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Abstract: Molecular imprinting technology (MIT), also known as molecular template technology,
is a new technology involving material chemistry, polymer chemistry, biochemistry, and other
multi-disciplinary approaches. This technology is used to realize the unique recognition ability
of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs).
MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity,
and their internal recognition sites can be selectively combined with template molecules to achieve
selective recognition. A molecularly imprinted fluorescence sensor (MIFs) incorporates fluorescent
materials (fluorescein or fluorescent nanoparticles) into a molecularly imprinted polymer synthesis
system and transforms the binding sites between target molecules and molecularly imprinted materials
into readable fluorescence signals. This sensor demonstrates the advantages of high sensitivity and
selectivity of fluorescence detection. Molecularly imprinted materials demonstrate considerable
research significance and broad application prospects. They are a research hotspot in the field of
food and environment safety sensing analysis. In this study, the progress in the construction and
application of MIFs was reviewed with emphasis on the preparation principle, detection methods,
and molecular recognition mechanism. The applications of MIFs in food and environment safety
detection in recent years were summarized, and the research trends and development prospects of
MIFs were discussed.

Keywords: molecularly imprinted polymer; fluorescence sensor; food quality and safety; rapid
detection; molecular recognition

1. Introduction

Molecular imprinting technology (MIT) is a preparation technology based on the interaction
and principle of antibody and antigen as well as enzyme and substrate, which is developed to
synthesize three-dimensional crosslinked polymers with specific molecular recognition ability [1–3].
Molecularly imprinted polymers (MIPs) demonstrate many advantages, such as good selective
adsorption, strong affinity, simple preparation, strong stress resistance, and low cost. They demonstrate
significant application prospects in the fields of solid phase extraction, chemical biomimetic sensing
technology, chromatographic separation, and mimic enzymes [4–6]. Traditional MIPs possess good
specific recognition performance; however, they lack signal output ability during analysis and
detection. Therefore, they need to be used in combination with instrumental confirmation methods [7].
The fluorescence sensor generally comprises a recognition unit and a signal output unit. Molecularly
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imprinted fluorescence sensors (MIFs) can be constructed by introducing the fluorescent material
into the molecularly imprinted polymer synthesis system, which can realize specific recognition and
fluorescence detection of the target [8,9]. MIFs have emerged into a research hotspot in the fields of
medicine, environment, and food safety sensing analysis [10–13].

In the past decade, several food and environment safety incidents had occurred, which resulted
in food safety becoming the focus of global attention [14,15]. Food safety is closely related to human
health, economic development, and social stability and is a major issue with respect to national
economy and people’s livelihood [16]. Currently, the food safety detection technology includes
instrument confirmation technology and rapid detection technology. The instrument validation
techniques include gas chromatography [17], liquid chromatography [18], capillary electrophoresis [19],
supercritical fluid chromatography [20], gas chromatography-mass spectrometry [21,22], and liquid
chromatography-mass spectrometry [23–25]. However, the instrumentation method demonstrates
drawbacks of a complex sample pretreatment process, high costs, complex operation, long detection
time, and large-scale expensive equipment. This method is not capable of achieving rapid measurement
on-site detection, thereby requiring professional operators. In contrast, the rapid detection technology is
simple, rapid, low-cost, selective, and demonstrates high specificity [26–28]. Therefore, it is suitable for
rapid screening and monitoring of food quality and safety [29–31]. In recent years, the rapid detection
technology of food quality and safety hazard factors has developed rapidly. These developments
mainly include the ultraviolet visualization technology [32], fluorescence sensing technology [33],
Raman technology [34], biological immune technology [35], and electrochemical technology [36].

MIFs not only demonstrate the advantages of specific recognition and specific adsorption of
molecular imprinting but also possesses the high sensitivity and high selectivity of fluorescent materials.
This characteristic is important in integrating the recognition unit and signal output unit efficiently in
the rapid detection of food quality and safety, and demonstrates broad application prospects [37,38].
In this review, the preparation of MIFs, the detection methods and molecular recognition mechanisms
are summarized. The application status of MIFs in the rapid detection of food quality and safety
hazard factors (agricultural and veterinary drug residues, heavy metals, and environmental organic
pollutants) is analyzed. The research focus and development trend of the MIFs is discussed.

2. Preparation of MIPs

MIPs are a class of polymeric materials formed using template molecules and functional monomers
through covalent or non-covalent bonds to create preassemblies. Under the action of cross-linking agents
and initiators, they are then completely matched with the template molecules in shape and structure [39].
The preparation principle of MIPs is shown in Figure 1 and the process is generally divided into three
steps [40]: (1) template molecules and functional monomers are preassembled in suitable solvents,
and the host and guest recognize each other to form stable supramolecular complexes [41,42] with
multiple specific recognition sites and specific spatial arrangement. (2) A crosslinking agent and an
initiator are added into the preassembly solution, the process of photopolymerization or thermal
polymerization is initiated by the initiator, and a highly crosslinking polymerization is performed
around the template-functional monomer supramolecular complex to form a rigid polymer with a
three-dimensional spatial structure [43]. (3) Elute the template molecules embedded in the polymer
with an eluent (mostly alkyd or alkali alcoholic solution) to obtain a MIP [44] with three-dimensional
holes that can be perfectly matched to the template molecule. The imprinted cavities can selectively bind
to the template molecules again and demonstrate a specific recognition effect on the template molecules.
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Figure 1. Illustration schematic of the preparation principle of molecularly imprinted polymers (MIPs).
Reprinted with permission from [40], copyright (2017) American Chemical Society.

