncture which
may have affected the conditions under which the second
sampling was done, such as concentration of pathogens in
blood, administration of antibiotic therapy, and the clinical
condition of the patient.

The few and diverging guidelines concerning BC sampling
strategies highlight a lack of evidence to support a consensus
recommendation. Therefore, there is an utmost need for
clinical data comparing the performance of SSS and MSS in
patients with sepsis.

The aim of the present study was to assess non-inferiority of
SSS vs. MSS in a well-characterized patient group with clinically

suspected sepsis. The primary outcome was the difference
between detection rates of pathogenic microorganisms in SSS
and MSS. The secondary outcome measure was contamination
rates of SSS and MSS.

MATERIALS AND METHODS

Study Design
This prospective non-inferiority study involved a paired design
for comparing SSS and MSS. The primary outcome measure
was detection of pathogenic microorganisms in BC. The study
was performed at Karolinska University Hospital Huddinge,
Stockholm, Sweden, a tertiary care hospital with 700 beds.

In the hospital’s Emergency Department, all patients are
routinely subjected to triage with the Rapid Emergency Triage
and Treatment System (Ljunggren et al., 2016), and a sepsis
alert is triggered for triage signs of organ dysfunction combined
with signs of infection, i.e., fever, history of fever, or clinical
suspicion of infection. The sepsis alert’s trigger signs of
organ dysfunction are either A or B, i.e., A) at least one
of oxygen saturation below 90% despite supplemental oxygen
administration, respiratory rate greater than 30 per min, heart
rate greater than 130 beats per min, systolic blood pressure
under 90 mmHg, or Glasgow Coma Scale below 8; or B)
blood lactate greater than 3.2 mmol/L combined with at least
one of oxygen saturation below 95% on room air, respiratory
rate greater than 25 per min, heart rate greater than 110
beats per min, altered mental status, and temperature above
38.5◦C or below 35◦C. Patients who trigger the sepsis alert
are subjected to urgent multidisciplinary bedside assessment
by physicians from the Emergency Department, Department of
Infectious Diseases, and Intensive Care Unit to optimize clinical
assessment and treatment.

Three BC sets, each one consisting of an aerobic (BactAlert
FA Plus) and an anaerobic (BactAlert FN Plus) BC bottle,
were sampled from each patient who triggered the sepsis alert
system. The BC bottles were labeled with numbers 1 through
6. MSS consisted of bottles 1, 2, 3, and 4, and SSS consisted
of bottles 1, 2, 5, and 6. Bottles 1 through 4 were sampled
from the same venipuncture site. Bottles 5 and 6 were collected
from the other site. Bottles 1, 3, and 5 were BactAlert FA
Plus bottles, and bottles 2, 4, and 6 were BactAlert FN Plus
bottles. BC bottles were sampled consecutively in the labeled
order. In cases of indwelling intravascular catheters, bottles
1–4 were sampled from the catheter. When comparing MSS
to SSS, microbiological data from all six BC bottles were
used as reference.

Inclusion and Exclusion Criteria
Consecutive adult patients who triggered the sepsis alert from
September 2017 to February 2019 were included in the study.
A suspected sepsis episode, here referenced as an “episode,” was
defined as a patient who triggered the sepsis alert system. Two or
more episodes from the same patient could be included if they
occurred more than 72 h apart. Episodes were excluded if fewer
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FIGURE 1 | Flowchart of the study population. MSS, multi-sampling strategy; SSS, single-sampling strategy. Episodes with fewer than six blood culture (BC) bottles
were considered as having MSS and/or SSS incomplete.

than six BC bottles were collected or if collection of blood was not
performed in accordance with the study protocol.

Microbiology Procedures
The BC bottles were transported to the Department of Clinical
Microbiology, Karolinska University Hospital, according to
routine practice and were analyzed according to the standard
routine of that department (laboratory). The labeling specific
for the present study was documented in the laboratory data
system. From the beginning of the study in September 2017
until September 20, 2018, the BC bottles were incubated
in BacT/ALERT 3D (Bio-Merieux, France). Beginning on
September 20, 2018, the clinical microbiology laboratory changed
its BC system to BacT/ALERT Virtuo (Bio-Merieux, France).
The BactAlert FA Plus and BactAlert FN Plus BC bottles were
used throughout the study. BCs were cultured until they signaled
positive or for a total of 5 days. In positive BCs, samples were
Gram stained and then subcultured on agar plates. Colonies
that grew on agar were subjected to species identification
by matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (Bruker Daltonik, Bremen, Germany) and
were subjected to antibiotic susceptibility testing by standard
laboratory procedures.

