
RESEARCH ARTICLE

Efficient representations of tumor diversity

with paired DNA-RNA aberrations

Qian KeID
1☯, Wikum Dinalankara2,3☯, Laurent YounesID

1*, Donald Geman1*,

Luigi MarchionniID
2,3*

1 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, United

States of America, 2 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore,

Maryland, United States of America, 3 Department of Pathology and Laboratory Medicine, Weill Cornell

Medicine, New York, New York, United States of America

☯ These authors contributed equally to this work.

* laurent.younes@jhu.edu (LY); geman@jhu.edu (DG); marchion@med.cornell.edu (LM)

Abstract

Cancer cells display massive dysregulation of key regulatory pathways due to now well-cat-

alogued mutations and other DNA-related aberrations. Moreover, enormous heterogeneity

has been commonly observed in the identity, frequency and location of these aberrations

across individuals with the same cancer type or subtype, and this variation naturally propa-

gates to the transcriptome, resulting in myriad types of dysregulated gene expression pro-

grams. Many have argued that a more integrative and quantitative analysis of heterogeneity

of DNA and RNA molecular profiles may be necessary for designing more systematic explo-

rations of alternative therapies and improving predictive accuracy. We introduce a represen-

tation of multi-omics profiles which is sufficiently rich to account for observed heterogeneity

and support the construction of quantitative, integrated, metrics of variation. Starting from

the network of interactions existing in Reactome, we build a library of “paired DNA-RNA

aberrations” that represent prototypical and recurrent patterns of dysregulation in cancer;

each two-gene “Source-Target Pair” (STP) consists of a “source” regulatory gene and a “tar-

get” gene whose expression is plausibly “controlled” by the source gene. The STP is then

“aberrant” in a joint DNA-RNA profile if the source gene is DNA-aberrant (e.g., mutated,

deleted, or duplicated), and the downstream target gene is “RNA-aberrant”, meaning its

expression level is outside the normal, baseline range. With M STPs, each sample profile

has exactly one of the 2M possible configurations. We concentrate on subsets of STPs, and

the corresponding reduced configurations, by selecting tissue-dependent minimal cover-

ings, defined as the smallest family of STPs with the property that every sample in the con-

sidered population displays at least one aberrant STP within that family. These minimal

coverings can be computed with integer programming. Given such a covering, a natural

measure of cross-sample diversity is the extent to which the particular aberrant STPs com-

posing a covering vary from sample to sample; this variability is captured by the entropy of

the distribution over configurations. We apply this program to data from TCGA for six distinct

tumor types (breast, prostate, lung, colon, liver, and kidney cancer). This enables an effi-

cient simplification of the complex landscape observed in cancer populations, resulting in

the identification of novel signatures of molecular alterations which are not detected with
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frequency-based criteria. Estimates of cancer heterogeneity across tumor phenotypes

reveals a stable pattern: entropy increases with disease severity. This framework is then

well-suited to accommodate the expanding complexity of cancer genomes and epigenomes

emerging from large consortia projects.

Author summary

A large variety of genomic and transcriptomic aberrations are observed in cancer cells,

and their identity, location, and frequency can be highly indicative of the particular sub-

type or molecular phenotype, and thereby inform treatment options. However, elucidat-

ing this association between sets of aberrations and subtypes of cancer is severely impeded

by considerable diversity in the set of aberrations across samples from the same popula-

tion. Most attempts at analyzing tumor heterogeneity have dealt with either the genome

or transcriptome in isolation. Here we present a novel, multi-omics approach for quanti-

fying heterogeneity by determining a small set of paired DNA-RNA aberrations that

incorporates potential downstream effects on gene expression. We apply integer program-

ming to identify a small set of paired aberrations such that at least one among them is

present in every sample of a given cancer population. The resulting “coverings” are ana-

lyzed for six cancer cohorts from the Cancer Genome Atlas, and facilitate introducing an

information-theoretic measure of heterogeneity. Our results identify many known facets

of tumorigenesis as well as suggest potential novel genes and interactions of interest.