3. Construction of a MIFs

The fluorescence sensor can convert the recognition between the molecular recognition unit and
target into a fluorescence response signal and detect the concentration of the target by monitoring the
fluorescence intensity. An MIFs was constructed by introducing fluorescent materials into the MIPs
synthesis system. Figure 2 presents the preparation process of MIFs based on embedding fluorescent
materials into MIPs [45]. MIFs are highly selective, highly sensitive, specific, and stable compared to
conventional sensors [46], and have been widely used to detect many kinds of pollutants [47–51].
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Figure 2. The preparation process of molecularly imprinted fluorescence sensors (MIFs) based on
embedding fluorescent materials into MIPs. Reprinted with permission from [45], copyright (2018) Elsevier.

3.1. Detection Mechanism

There are two possible directions to construct MIFs, including direct fluorescence detection and
indirect fluorescence detection, according to the varied properties of the sample [52]. Direct fluorescence
detection is employed to detect the fluorescence intensity of MIPs directly, when the target (template
molecule) can generate a fluorescence signal after recognition and adsorption. Indirect fluorescence
detection includes two steps: (1) The fluorescent molecularly imprinted polymer (FIP) (fluorescent
functional monomer imprinted cavity or embedded fluorescent material) is prepared using fluorescent
materials, and the fluorescence signal is detected, after the target is imprinted. (2) The substance to be
detected with the FIP is labeled, and the fluorescence signal of the remaining labeled substance in the
solution is determined by competing with the binding site of the fluorescent label to bind the MIPs.
The indirect MIFs [53,54] have been widely reported in the literature.

3.2. Sensor Classification

The MIFs is an organic combination of molecularly imprinted technology and fluorescent
nanomaterials. Therefore, these sensors can demonstrate the dual advantages of highly sensitive
detection of fluorescence probes and specific recognition adsorption of MIP using the variations in the
fluorescence signals. This compensates for the drawback of the MIP, which can only recognize and not
transmit the signal out of the defect. According to the different sources of fluorescence signals, indirect
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MIFs can be divided into four types (presented in Figure 3): organic fluorescent dye type, quantum dot
type, rare earth material type, and ratio fluorescence type.

Nanomaterials 2019, 9, x FOR PEER REVIEW 4 of 19 

 

the fluorescence signals. This compensates for the drawback of the MIP, which can only recognize 
and not transmit the signal out of the defect. According to the different sources of fluorescence 
signals, indirect MIFs can be divided into four types (presented in Figure 3): organic fluorescent dye 
type, quantum dot type, rare earth material type, and ratio fluorescence type. 

 
Figure 3. Four types of MIFs based on different fluorescence signals sources. 

3.2.1. Organic Fluorescent Dye Type 

Common organic dyes include fluorescein isothiocyanate (FITC) [55], 5-(4, 6-dichlorotriazine) 
aminofluorescein (5-DTAF) [56], rhodamine [57], and so on. Liu et al. synthesized magnetic MIPs 
with good adsorption selectivity and stress resistance by precipitation polymerization using 
magnetic chitosan nanoparticles as functionalized carriers and atrazine as template molecules. Using 
5-DTAF as a fluorescence probe for atrazine structural analogues, a fluorescence competitive 
atrazine biosensor based on the magnetic molecularly imprinted chitosan surface was constructed 
[58]. In addition, Liu et al. obtained FITC-Mel fluorescent labeling molecule by modifying FITC to 
melamine molecules. FITC-Mel and Mel compete for recognition sites on the surface of the magnetic 
core-shell MIPs. Fluorescence sensors for melamine in milk and infant milk powder were established 
by detecting the fluorescence intensity of FITC-Mel in the respective solutions. The linear range is 
0.1–20.0 mg/Kg and the detection limit is 0.05 mg/Kg [59]. 

3.2.2. Quantum Dot Type 

Quantum dots (QDs) are semiconductor nanocrystals with a three-dimensional structure of 
nanometer scale (1–10 nm) and a size radius of the exciton bohr radius. The quantum dots are used 
as carriers in the fluorescence signal unit. The quantum dot-imprinted polymers (QDs-MIPs) 
synthesized by imprinting polymerization on their surfaces possess both the advantages of surface 
molecular imprinting and the high sensitivity and selectivity of QDs. It is important to integrate the 
recognition unit and signal output unit efficiently, as it demonstrates broad application prospects 
[60,61]. 