Relevant Growth and Contaminant
Growth
Information regarding BC results in terms of isolate identification
and time to detection was collected from the laboratory
information system. Detected isolates were defined as clinically

relevant growth or contaminant growth, according to an
improved version of the methods used in previously published
reports (Bekeris et al., 2005; Dawson, 2014). Relevant growth
was defined as growth of pathogenic microorganisms in at
least one BC bottle.

Contaminated episodes were defined as such if two
criteria (A and B) were fulfilled. First (A), isolates commonly
regarded as contaminants (coagulase-negative staphylococci,
Corynebacterium spp., Macrococcus spp., Micrococcus spp.,
and Facklamia spp.), as described by previous studies and
guidelines, were considered to be potentially contaminant if
they grew in three or fewer of the six bottles. Second (B), the
potential contaminants had to show no growth in any other
relevant microbiological sample (urine, skin/soft tissue, lower
respiratory tract, cerebrospinal fluid, pleural/ascitic drainage)
within±5 days of BC sampling.

Endpoints
The main endpoint of the study was detection of relevant growth
in BC. Secondary endpoint was contamination growth.

Statistical Analysis
Based on three recently published studies (Edman-Waller et al.,
2016; Rosenqvist et al., 2017; Seymour et al., 2017), we estimated
that approximately 30% of cases with clinically suspected sepsis
would be BC positive with both MSS and SSS. A non-inferiority
margin of 5% was chosen as an acceptable limit for the 95%
confidence interval (CI) of the absolute difference between the
proportions of positives of the two study methods. The 95% CI
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of this difference was calculated using the Wald test. To obtain a
power of 80% with an α level of 0.05, 520 episodes with both SSS
and MSS performed were required.

Frequencies and percentages were used to summarize
categorical variables, while means and standard deviations,
together with medians and interquartile ranges, were used to
summarize numerical variables. McNemar’s χ2-test was used to
compare proportions between MSS and SSS.

Ethical Permit
Ethical approval for the study was granted by the Regional
Ethical Committee in Stockholm (reference number 2017/1358-
31). During the study period, six BC bottles were collected
in sepsis alert patients as a clinical routine. Thus, the ethics
committee approved that written informed consent was not
needed for inclusion in the study.

RESULTS

In total, 652 episodes triggered the sepsis alert system during the
study period. Figure 1 depicts the study flowchart and reason for
exclusion. After exclusion, 549 episodes from 514 unique patients
were included in the final analysis. In total, 1,647 BC sets (3,294
BC bottles) were collected, each consisting of one BacT/Alert FA
Plus and one FN Plus bottle. Clinical characteristics of included
episodes are presented in Table 1. Of the 31 patients who had
more than one episode included in the study, 27 patients had two
episodes and four had three.

Growth in BC was noted in 209/549 (38.1%) episodes
(in 200 unique patients) with the six study BC bottles.
Supplementary Table S2A lists the detected microorganisms.
Pathogenic microorganisms were found in 170 episodes (31.0%),
of which 11 concomitantly had contaminant growth. A total
of 39 episodes (7.1%) had only contaminant growth. Among
170 episodes with relevant growth, monomicrobial growth was
detected in 140 cases (82.4%) and polymicrobial growth in 30
(17.6%). Of the polymicrobial episodes, 21 episodes had two
different pathogenic microorganisms detected, and nine episodes
had three different pathogenic microorganisms detected.

Comparison of Sampling Strategies
Detection of Relevant Growth
Among 549 study patients, relevant growth was noted in 162
episodes (29.5%) episodes by MSS and in 160 episodes (29.1%) by
SSS (Figure 2A). The absolute difference in proportion was 0.36%
with 95% CI of –1.33 to 2.06%, not exceeding the non-inferiority
margin of 5% (Supplementary Figure S1). Thus, SSS was found
to be non-inferior to MSS for detection of relevant growth in BC.