Introduction

Cancer cells evade the normal mechanisms controlling cellular growth and tissue homeostasis

through the disruption of key regulatory pathways controlling these processes. Such dysregula-

tion results from genetic and epigenetic aberrations, encompassing mutations, copy number

alterations, and changes in chromatin states, which affect the genes participating in such regu-

latory networks.

Over the past several decades, the list of known genetic and genomic aberrations in cancer

has greatly expanded, thanks to large-scale projects such as the The Cancer Genome Atlas

(TCGA, [1]), the Catalogue Of Somatic Mutations In Cancer (COSMIC, [2]), the MSK/

IMPACT study [3], and recents efforts from the ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes Consortium [4].

Whereas the number of aberrations which suffice for progression to an advanced cancer is

thought to be rather small, at least for solid tumors [5, 6] and at the pathway level [7], the num-

ber of ways (combinations of aberrations) for which this can be actualized is very large. In

particular, the landscape collectively emerging from these studies exhibits a high degree of var-

iation in the identity, frequency, and location of these aberrations, as well as tissue- and expres-

sion-dependency [8, 9]. These differences—collectively referred to as tumor heterogeneity—are

“context-specific”, differing among tissue types and epigenetic conditions [8], across different

cells within a lesion (intra-tumor heterogeneity), between tumor lesions within the same indi-

vidual (inter-tumor heterogeneity), and across distinct individuals with the same cancer type or

sub-type (across-sample or population-level heterogeneity).

In addition, such DNA defects, in order to be “functional” (i.e., manifest themselves) and

ultimately alter the cellular phenotype, must propagate through the signaling and regulatory
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network and alter the downstream gene expression programs [10, 11]. These downstream

transcriptional changes are in fact also context-specific, varying within and among cancers,

local environments, and individuals. Most importantly, it has been speculated that transcrip-

tionally heterogeneous tumors may be more adaptable to changes in the tumor microenviron-

ment and therefore more likely to acquire new properties such as metastatic potential and

resistance to treatments, leading to dismal patient outcomes; in addition, for predicting the

response to targeted therapies, gene expression profiles may be more discriminating than

mutational status [12]. The analysis of heterogeneity of molecular profiles, both DNA and

RNA, is therefore of paramount importance. Consequently, a deeper, integrative and quantita-

tive analysis of tumor heterogeneity is necessary for achieving a better understanding of the

underlying biology, for designing more systematic explorations of candidate therapies, and for

improving the accuracy of prognosis and treatment response predictions.

Unsurprisingly, even representing such high-dimensional variability poses great challenges,

especially if a major goal is to find suitable metrics to quantify the level of tumor heterogeneity.

We assume that large-scale projects (see above) and studies (e.g., [13]) have already provided

reasonably comprehensive lists of the most important recurrent molecular alterations driving

cancer initiation and progression. But merely counting or cataloging aberrations will not suf-

fice to precisely measure heterogeneity in a tumor population, and to quantify how this differs

across diverse contexts (e.g., between cancer arising in distinct organs, or between tumor sub-

types). In order to identify functional aberrations potentially exploitable as biomarkers and

therapeutic targets, it is necessary to go well beyond frequency estimates to more powerful rep-

resentations rooted in biological mechanism and accounting for statistical dependency among

aberrations.

We introduce a representation of omics profiles which is sufficiently rich to account for

observed heterogeneity and to support the construction of quantitative, integrated metrics.

Our framework is centered on the joint analysis of “paired DNA-RNA aberrations” that repre-

sent prototypical and recurrent patterns of dysregulation in cancer. Specifically, we represent

the space of gene alterations that result in network perturbations and downstream changes of

gene expression levels as a catalogue of mechanistic, two-gene “Source-Target Pairs” (STPs),

each consisting of a “source” gene (important driver) and a “target” gene for which the mRNA

expression is controlled either directly by the source gene or indirectly by a close descendant

of the source.