Zhang et al. modified the ionic liquids to CdSe/ZnS QDs based on electrostatic interaction, 
interacted with carbaryl and methacrylic acid, deposited a MIP on the surface of CdSe/ZnS QDs, and 
finally obtained molecularly imprinted quantum dot fluorescent probes. The linear range of carbaryl 
was 0.0398–49.7 μM, and the detection limit was 14.7 nM [62]. Ren et al. used the ZnS QDs doped 
with Mn (Ⅱ) for the synthesis of MIPs with acrylamide as the functional monomer, ethylene glycol 

Figure 3. Four types of MIFs based on different fluorescence signals sources.

3.2.1. Organic Fluorescent Dye Type

Common organic dyes include fluorescein isothiocyanate (FITC) [55], 5-(4, 6-dichlorotriazine)
aminofluorescein (5-DTAF) [56], rhodamine [57], and so on. Liu et al. synthesized magnetic MIPs
with good adsorption selectivity and stress resistance by precipitation polymerization using magnetic
chitosan nanoparticles as functionalized carriers and atrazine as template molecules. Using 5-DTAF as
a fluorescence probe for atrazine structural analogues, a fluorescence competitive atrazine biosensor
based on the magnetic molecularly imprinted chitosan surface was constructed [58]. In addition,
Liu et al. obtained FITC-Mel fluorescent labeling molecule by modifying FITC to melamine molecules.
FITC-Mel and Mel compete for recognition sites on the surface of the magnetic core-shell MIPs.
Fluorescence sensors for melamine in milk and infant milk powder were established by detecting the
fluorescence intensity of FITC-Mel in the respective solutions. The linear range is 0.1–20.0 mg/Kg and
the detection limit is 0.05 mg/Kg [59].

3.2.2. Quantum Dot Type

Quantum dots (QDs) are semiconductor nanocrystals with a three-dimensional structure of
nanometer scale (1–10 nm) and a size radius of the exciton bohr radius. The quantum dots are used as
carriers in the fluorescence signal unit. The quantum dot-imprinted polymers (QDs-MIPs) synthesized
by imprinting polymerization on their surfaces possess both the advantages of surface molecular
imprinting and the high sensitivity and selectivity of QDs. It is important to integrate the recognition
unit and signal output unit efficiently, as it demonstrates broad application prospects [60,61].

Zhang et al. modified the ionic liquids to CdSe/ZnS QDs based on electrostatic interaction,
interacted with carbaryl and methacrylic acid, deposited a MIP on the surface of CdSe/ZnS QDs,
and finally obtained molecularly imprinted quantum dot fluorescent probes. The linear range of
carbaryl was 0.0398–49.7 µM, and the detection limit was 14.7 nM [62]. Ren et al. used the ZnS
QDs doped with Mn (II) for the synthesis of MIPs with acrylamide as the functional monomer,
ethylene glycol dimethacrylate as the crosslinking agent, and azobisisobutyronitrile as the initiator
and the preparation process of MIP-coated QDs is shown in Figure 4. The fluorescence sensing
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system was applied for determining the organophosphorus pesticide chlorpyrifos residues with a
detection limit of 17 nM [63]. Zhao et al. synthesized MIPs composite nanomaterials based on QDs by
ultrasonic-assisted method for the determination of organophosphorus pesticide diazinon residues.
Due to the non-covalent interactions between the polymer matrix and template molecules, this material
exhibits good specificity in aqueous media. The detection principle included the mechanism of energy
transfer between the quantum dots and target molecule diazinon, which led to fluorescence quenching.
The fluorescence quenching degree of quantum dots was proportional to the concentration of diazinon.
The linear range was 50–600 ng/mL, and the detection limit was 50 ng/mL [64].
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In recent years, MIFs based on carbon QDs [65], graphene QDs [66], and C3N4 QDs [67] have
been developed. These fluorescence sensors overcome the problem of toxic elements overflowing
from the semiconductor quantum dots. They are also eco-friendly and generate a strong fluorescence
signal [68]. Liu et al. prepared silylated carbon QDs by performing the hydrothermal treatment of
aminosilylation reagent and citric acid. Then, carbon QDs-MIPs were synthesized by sol-gel method
and used for fluorescence detection of bisphenol A [69]. Hassanzadeh et al. introduced a molecularly
imprinted layer on the surface of C3N4 QDs by sol-gel blotting. When amikacin specifically bound to
the recognition sites of MIPs, the fluorescence of C3N4 QDs was quenched. In the concentration range
of 4.4–585.1 nM, the MIFs demonstrated good linearity [67].

3.2.3. Rare Earth Material Type

The rich orbital energy levels of rare earth ions and the transition characteristics of 4f electrons
enable rare earth nanoparticles, rare earth complexes, rare earth doped upconversion nanoparticles,
and other rare earth materials to become potential novel luminescent (fluorescent) materials [70].
Rare earth materials have attracted considerable attention in the optical field because of their
high anti-Stokes shift, narrow-band emission, long luminescence lifetime, high optical/chemical
stability, and low biological toxicity [71]. MIPs synthesized by rare earth materials demonstrate the
advantages of rare earth luminescent materials as well as MIPs. The MIFs with anti-interference and
anti-photobleaching properties possess good application prospects [72,73], because they can produce
changes in the fluorescence characteristics of rare earth materials, when the target specifically binds to
the MIPs.