If detection of all pathogenic microorganisms in the six study
BC bottles would have been required for a positive result, MSS
and SSS would have been positive in 160 episodes (29.1%) and
150 episodes (27.3%), respectively. The difference in proportion
would then have been 1.8% with a 95% CI of –0.31 to 3.95%, not
exceeding the non-inferiority margin of the study.

TABLE 1 | Clinical characteristics of the episodes (N = 549 episodes).

Characteristic Value

Male–n (%) 338 (61.6)

Age–years* 69.5 ± 16.7

Comorbidities, n (%)

Congestive heart failure 95 (17.3)

Diabetes mellitus 166 (30.2)

Ischemic heart disease 71 (12.9)

Peripheral vascular disease 51 (9.3)

Cerebrovascular disease 107 (19.5)

Malignancy 130 (23.7)

Chronic kidney failure (glomerular filtration rate < 60 ml/min) 135 (24.6)

Chronic liver failure 17 (3.1)

Chronic pulmonary disease 89 (16.2)

At least one of above listed comorbidities 265 (48.3)

Subgroup category after chart review n (%)

Sepsis according to sepsis-3** 387 (70.5)

Infection without sepsis** 81 (14.8)

No infection 81 (14.8)

Source of infection, n (%)†

Respiratory tract†† 174 (37.2)

Urinary tract 102 (21.8)

Abdominal 39 (8.3)

Soft tissue/skin/skeletal/joint 37 (7.9)

Central nervous system 4 (0.9)

Endocarditis 6 (1.3)

Other/unknown 114 (24.4)

Disease severity/outcomes

SOFA score at admission‡ 3 (2–5)

Admission to intensive care unit during hospital stay, n (%) 46 (8.4)

28-day mortality, n (%) 73 (13.3)

*Denotes mean ± standard deviation. **Sepsis was determined as present if
there was an increase in Sequential Organ failure Assessment (SOFA) score by
2 compared to baseline, as well as evidence of infection. Infection in this study was
defined as present if the patient was administered intravenous antibiotic therapy
within 48 h from admission and during at least 4 days. †Source of infection was
analyzed only for patients with infection (n = 468). Two or more sources of infection
were found in nine episodes, so total percentage exceeds 100%. †† Includes lower
and upper respiratory tract infections. ‡Denotes median (interquartile range).

MSS and SSS performed similarly in monomicrobial growth
and could detect microorganisms in 132 (24.0%) and 130 (23.7%)
episodes, respectively (NS).

When polymicrobial samples were analyzed, both MSS and
SSS detected growth in all 30 episodes. When detection of all
microorganisms in polymicrobial episodes was considered, MSS
[28/30 (93%)] detected a higher rate of all microorganisms
compared to SSS [22/30 (73%)], although not reaching statistical
significance (p = 0.08) (Tables 2, 3).

Monomicrobial episodes with discordant findings are
described in Supplementary Table S1. There was a similar
proportion of Gram-positive and Gram-negative episodes
detected by the methods.

Contaminant Growth
Figure 2B shows the detection of contaminant growth with the
two sampling methods studied. SSS (5.3%) tended to yield a lower
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FIGURE 2 | Detection rates of episodes with relevant growth (A) and contaminant growth (B) in 549 sepsis alert episodes. BC, blood culture; MSS, multi-sampling
strategy; SSS, single-sampling strategy. P-values denote comparison using McNemar’s χ2-test.

rate of contaminants than MSS (7.3%), although not to statistical
significance (p = 0.07). Supplementary Table S2b shows the
contaminants detected by MSS and SSS.

Growth in Individual Blood Culture
Bottles
Growth of any microorganism was observed in 784/3,294 (23.8%)
bottles. The overall contamination rate in BC bottles was 75/3,294
(2.28%). Growth in the individual BC bottles (BC1, BC2, BC3,
BC4, BC5, BC6) was evenly distributed (Table 4).

DISCUSSION

Appropriate detection of microorganisms and low rate of
contaminants are two major goals for BC diagnostics. Therefore,

TABLE 2 | Detection of microorganisms by MSS and SSS* (N = 549 episodes).