We extend STPs from a network property to a sample property (like the existence of indi-

vidual aberrations) by declaring an STP to be “aberrant” in a joint DNA-RNA profile if the

source gene is DNA-aberrant (e.g., mutated, deleted, or duplicated), and the target gene is

RNA-aberrant, meaning its expression level is “divergent” (i.e., outside the normal, baseline

range [14]). This defines one binary random variable per STP, of which there are typically hun-

dreds of thousands, most of which have a very small probability to be realized in a sample.

Samples are then characterized by their entire set of paired DNA-RNA aberrations, or aber-

rant STPs. Therefore, given there are M STPs, exactly one of the 2M possible configurations is

assigned to each sample. The extent to which these subsets vary from sample to sample is then

a natural measure of heterogeneity in the population from which the samples are drawn.

Due to the difficulty of estimating rare events with the modest sample sizes available in can-

cer genomics today, any multivariate property of the probability distribution over the 2M STP

configurations (for example, its entropy) cannot be accurately approximated without a sub-

stantial further reduction of complexity. Such a reduction is provided by the concept of mini-
mal coverings of a population (previously employed for modeling networks [15]). Here, we

focus on smallest collections C of paired aberrations with the property that (nearly) every

tumor sample has at least one aberrant STP in C. Indeed, since nearly all tumor samples exhibit
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multiple aberrant STPs, a minimal covering necessarily exists (perhaps not unique), which can

be found using well-known algorithms for formulating “optimal set covering” as the solution

of an integer-programming problem (see Methods).

Our main contribution is then a method for integrating DNA and RNA data which yields

novel insights about regulatory mechanisms in cancer, and consists of three parts:

1. A representation of network dysregulation based on matched pairs of genes, one gene with

aberrant DNA and the other gene downstream, with aberrant RNA expression.

2. An algorithm for finding the minimal covering of a cancer (sub)population by aberrant

genes or gene pairs.

3. An information-theoretic characterization of inter-sample heterogeneity as the entropy of

the distribution of covering states.

Our methods are described in more detail in the next sections, followed by a presentation

of our results. We conclude this paper with a discussion and provide additional results in sup-

plementary material (see S1 Text).

1 Methods

1.1 Overall strategy

Identifying and quantifying the cross-sample heterogeneity of omics datasets with large num-

bers of random variables requires making simplifying assumptions and approximations on the

joint distribution of the considered variables to make it feasible. We performed our analyses

using matched DNA mutations, copy number alterations, and RNA expression data, pre-pro-

cessed with the method previously described in [14]. In the present study we specifically

focused on six distinct tumor types (TCGA code in parenthesis): breast invasive carcinoma

(BRCA), prostate adenocarcinoma (PRAD), lung adenocarcinoma (LUAD), liver hepatocellu-

lar carcinoma (LIHC), kidney renal clear cell carcinoma (KIRC), and colon adenocarcinoma

(COAD). For simplicity, hereafter, we will refer to these tumor types according to the tissue of

origin (breast, prostate, lung, kidney, liver, and colon).

Our definition of aberrant expression of RNA [14] requires expression data from a baseline

population, taken here as corresponding normal tissue (see 1.2.1). Consequently, our selection

of cancer types was constrained by having enough normal samples in TCGA to estimate the

“normal expression range” of the RNA-Seq data. In addition, we also consider a variety of clin-

ical scenarios across different patient populations. Our approach is depicted in the schematic

of Fig 1.

Cancer phenotypes. We also focused on specific patient subgroups defined based on stan-

dard clinical and pathological variables (which are ordinal) routinely used for patient risk

stratification. Tumor stage (from I to IV) indicates extension of a cancer and whether it has

spread beyond the site of origin. The lymph node status (positive versus negative) indicates the

presence of lymph node metastases. Tumor T status (from T1 to T4) indicates the size of the

primary tumor. Tumor histologic grade (from G1 to G3 or G4, depending on the tumor type)

captures the progressive departure from the the normal tissue and cellular architecture

observed under a microscope. The Gleason grading system [16] is specific to prostate cancer

and it accounts for 5 grades. The Gleason sum results from the two predominant grade pat-

terns observed (i.e., “primary” and “secondary”), with a sum of 6 (3+3) corresponding to

indolent tumors, and sums from 7 to 10 associated with increasingly aggressive phenotypes.