Tang et al. synthesized YF3: Yb3+ Er3+ upconverting particles (UCPs) using the hydrothermal
method. The structure of MIPs@UCPs is presented in Figure 5, which demonstrates that the imprinting
sites were successfully coated onto the surface of UCPs. The clenbuterol derivatives were used
as template molecules, methacrylic acid was used as the functional monomer, and ethylene glycol
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dimethacrylate was used as the crosslinking agent. Molecular imprinting upconversion fluorescent
probes with selective recognition ability for clenbuterol were synthesized. The clenbuterol molecules
entered the imprinting site and quenched the upconversion fluorescence intensity, when the probe
was placed in the solution. The linear range of clenbuterol was 5.0–100.0 µg/L, and the detection
limit was 0.12 µg/L. Finally, the water and pork samples were analyzed using the constructed probe,
and the results showed good reproducibility, which could effectively avoid false positive results [74].
Zheng et al. prepared a core-shell fluorescence sensor based on monodisperse particles coated with
silicon by hydrolysis of tetraethyl orthosilicate. The core-shell fluorescence sensor was prepared by
the copolymerization of methacrylic acid and ethylene glycol dimethacrylate using monodisperse
particles of approximately 200 nm as the carrier and copper ions as the template. The fluorescence
detection of Cu2+ was realized with a linear range of 10–100 µmol/L [75]. Tang et al. prepared
upconversion fluorescent molecularly imprinted polymers (UFIPs) on NaYF4: Yb3+ Er3+ nanoparticles
modified using layer-by-layer self-assembly strategy. The UFIPs were prepared by radical initiation
polymerization. The imprinted polymers can be used for the fluorescence analysis of five quinolones
residues in fish meat with a detection limit of 1.03 nM to 0. 30 µM [76].

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 19 

 

imprinting sites were successfully coated onto the surface of UCPs. The clenbuterol derivatives 
were used as template molecules, methacrylic acid was used as the functional monomer, and 
ethylene glycol dimethacrylate was used as the crosslinking agent. Molecular imprinting 
upconversion fluorescent probes with selective recognition ability for clenbuterol were synthesized. 
The clenbuterol molecules entered the imprinting site and quenched the upconversion fluorescence 
intensity, when the probe was placed in the solution. The linear range of clenbuterol was 5.0–100.0 
μg/L, and the detection limit was 0.12 μg/L. Finally, the water and pork samples were analyzed 
using the constructed probe, and the results showed good reproducibility, which could effectively 
avoid false positive results [74]. Zheng et al. prepared a core-shell fluorescence sensor based on 
monodisperse particles coated with silicon by hydrolysis of tetraethyl orthosilicate. The core-shell 
fluorescence sensor was prepared by the copolymerization of methacrylic acid and ethylene glycol 
dimethacrylate using monodisperse particles of approximately 200 nm as the carrier and copper ions 
as the template. The fluorescence detection of Cu2+ was realized with a linear range of 10–100 μmol/L 
[75]. Tang et al. prepared upconversion fluorescent molecularly imprinted polymers (UFIPs) on 
NaYF4: Yb3+ Er3+ nanoparticles modified using layer-by-layer self-assembly strategy. The UFIPs were 
prepared by radical initiation polymerization. The imprinted polymers can be used for the 
fluorescence analysis of five quinolones residues in fish meat with a detection limit of 1.03 nM to 0. 
30 μM [76]. 

 
Figure 5. Scanning electron microscope（SEM）structure images of (1) upconverting particles (UCPs), 
and (2) MIPs@UCPs. Reprinted with permission from [74], copyright (2015) Elsevier. 

3.2.4. Ratio Fluorescence Type 

The ratio fluorescence method is an analytical method to determine the target substance by 
measuring the fluorescence intensity at two different wavelengths and considering the ratio as the 
signal parameter [77]. This method can use the fluorescence intensity ratio variations to improve the 
dynamic response range, improve the accuracy and sensitivity of determination, and ultimately 
achieve accurate quantitative determination of the sample [78]. This method was introduced in the 
synthesis process of MIFs, and the constructed molecularly imprinted ratio fluorescence sensor can 
enhance the detection sensitivity and anti-interference ability [79]. The ratio molecularly imprinted 
materials comprise two fluorescent materials with different emission peaks. One of the fluorescent 
materials interacts directly with the target and changes its fluorescence intensity, while the other 
material maintains the same fluorescence intensity as a reference. The fluorescence emission signals 
of the two materials are measured simultaneously under the excitation of a single wavelength, and 
the fluorescence intensity ratio is used to quantitatively detect the target. Ratio MIFs can 
self-calibrate the detection parameters, thus reducing or even eliminating the influence of 
interference factors and rendering the analysis results more accurate [80]. 