Episode type MSS SSS

Episodes with clinically relevant growth, n (%) 162 (29.5) 160 (29.1)

Monomicrobial episodes 132 (24.0) 130 (23.7)

Polymicrobial episodes** 30 (5.5) 30 (5.5)

Episodes including G+ isolates 72 (13.1) 72 (13.1)

Episodes including G- isolates 103 (18.8) 96 (17.5)

Episodes including fungal isolates 1 (0.2) 0

Episodes including anaerobic isolates 11 (2.0) 10 (1.8)

Episodes with contaminant growth, n (%) 40 (7.3) 29 (5.3)

Only contaminant growth 34 (6.2) 21 (3.8)

Both contaminant and clinically relevant growth 6 (1.1) 8 (1.5)

*MSS, multi-sampling strategy; SSS, single-sampling strategy; BC, blood culture.
**Polymicrobial episode is defined as an episode with the occurrence of more than
one clinically relevant isolate.

the sampling strategy is essential to optimize the performance
of BC. In the present study, a well-defined patient cohort with
clinically suspected sepsis was used to evaluate if SSS is non-
inferior to MSS for detection of relevant growth in BC.

For SSS, the main concern has been that diagnostic
performance may be lower than that of MSS (Lamy et al.,
2016). The present study shows that SSS is non-inferior to
MSS regarding detection of pathogenic microorganisms in BC.
These results are the first to demonstrate this non-inferiority and
confirm previous theoretical assumptions based on a statistical
model by Lamy et al. (2002) and empirical data published more
recently by Dargere et al. (2014). Non-inferiority of SSS compared
to MSS combined with advantages of SSS in terms of less harm to
the patient and less labor intensity for the staff supports the use
of SSS as the routine method for BC in emergency departments.

Contamination is a major problem with BC diagnostics, and
a reduction of contaminants is one of the proposed benefits of
using SSS (Lamy et al., 2016). In the present study, the overall
contamination rate per BC bottle was less than 3%, which is the
upper limit of the accepted contamination rate (Dargere et al.,
2018). SSS tended to yield a lower rate of contaminants than
MSS, although not to statistical significance (p = 0.07). In the
current study, a wide range of different possible contaminants
were detected with the exception of Cutibacterium acnes. The
underlying reason for not detection of Cutibacterium acnes is not
known but can probably be related to the BC system used in the
present study. The present results on contamination rates are in
line with previously published data (Dargere et al., 2014).

The performance of BC in the detection of polymicrobial
growth has not been studied extensively. Around 5–10%
of positive BCs have previously been reported to be
polymicrobial (Arendrup et al., 1996; Lee et al., 2007; Lin
et al., 2010; Dargere et al., 2014). Here, polymicrobial
episodes represented 17.6% of all relevant growth. The

Frontiers in Microbiology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1639

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01639 July 21, 2020 Time: 16:54 # 6

Yu et al. Sampling Strategies for Blood Cultures in Sepsis

TABLE 3 | Discordant results between MSS and SSS* in episodes with polymicrobial growth.

Site of infection Isolates detected by both methods Isolates detected by MSS only Isolates detected by SSS only

Abdomen Escherichia coli Enterococcus faecium –

Abdomen Klebsiella pneumoniae, Enterococcus faecalis Stenotrophomonas maltophilia –

Abdomen E. coli E. faecium

Dental Streptococcus anginosus Parvimonas micra –

Lower respiratory tract E. coli – K. pneumoniae

Soft tissue Streptococcus pneumoniae E. coli –

Soft tissue Streptococcus pyogenes Staphylococcus aureus –

Urinary tract E. coli, S. aureus E. faecalis –

Unknown Citrobacter freundii, S. aureus E. faecalis –

Unknown Helcococcus spp. Globicatella spp., Alcaligenes faecalis –

Unknown E. coli Candida parapsilosis, Lactobacillus spp. –

Unknown Actinomyces spp. Streptococcus mitis –

Site of infection and isolated microorganisms are presented. *MSS, multi-sampling strategy; SSS, single-sampling strategy; Spp., species.

TABLE 4 | Distribution of growth in individual blood culture bottles (N = 549 episodes).