Finally, the PAM50 breast cancer subtypes [17] and the colorectal cancer CRIS classes [18]
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are patient subgroups with distinct prognosis defined based on specific gene expression

signatures.

Aberration detection. We reduce the data to binary variables indicating deviations from

normal behavior, and the resulting indicators are furthermore filtered using an STP-based

analysis requiring plausible mechanisms leading to the aberrations.

Covering estimation. In order to reduce the number of variables under consideration, we

estimate subsets of “important variables,” called coverings, defined as minimal sets of variables

from which, with high probability, cancer samples have at least one aberrant observation (see

Section 1.3 on their computation). Because such optimal coverings are generally not unique,

we include the consideration of variables that are present in at least one covering (union), or

the restriction to variables that appear in all of them (intersection), that we refer to as “core”

variables, or the use of a single covering, for example the one maximizing the sum of frequen-

cies of aberrations among its variables.

Entropy estimation. We assess the heterogeneity of a population of samples by computing

the entropy over a limited family of configurations determined by a covering of this popula-

tion. This computation is not straightforward; even though reduced profiles involve a relatively

Fig 1. Overall analytical workflow. Source-target pairs (STPs) are constructed using the links available in Reactome

[19]. In the TCGA cancer cohorts, the mutation and copy number variation data are used to construct binary DNA

aberration profiles; the presence of either a mutation or high/low copy number variation at a given gene is treated as an

aberration for the given gene for that sample omics profile. The gene expression data are used to construct binary RNA

aberration profiles based on falling outside the “normal” expression range (in quantiles) for each gene based on TCGA

normal tissue expression data, as previously described [14]. The binary profiles are combined to produce paired

DNA-RNA aberrations, following which filtering is performed by selecting pairs that are determined to be significant

(two-sided χ2 test). The selected STPs then give rise to individual source (DNA) and target (RNA) aberrations,

providing binary omics profiles at the level of source, target, and pairs. STPs that are present in less than 2% of samples

for a given tissue are omitted. Then coverings are computed at the pair, source and target levels and subtype analysis

and heterogeneity analysis carried out.

https://doi.org/10.1371/journal.pcbi.1008944.g001
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small number m of binary variables (typically a few dozen) indicating aberration of STPs, the

observed sample size remains insufficient to allow for the estimation of the probabilities of the

2m joint configurations of these variables. Some approximations are necessary and are

described in Section 1.4.

Code-based reduction. Using a tree-based decomposition, we decompose tumor samples

resulting from a given cancer type into cells, or bins, associated with a small number of con-

junctions and disjunctions of aberrations. It is then possible to visualize and compare the

resulting histograms in sub-populations defined by specific subtypes or phenotypes. This is

described in Section 1.5.

1.2 Aberrations

1.2.1 Univariate deviation from normality in omics data. We transform the original

data into sparse binary vectors indicating whether each variable deviates from a reference state

or normal range when observed on a given sample.

Our pre-processing of DNA data, which already provides deviations from wild type, is

quite simple. We consider that a gene g is aberrant at the DNA level if it includes a mutation

that differs from the wild type, or if its copy number corresponds to a homozygous deletion

(which would entail a complete gene inactivation), or a gain of 2 copies (to increase the plausi-

bility of aberrant over-expression). We exclude heterozygous deletions and single copy gains

since their impact is more difficult to interpret biologically. We will write Xdna
g for the corre-

sponding binary random variable, so Xdna
g ¼ 1 when g is DNA-aberrant.

The binarization of RNA data is more involved, and is based on the notion of “divergence”

we previously developed [14]. Briefly, following a rank transformation, the range of RNA

expression is estimated for normal samples for genes of interest. Then for each tumor sample

and each gene, there is a binary variable with values 1 or 0 depending on whether the expres-

sion of the gene is outside or inside the expected normal region. Thus a gene is declared as

RNA-aberrant if its ranking among other genes in the same sample falls outside of its normal

range estimated from baseline data. Let Xrna
g be the corresponding binary random variable.