Yao et al. encapsulated red fluorescent CdTe QDs into silicon spheres and covalently attached 
green fluorescent CdTe QDs to the surface of silicon spheres to construct ratio fluorescence sensors. 
The encapsulated red fluorescent QDs were not sensitive to the target Cu2+, while the green 

Figure 5. Scanning electron microscope (SEM) structure images of (1) upconverting particles (UCPs),
and (2) MIPs@UCPs. Reprinted with permission from [74], copyright (2015) Elsevier.

3.2.4. Ratio Fluorescence Type

The ratio fluorescence method is an analytical method to determine the target substance by
measuring the fluorescence intensity at two different wavelengths and considering the ratio as the
signal parameter [77]. This method can use the fluorescence intensity ratio variations to improve
the dynamic response range, improve the accuracy and sensitivity of determination, and ultimately
achieve accurate quantitative determination of the sample [78]. This method was introduced in the
synthesis process of MIFs, and the constructed molecularly imprinted ratio fluorescence sensor can
enhance the detection sensitivity and anti-interference ability [79]. The ratio molecularly imprinted
materials comprise two fluorescent materials with different emission peaks. One of the fluorescent
materials interacts directly with the target and changes its fluorescence intensity, while the other
material maintains the same fluorescence intensity as a reference. The fluorescence emission signals of
the two materials are measured simultaneously under the excitation of a single wavelength, and the
fluorescence intensity ratio is used to quantitatively detect the target. Ratio MIFs can self-calibrate
the detection parameters, thus reducing or even eliminating the influence of interference factors and
rendering the analysis results more accurate [80].

Yao et al. encapsulated red fluorescent CdTe QDs into silicon spheres and covalently attached
green fluorescent CdTe QDs to the surface of silicon spheres to construct ratio fluorescence sensors.
The encapsulated red fluorescent QDs were not sensitive to the target Cu2+, while the green fluorescent
CdTe QDs in the presence of Cu2+ quenched the fluorescence intensity. The detection limit of Cu2+
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was as low as 1.1 nM. The method was successfully applied for the determination of Cu2+ in lake
water, mineral water, and grass samples [81]. Wang et al. considered the red fluorescent CdTe QDs
composite material coated with silicon as a reference signal. The green fluorescent CdTe QDs that
covalently bonded on the surface of silica spheres were used as the response signal. An on-off-on ratio
fluorescence sensor was successfully constructed using the fluorescence intensity change (fluorescence
quenching-fluorescence recovery) of red CdTe QDs and green CdTe QDs, which could be used to detect
cysteine and homocysteine in situ [82]. Figure 6 depicts fluorescence spectra of the dual-emission
rQDs@SiO2@gQDs Hybrid spheres and the working principle for the visual fluorescence detection of
cysteine and homocysteine.
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4. Application of MIFs in Food Quality and Safety Detection

Currently, the determination of food quality and safety hazard factors mainly involves
chromatography techniques, such as high-performance liquid chromatography, gas chromatography,
and high-performance liquid chromatography-mass spectrometry. These methods demonstrate the
advantages of high recovery, good reproducibility, and low detection limit; however, they frequently
require a tedious sample pretreatment process. Moreover, there are other drawbacks, such as expensive
equipment and reagents, long detection time, unsuitable for detection of a large number of samples,
and lack of portability. Fluorescence sensing analysis demonstrates the characteristics of high sensitivity,
low detection limit, fast reaction speed, good selectivity, low cost, and usage of relatively simple
instruments and equipment. In recent years, with the gradual progress and maturity of surface
molecular imprinting, nanomolecular imprinting technology, and high-performance fluorescent
nanomaterials preparation technology, the selective recognition and fluorescence detection performance
of MIFs with respect to hazard factors in complex food matrices have been significantly enhanced [83].
The MIFs have been widely used in food quality and safety analysis. Most of the studies focus on
the fluorescence detection of agricultural and veterinary drug residues [9,84], drug residues [85],
prohibited additives [86], heavy metals, environmental organic pollutants, and other hazard factors.
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4.1. Pesticides

The long-term and large-scale use of pesticides leads to environmental pollution and increased
pesticide residues in agricultural products, thereby destroying the ecological balance, increasing the
risk of food safety, and endangering human health [87]. The fluorescent MIPs prepared by molecular
imprinting technique is a three-dimensional crosslinked polymer with specific recognition sites,
which can realize selective recognition, adsorption, and fluorescence detection of pesticide molecules
(template molecules).