MSS and SSS common bottles SSS MSS

BC bottle 1 BC bottle 2 BC bottle 3 BC bottle 4 BC bottle 5 BC bottle 6

Clinically relevant growth, n (%) 140 (25.5) 129 (23.5) 131 (23.9) 116 (21.1) 139 (25.3) 129 (23.5)

Contaminant growth, n (%) 14 (2.6) 10 (1.8) 11 (2.0) 7 (1.3) 16 (2.9) 17 (3.1)

MSS, multi-sampling strategy; SSS, single-sampling strategy; BC, blood culture.

reason for this high frequency may be a higher rate of
comorbid illnesses and a higher proportion of true sepsis
in the present cohort. In the present study, there was no
difference between MSS and SSS in detecting polymicrobial
growth. However, when analyzing the individual detection of
all microorganisms in polymicrobial episodes, MSS detected all
microorganisms more often than in SSS. However, statistical
comparison for non-inferiority could not be performed
due to small numbers of polymicrobial samples. Further
studies including a large number of cases with polymicrobial
sepsis are warranted.

This study has some limitations. First, the exclusion of
almost 100 sepsis alert episodes due to insufficient number of
BC bottles may have influenced the mix of etiologies and/or
severity of the studied patient cohort. However, such influence
would most likely not affect the study results substantially
since the patients were their own controls. Second, the sample
size was too small to evaluate if SSS would be superior to
MSS regarding contamination rate. However, the results of
the present study could be useful for sample size calculation
of such a study. Third, the BC bottle volumes were not
measured because of logistical difficulties, and thus it is unclear
if the blood volumes of BC bottles 5 and 6 and BC bottles
3 and 4 were similar in individual patients. However, the
similar rates of growth observed in the parallel bottles suggest
that the blood volumes did not differ significantly among
individual bottles.

The present study has several strengths. The well-defined
sepsis alert system used in the present study resulted in
a high rate of positive BCs and low contamination rates,

two parameters that are decisive in an analysis of the
performance of sampling methods. Both sampling methods
(MSS and SSS) were performed simultaneously during
the initial management in the Emergency Department,
having the patients as their own controls. The samples
were collected meticulously with pre-labeled BC bottles
and clear instructions, leaving little room for ambiguity. In
addition, the present approach used here minimized the risk
for change in preconditions, most importantly initiation of
antibiotic therapy.

CONCLUSION

The present study shows that SSS is non-inferior to MSS in
the detection of pathogenic microorganisms in BC. This fact
combined with advantages of SSS in terms of less harm to the
patient and less labor intensity for the staff supports the use
of SSS as a routine method for BC in emergency departments.
Clinical studies with a larger sample size comparing the two
sampling methods in the detection of contaminants and all
microorganisms with polymicrobial growth are warranted.
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Single-sampling strategy. The diamond represents the observed absolute
difference and the horizontal line represents the 95% CI, calculated using the Wald
test. The non-inferiority margin 1 is represented by the dotted line.

TABLE S1 | Discordant results between MSS and SSS* in episodes with
monomicrobial growth. Site of infection and isolated microorganisms are
presented. *MSS: multi-sampling strategy. SSS: single-sampling strategy. Spp.:
species.

TABLE S2 | (a) Rank order of clinically relevant isolates *Serratia marcescens,
Proteus mirabilis, Pantoea species, Citrobacter freundii, Moraxella catharralis,
Aeromonas caviae, Hafnia alvei, Alcaligenes faecalis, Acinetobacter species,
Campylobacter species, Stenotrophomonas maltophilia, Proteus vulgaris,
Pseudomonas species, Haemophilus influenzae, Enterobacter aerogenes. **
Streptococcus agalactiae, Group A beta-hemolytic streptococcus, Coagulase
negative staphylococcus, Streptococcus mitis, Parvimonas micra, Group B
beta-hemolytic streptococcus, Enterococcus species, Globicatella species,
Helcococcus species, Streptococcus anginosus, Streptococus anginosus,
Lactobacillus species, Group G beta-hemolytic streptococcus, Enterococcus
casseliflavus, Actinomyces species, Macrococcus species, Micrococcus luteus ***
Prevotella species, Clostridium perfringens, Peptoniphilus species,
Peptostreptococcus anaerobius, one isolate that could not be identified further (b)
Rank order of contaminant isolates.
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