This dichotomization requires a training step, solely based on normal tissue data, in order to

estimate these normal intervals of variation. This being done, the decision for a gene to be

RNA-divergent in a tumor sample only involves the RNA profile of this sample and is in par-

ticular independent of other tumor observations in the dataset.

1.2.2 Building source-target pairs. These binary omics variables are filtered by requiring

that the deviations they represent have a plausible causal explanation as parts of STPs. Such

STPs, denoted (gs) gt), are built using apriori information representing known gene-gene

interactions from signaling pathways and biological processes. In our implementation, we

used the Reactome database [19] as retrieved from Pathway Commons (version 10) [20], since

the network information contained therein is comprehensive and well curated (see S1 Text for

further details on network curation and summary statistics). Our approach may be imple-

mented using other databases providing gene-gene interaction information to build STPs as

well.

Let N denote the family of directed pairs of genes from this database, annotated as regula-

tor and target, including two kinds of links g! g0 for which “g controls state change of g0”

(notation: ðg � !state g 0Þ) or “g controls the expression of g0” (notation g � !
expr

g 0). We say that two

genes gs, gt form a “source-target pair (STP)”, with notation gs) gt if there exists a sequence of

l intermediate genes g1, . . ., gl such that

gs� !g1� ! � � � � !gl � !
expr gt
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where the intermediate links are either � !
state

or � !
expr

and the last link is � !
expr

. Such a sequence has

k = l + 1 links, and the minimal number of links required to achieve the STP is called the length

of gs) gt.

Let L
�

k denote the set of STP s of length k or less deduced from the pathway database. This

set, which is tissue independent, includes a large number of pairs (more than 200,000 for

k = 3). For computational efficiency, we take k = 3 in our experiments. For a more detailed

analysis on the selection of k = 3, see S1 Text (Table A in S1 Text). Let L
�
¼ L

�

3
from here on.

To select pairs that are most relevant for a tissue, this set is reduced by applying a χ2 test for

independence, only keeping STPs (gs) gt) for which the independence between the events “gs

DNA aberrant” and “gt RNA aberrant” is rejected at a 5% level by the test (without correction

for multiple hypotheses, because we want to be conservative with this selection) using a dataset

of tumor samples. Let Λ denote the set of remaining pairs (typically 5,000–10,000), which is

therefore tissue dependent (see Fig 1).

We then let S denote the set of sources in Λ, i.e., the set of genes g such that there exists g0

with (g) g0) 2 Λ and, similarly, let T be the set of all possible targets. We let T(g) denote the

set of all the targets of g 2 S, that is, TðgÞ ¼ fg 0 2 T : ðg ) g 0Þ 2 Lg and S(g0) the set of all

sources pointing to g 0 2 T .

1.2.3 Paired aberrations. We can now define a family of binary random variables (Zλ, λ 2
Λ) of “Paired Aberrations” with Zλ = 1 for STP λ = (gs) gt) if and only if gs is aberrant at the

DNA level (either due to mutation or copy-number variation) and gt is RNA-aberrant. That is

Zl ¼ Xdna
gs

Xrna
gt

, a product of binary variables. For λ = (gs) gt), we will also use the notation

s(λ) = gs and t(λ) = gt for the source and target in λ.

From this, we also define binary variables ZðsÞg indicating aberrations at the source level let-

ting ZðsÞg ¼ 1 if and only if g participates in an aberrant STP as a source gene. Therefore,

ZðsÞg ¼ maxfZl : sðlÞ ¼ gg; for g 2 S: ð1Þ

Similarly, we consider aberrations at the target level letting

ZðtÞg ¼ maxfZl : tðlÞ ¼ gg; for g 2 T : ð2Þ

We will refer to the event ZðsÞg ¼ 1 as a “source aberration with target” for gene g and the

event ZðtÞg ¼ 1 as an “target aberration with source” for gene g.