Li et al. [88] prepared MIPs with specific fluorescence response to cyhalothrin by silylation of
FeSe QDs. These MIPs demonstrate good linearity in the concentration range of 0.010–0.20 mg/L
and a detection limit of 1.3 µg/L in fish meat products. Using surfactant-modified CdTe QDs as
fluorescence signal source as well as carrier and acrylamide as the functional monomer, Wei et al. [89]
prepared FIPs as shown in Figure 7, which can specifically recognize cyhalothrin using free radical
polymerization. In the concentration range of 0.1–16 µM, when MIPs were combined with cyhalothrin,
the fluorescence of the biosensor was turned off, and the rapid fluorescence analysis of cyhalothrin
residues in Yangtze River water was realized. Wang et al. [90] used SiO2-coated red QDs as the support
carrier and reference signal source. The green fluorescent dye 4-amino-7-nitro-N-octylbenzo (1,2,5)
oxadiazole was used as the recognition signal, 3-aminopropyltriethoxysilane (APTES) was used as the
functional monomer, and 2, 4-dichlorophenoxyacetic acid (2, 4-D) was used as the template molecule.
The imprinted layer was prepared using the sol-gel method. With the increase of 2, 4-D concentration,
the ratio fluorescence intensity changed, and the fluorescence color changed from orange-red to green,
thus realizing the fluorescence analysis of 2, 4-D.
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Wagner et al. successfully constructed a fluorescence sensing platform for nanomolar concentration
of 2, 4-D pesticide residues with the deposition of organic dye-encapsulated MIPs on the surface of
silicon spheres using the surface imprinting method and incorporation of the prepared fluorescent MIPs
into microfluidic analysis techniques [8]. According to Liu et al. [91], FIPs encapsulated nitrogen-doped
graphene QDs were prepared by alkaline self-polymerization of dopamine using dopamine as the
functional monomer and crosslinking agent. The FIPs were deposited on the surface of the test strip
by the adsorption of the filter strip, and a fluorescent strip was constructed for specific detection of
thiamethoxam. Amjadi et al. prepared a ratio MIFs by imprinting carbon quantum dot silica spheres
and CdTe/CdS QDs in the same polymer using the sol-gel method. The fluorescence intensity of
CdTe/CdS QDs decreased and the fluorescence intensity of CDs QDs remained unchanged, when the
sensor was combined with diniconazole. The linear range of the determination was 20–160 µg/L, and
the detection limit was 6.4 µg/L for diniconazole residues in environmental water and soil samples [80].

4.2. Veterinary Drugs/Drug Residues

In recent years, due to the illegal use of prohibited additives, improper use of veterinary drugs
as well as overuse of medical drugs in production, use of livestock, poultry, and aquatic products,
and residues of veterinary drugs, medical drugs, and prohibited additives have become some of the
important factors affecting food safety. For example, tetracycline is widely used in livestock and
poultry production as a broad-spectrum bacteriostatic agent. Due to the high dosage, long time,
and abuse of the drug, it produces serious residues in animal muscle, milk, liver, and other foods,
thereby endangering food safety [92]. Based on high selectivity and good stability, FIPs can efficiently
recognize and detect veterinary drug molecules in complex sample environments (meat products,
animal blood, urine, and feces) to cope with a variety of adverse factors. Therefore, the veterinary
drug residue analysis method based on MIFs demonstrate higher sensitivity and selectivity.

Using allyl fluorescein as the fluorescent functional monomer, Wang et al. [93] prepared FIPs
with specific response to tetracycline using the surface imprinting method and applied them to
the fluorescence analysis of tetracycline in human serum and pig urine. Using malachite green
as the template molecule, (3-Aminopropyl)triethoxysilane (APTES)as the functional monomer,
and tetraethoxysilane (TEOS) as the crosslinking agent, Wu et al. [94] prepared a MIFs for specific
recognition of malachite green by embedding CdTe QDs. The fluorescence intensity of CdTe QDs at
370 nm decreased rapidly with an increase in the malachite green concentration. The detection limit of
CdTe QDs in fish meat was 12 µg/L. Ming et al. prepared the magnetic surface MIPs of estradiol using
surface imprinting and free radical polymerization. The estradiol and fluorescent labels competed
for the binding sites of adsorption MIPs. After the magnetic separation, estradiol residues could be
quantitatively detected by measuring the fluorescence intensity of fluorescent labels in the solution.
This technique does not require fluorescent quantum dots or fluorescent monomers to be embedded in
the MIPs, and the detection process is simple and rapid [95].

Mehrzad-Samarin et al. reported a method for the preparation of graphene QDs in MIPs using
the hydrothermal method and sol-gel method. When the fluorescent molecule imprinted specifically
bound to the template molecule metronidazole, the fluorescence of the graphene quantum dot was
“Turn-Off.” An MIFs for the determination of metronidazole in plasma was successfully constructed
with a linear range of 0.2–15.0 µM and a detection limit of 0.15 µM [53]. As shown in Figure 8, the FIPs
based on CdS quantum dots were successfully prepared by Eskandari et al. and applied for the
determination of cefixime residues in urine with a linear range of 0.001–0.7 µg/mL and a detection
limit of 0.54 ng/mL [96]. The present method was successfully used to determine the concentration
of cefixime residues in pharmaceutical and urine samples. The results were shown to possess good
specificity for cefixime in the presence of other interferences.
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4.3. Heavy Metals

Due to the rapid development of modern industrial economy, the discharge of heavy metal
sewage is becoming increasingly serious and poses a significant amount of threat to the environment
and biological health. Heavy metals are highly toxic, non-degradable, bioaccumulative, and easy to
enrich and transfer in the food chain. They pollute the agricultural products and food causing serious
harm [97]. In view of the heavy metal pollution, the development of a simple, rapid, and accurate MIF
is of great significance to protect the environment of agricultural products, food quality, and safety.

Wang et al. [98] coated red CdTe QDs into aminosilicone spheres, coupled carboxylated CdSe
QDs onto the surface of aminosilicone spheres by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC)/N-hydroxysuccinimide (NHS) method, and then prepared double-excited fluorescence ion
imprinting with a specific binding ability to Cd2+ using ethylenediaminetetraacetic acid (EDTA) etching.
The imprinted material emits red fluorescence before binding Cd2+ and green fluorescence after
binding Cd2+. The ion-imprinted fluorescence sensor demonstrated good linearity in the concentration
range of 0.1–9 µM with a detection limit as low as 25 nM. Luo et al. [99] directly introduced
CdTe QDs on the surface of sulfhydryl-modified magnetic silica spheres and prepared fluorescent
ion imprinting using EDTA etching. The imprinting could be used not only for the fluorescence
quantitative analysis of Cd2+ but also for magnetic adsorption and removal of Cd2+. The maximum
adsorption capacity of Cd2+ was as high as 17.57 mg/g. Using 8-hydroxyquinoline as fluorescent
functional monomer, Tan et al. [100] prepared Zn2+ and Cd2+ ion imprinting by sol-gel blotting.
The imprinted fluorescence sensor demonstrated good selectivity and high adsorption capacity, because
the fluorescence intensity decreased, when the imprinted material bound the target ions. Ion-imprinted
polymers with specific fluorescence response to Al3+ were prepared by radical polymerization using
8-hydroxyquinoline-5-sulfonic acid as the fluorescent functional monomer [101]. The fluorescent
ion imprinting demonstrated good anti-interference (Cu2+, Zn2+) and still exhibited high adsorption
capacity for Al3+ after nine times of reuse.
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The fluorescent multifunctional monomer was synthesized by Sun et al. to specifically bind
Ag+ and generate free radical polymerization with a crosslinking agent. The fluorescence at 490 nm
was “Turn-Off,” and the fluorescence intensity was negatively correlated with the concentration of
Ag+ [102].

4.4. Environmental Organic Pollutants

Polycyclic aromatic hydrocarbons, phenols, organic dyes, and other environmental organic
pollutants are widely distributed and contain toxic, teratogenic, and carcinogenic elements, which
are considered important threats to human health. In previous research, the high-performance liquid
chromatography (HPLC) and mass spectrometry (MS) were often used to determine the content
of urinary albumin. Although the sensitivity and specificity of MS were high, the equipment was
expensive, and the detection cost was high. MIFs have been widely employed for rapid detection of
organic pollutants in the environment.

Li et al. [97] prepared a FIPs by encapsulating YVO4:Eu3+ rare earth nanoparticles and carbon
quantum dots. When p-nitrophenol was adsorbed on MIPs, the fluorescence of carbon quantum dots
was quenched, while the fluorescence of YVO4:Eu3+ rare earth nanoparticles remained unchanged.
Based on the above principle, a ratio fluorescence sensor was constructed and applied for the rapid
determination of p-nitrophenol in environmental water and urine with a detection limit of 0.15 µM.
Zhou et al. [103] hydrothermally treated APTES-grapheme oxide to obtain silylated graphene quantum
dots, which were introduced into the FIPs of p-nitrophenol by sol-gel method. In the concentration
range of 0.02–3.0 µg/mL, the MIPs fluorescence sensor could be effectively quenched by p-nitrophenol
with a detection limit of 9.0 ng/mL. Wu et al. [104] reported the preparation of FIPs using AuCNs
for the first time and successfully applied these FIPs in the fluorescence analysis of bisphenol A in
seawater. APTES was used as the functional monomer, while TEOS was used as the crosslinking agent
to deposit the molecularly imprinted layer on the surface of SiO2 @ AuCNs (obtained by modifying
carboxyl-terminated AuNCs onto the surface of amino-SiO2 nanoparticles, which are defined as SiO2

@ AuCNs). The fluorescence intensity of MIPs decreased with an increase in the BPA concentration to
396 nm while the detection limit was 0.1 µM. Qi et al. [46] combined the ratio fluorescence molecularly
imprinted polymerization with microfluidic technique to construct a paper chip for fluorescence
detection of phenol-based environmental pollutants. They modified carboxyl CdTe QDs on cellophane
using the EDC/NHS method and successfully prepared fluorescent molecularly imprinted paper chips,
which could bind 4-nitrophenol and 2, 4, 6-trinitrophenol simultaneously using the double-template
imprinting and sol-gel imprinting techniques. The detection limits in the environmental water samples
were 0.097 and 0.071 mg/L. The analytical performances of MIFs in determination of pollutants in food
safety are summarized in Table 1.

However, the real sample analysis based on MIFs often suffered from the complicated matrix
interference and which will result in false positive and false negative results. It is necessary to develop
a novel strategy to construct anti-interference FIPs and MIFs for monitoring trace pollutants in food
and environment samples. In addition, combining a rapid pretreatment technique with MIFs is another
effective solution to avoiding matrix interference.