1.3 Coverings

1.3.1 Definition. We have defined three types of aberrations involving multiple genes

(STP, source, target), indexed by three different sets of pairs, sources or targets: i) STP aberra-

tions which involve one source and one target gene; ii) “source aberration with target” which

involve one source gene and all its targets; iii) “target aberrations with source” which involve

one target gene and all its sources. We will use the generic notation ðZi; i 2 IÞ to refer to the

variables associated to any one of them, so that I is one of the index sets Λ, S or T and Zi = Zλ,
ZðsÞg or ZðtÞg , respectively. We identify small subsets of I of “essential variables” for describing

the stochastic behavior of Z, such that at least one aberration occurs with high probability.

Denote by (O, P) the probability space on which �Z ¼ ðZi; i 2 IÞ is defined. If α 2 [0, 1] and

J is a subset of I , we will say that �ZJ ¼ ðZj; j 2 JÞ is a covering (or 1-covering) of O at level α if,
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with probability larger than 1 − α, at least one of its variables is aberrant, i.e.,

Pð9j 2 J : Zj ¼ 1Þ � 1 � a : ð3Þ

In other terms, O is covered (up to a subset of probability less than α) by the union of events

Uj = {Zj = 1}, j 2 J. For simplicity, we will also refer to the index set, J, as a covering rather than

the set of variables it indexes. More generally, we can define an r-covering at level α as a set J
for which at least r of the variables in J are aberrant with probability 1 − α, i.e.,

Pðjfj 2 J : Zj ¼ 1gj � rÞ � 1 � a : ð4Þ

1.3.2 Optimal coverings. We assume that a family of weights ðwi; i 2 IÞ is given and con-

sider the function

sðJÞ ¼
X

j2J

wj ð5Þ

representing the weighted size of J. (Although, in our experiments, we use wj = 1 for all j, in

which case σ(J) is just the number of elements in J, we present a weighted version of the prob-

lem, which can be useful in some situations.) We define a minimal covering as any covering

minimizing σ among all other coverings.

To rephrase this as an integer programming problem, we note that the subsets J of I are in

one-to-one correspondence with the set of all configurations c ¼ ðcj; j 2 IÞ, where ψj = 1 if j
2 J and 0 otherwise. The minimal covering problem can then be reformulated as minimizing
P

j2Iwjcj subject to the existence of a random variable Y: O! {0, 1} such that P(Y = 1)� 1 −
α and

X

j2I

cjZjðoÞ � rYðoÞ:

We have a finite sample of the distribution P, represented by a finite subset Ô of O. We can

approximate the covering problem by enforcing the constraints only foro 2 Ô and replacing

P(Y = 1)� 1 − α by a sample fraction over Ô. We then determine a minimal r-covering at level

α by minimizing

Fðc;YÞ ¼
X

j2I

wjcj ð6Þ

subject to the constraints

8o 2 Ô :
X

j2I

cjZjðoÞ � rYðoÞ

X

o2Ô

YðoÞ � jÔjð1 � aÞ

8
>>><

>>>:

ð7Þ

Many optimal solutions are usual for equal wj. Assume that one obtains several such sets

J(1), . . ., J(N), all with same cardinality, and all providing coverings at level α of the considered

population. (While it may be computationally prohibitive to compute all solutions, it is often

possible to collect a large number of them.) These sets can be combined in at least two obvious
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ways, namely via their union

Jall ¼
[N

i¼1

JðiÞ ð8Þ

or their intersection

Jcore ¼
\N

i¼1

JðiÞ : ð9Þ

The latter (while not being a covering by itself) we particularly focus on as it captures essen-

tial abnormalities observed. Other possibilities include maximizing the sum of probabilities

that each element is aberrant.

Once a subset J of variables is chosen (a covering, or a core), we obtain a representation of

each sample ω as a binary vector �zJ ¼ ðZjðoÞ; j 2 JÞ, which should retain essential information

from the whole omics profile associated to the sample. It has, in addition, a mechanistic inter-

pretation, since each variable Zj is associated to one or a group of STPs (g) g0). Because of the

relatively small number of variables involved, all these events can be rendered together, using,

for example, the visualization provided in Figs 2 or 4.