Nanomaterials 2019, 9, 1030 12 of 19

Table 1. The analytical performances of MIFs in determination of pollutants in food and
environment samples.

Type of Food
Contaminants

Fluorescent Sources
of MIFs Analytes Samples LOD References

Pesticides

CdSe/ZnS QDs Carbaryl Chinese cabbage 14.7 µM [62]

Mn-doped ZnS QDs Chlorpyrifos River water samples 17 nM [63]

CdTe/CdS QDs- CDs Diniconazole Water and soil samples 19.6 nM [80]

FeSe QDs Cyhalothrin Fish meat 1.4 nM [88]

N-GQDs Thiamethoxam Water samples 0.1 µM [91]

Heavy metal

Eu(TTA)3phen Cu2+ Water and biological
samples - [75]

Ratio CdTe QDs Cu2+ Lake water, mineral water,
and grass samples 1.1 nM [81]

CdSe QDs Cd2+ Water samples 25 nM [98]

Magnetic CdTe QDs Cd2+ Water samples - [99]

Functional monomer Ag+ Water samples 10 µM [102]

Drug residues

GQDs Metronidazole Plasma matrixes 0.15 µM [53]

C3N4 QDs Amikacin Biological samples 1.8 nM [67]

YF3: Yb3+ Er3+ Clenbuterol Water and pork samples 0.42 nM [74]

Allyl fluorescein-SiO2 Tetracycline Human serum and pig
urine 4.26 nM [93]

CdTe QDs Malachite
green Fish meat 12.9 nM [95]

Environmental
pollutants

CdTe QDs
4-nitrophenol

and 2, 4,
6-trinitrophenol

Environmental water
samples

0.7 µM;
0.31 µM [46]

CDs Bisphenol A River water samples 30 nM [69]

YVO4: Eu3+ p-Nitrophenol Water samples 0.15 µM [97]

GQDs p-Nitrophenol Water samples 39.4 nM [103]

AuCNs Bisphenol A Sea water 0.1 µM [104]

5. Conclusions and Prospects

MIFs combine the high selectivity of MIT with the high sensitive response of fluorescent materials
and then convert the molecular recognition into readable fluorescence signal. This aspect compensates
for the drawback of the MIPs that can only recognize and not transmit the signal and integrates the
recognition unit and signal output unit efficiently. The MIFs further improve the performance of
molecular imprinting and broaden its range of applications, thus promoting high-efficiency enrichment
and high-sensitivity detection of trace substances in complex matrices. Compared to traditional
analytical techniques, MIFs exhibit the characteristics of high sensitivity and high selectivity and
therefore demonstrate significant potential and good application prospects with respect to the rapid
detection of food and environment safety.

According to the different sources of fluorescence signals, there are four types of MIFs. Organic
dye type of MIFs is obtained by embedding common organic dyes into MIPs. Although the preparation
is simple, and the detection process is rapid, organic dyes are easy to be bleached by interference
substances from the complicated matrix. QDs are often used as fluorescence signals to synthesize
FIPs and MIFs because of their unique properties, involving high luminous efficiency, stability,
and narrow emission spectra. However, QDs types of MIFs are difficult and time-consuming to prepare.
More importantly, most QDs are poisonous to human health and threaten environmental ecology.
The preparations of rare earth material types and ratio fluorescence types of MIFs are involving many
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synthetic steps, which will cause the instability of the FIPs structure and generate false detection results.
In consequence, various novel MIFs still encounter many challenges during the development process.

The MIT provides a good approach for the specific detection of targets; however, the related research
is still imminent, and the technology is not entirely developed [105,106]. Therefore, mass production
with MIT has not been achieved so far. Firstly, the FIPs prepared by the existing synthesis methods still
suffer some drawbacks, such as irregular shape, heterogeneous particle size, non-uniform interaction
sites, and long polymerization time. Therefore, it is necessary to develop new synthesis methods with
respect to MIPs. Secondly, the research on the molecular imprinting process, molecular recognition
mechanism, mass transfer mechanism, and the characterization of polymer structure is still highly
limited and requires further developments. Further research is required to increase the selectivity,
mass transfer rate, and adsorption capacity of molecularly imprinted materials as well as prepare
functional monomers that can specifically bind to the template molecules instead of universal monomers.
In addition, the presence of two or more residues in the food matrix is very common, frequently
requiring multiple detections of varied contaminant residues in the same sample. Therefore, it is an
important direction for the future development of MIFs that can simultaneously detect multiple food
safety factors by adjusting the probe size, element composition, and synthesis methods and develop a
composite MIFs. To sum up, designing and developing more functional monomer-template interaction
systems, conducting an in-depth study of controllable polymerization methods, preparation of MIFs
with improved selectivity, thinner polymeric layer and higher sensitivity, and the combination of smart
phones, tablet computers, and cloud databases to build a new intelligent fluorescence rapid detection
platform are of great significance in promoting the development of rapid detection technology for food
and environment safety.
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