1.4 Measuring heterogeneity

We want to quantify the heterogeneity of a family of binary random variables �Z ¼ ðZj; j 2 JÞ,
defined on the probability space O, where J is a subset of I (e.g., a covering). Similarly to the

previous section, we assume that only a finite number of observations are available, repre-

sented by a finite subset Ô of O. A natural measure for heterogeneity is the Shannon entropy

[21, 22], that we need to estimate based on the finite random sample ð�ZðoÞ; o 2 Ô � OÞ. In

our results, we focus on the entropy of �Z conditional to a specific cancer condition, phenotype

or subtype.

LetS ¼ SJ denote the set of all binary configurations �z ¼ ðzj; j 2 JÞ, which has 2|J| ele-

ments. Let pð�zÞ ¼ Pð�Z ¼ �zÞ, so that the Shannon entropy of �Z is

HðpÞ ¼ �
X

�z2S

pð�zÞ log 2pð�zÞ : ð10Þ

The sample probability mass function of �Z is then given by

p̂ð�zÞ ¼
Nð�zÞ
N

ð11Þ

where Nð�zÞ ¼ jfo 2 Ô : �ZðoÞ ¼ �zgj and N ¼ jÔj. One can plug these relative frequencies in

the definition of the entropy to obtain the estimator

Hðp̂Þ ¼ �
X

�z2S

p̂ð�zÞ log 2p̂ð�zÞ : ð12Þ

This estimator, however, significantly under-estimates the entropy for small and even moder-

ate sample sizes, and several bias-correction methods have been introduced in the literature

(see [23], from which (13) (see below) is obtained, and [24, 25]). This estimator computes the
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entropy using the expression (in which ψ denotes the digamma function)

Ĥ cð
�ZÞ ¼ log 2ðeÞ

X

z2S

Nð�zÞ
N

logN � cðNð�zÞÞ �
ð� 1Þ

Nð�zÞ

Nð�zÞðNð�zÞ þ 1Þ

 !

: ð13Þ

Still, this estimator is only accurate when the number of variables, |J|, is small, because the

ratio (2|J| − 1)/N is the first order term in the expansion of the entropy bias [23, 26] in powers

of 1/N. In our experiment, we use L = 4, that is we estimate the entropy for at most 4 variables

together. For a more detailed analysis on the selection of L = 4, see S1 Text (Table B in S1

Text). Since sets J of interest are typically larger, we estimate an upper-bound to the entropy in

the following way.

Given two random variables X and Y, one always has H(X, Y)�H(X) + H(Y). This implies

that, if the set J is partitioned into subsets J1, . . ., Jℓ (i.e., J ¼
S‘

h¼1
Jh and Jh \ Jh0 = ; if h 6¼ h0),

then

Hð�ZÞ � Hð�ZJ1
Þ þ � � � þHð�ZJ‘

Þ ð14Þ

where �ZJh
¼ ðZj; j 2 JhÞ, h = 1, . . ., ℓ. We use the right-hand side as an upper-bound, determin-

ing the partition J1, . . ., Jℓ using the following greedy aggregating procedure:

1. Initialize the partition with singletons, i.e., Jj = {j}, j 2 J, computing the estimated entropy

Ĥcð
�ZjÞ of the binary variable �Zj. Fix a maximal subset size, L.

2. Given a current decomposition J1, . . ., Jℓ, compute, for all pairs h, h0 such that |Jh [ Jh0|� L,

the difference Ĥcð
�ZJh
Þ þ Ĥcð

�ZJh0
Þ � Ĥ cð

�ZJh[Jh0
Þ, remove the two sets Jh, Jh0 for which this

difference is largest and replace then by their union (setting ℓ! ℓ − 1).

3. If no pair h, h0 satisfies |Jh [ Jh0|� L, stop the procedure.

The obtained decomposition also provides a statistical model (denoted p̂�) approximating

the distribution of �Z , namely the one for which �ZJ1
; . . . ; �ZJ‘

are independent and the distribu-

tion of �ZJi
is estimated using relative frequencies. To allow for comparisons between entro-

pies evaluated for different sub-populations, we used this model within a Monte-Carlo

simulation to estimate confidence intervals for H(π). We generated M = 1,000 new N-sam-

ples of �Z (recall that N is the size of the original sample of �Z used to estimate the entropy),

using the distribution p̂�, resulting in M new empirical distributions p̂ð1Þ
�
; . . . ; p̂ðMÞ

�
with asso-

ciated corrected entropies Ĥ ð1Þc ; . . . ; Ĥ ðMÞc . Fixing a probability β> 0, we let Ĥ ðbÞ
c and Ĥ ð1� bÞc

denote the β and 1 − β quantiles of the sample Ĥ ð1Þc ; . . . ; Ĥ ðMÞc so that Ĥ ðjÞ
c � Hðp̂�Þ belongs to

½Ĥ ðbÞc � Hðp̂�Þ; Ĥ ð1� bÞ
c � Hðp̂�Þ� with probability 1 − 2β. We use the same interval for the dif-

ference Ĥc � HðpÞ, yielding the confidence interval for H(π):

½Ĥc þHðp̂�Þ � Ĥ ð1� bÞ
c ; Ĥc þHðp̂�Þ � Ĥ ðbÞc �: ð15Þ

1.5 Subtype analysis through partitioning

We assume here again a family of binary random variables �ZJ ¼ ðZj; j 2 JÞ, where J is a tissue-

dependent covering, observed through a finite sample ð�ZJðoÞ;o 2 Ô). We partition the sam-

ple space into disjoint subsets (S1, . . ., Sℓ) where each Sj is specified by a small number of events

involving conjunctions or disjunctions of aberrations. This partition will be associated with

the terminal nodes of a binary “coding tree” of limited depth d (e.g., d = 5), so that ℓ = 2d. To
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each node in the tree we associate a subset S of Ô, and unless S is a terminal node, its children

form a partition S = S0 [ S@, where ω 2 S0 is based on a certain splitting criterion.

While there are many ways to build such a tree-structured code, we opt for a decomposition

for the tissue population that is as balanced as possible and unsupervised to compare the distri-

butions between cancer subtypes (for a given tissue) with respect to a fixed partition. A sample

is weighted inversely proportional to the size of its subtype, and at each node the event which

balances the weight of the two daughter nodes is selected.

The standard choice for a binary tree are individual binary features, so events of the form

{Zj(S) = 1}, for a suitably chosen j(S) 2 J. One could also use more complex splitting criteria,

such as fZj1ðSÞ
¼ 1 or Zj2ðSÞ

¼ 1g, fZj1ðSÞ
¼ 1 and Zj2ðSÞ

¼ 1g with j1(S), j2(S) 2 J. (We have used

both types of events in our experiments: two-gene disjunctions for trees based on source aber-

rations with targets and two-gene conjunctions for trees based on target aberrations with

sources.) The stopping criterion is that either all samples at the node have identical configura-

tions or a maximum depth has been reached.

2 Results

As described previously, we have delineated many gene pairs (STP, or “source-target pair”),

with a binary random variable corresponding to each pair indicating whether a sample is

source and target aberrant.

Given M STPs, there are 2M possible “states” or “configurations” for each sample. We

defined cross-sample heterogeneity as the entropy of the probability distribution P over config-

urations. Estimating the entropy of P is not feasible for modest sample sizes, since it requires

estimating the probabilities of many rare events.

To overcome this computational barrier, the pool of STPs was substantially reduced using

the notion of a “minimal set covering” in combinatorial optimization. In our case, the set to be

covered is a population of cancer samples for a particular phenotype or subtype, a “covering”

is a set of STPs for which, with high probability, cancer samples have at least one aberrant STP

from the covering, and “minimal” means the smallest covering. All minimal coverings are nec-

essarily of the same size, on the order of 10–100 for each tissue we study (breast, colon, liver,

kidney, lung and prostate). In summary, our STPs are derived from Reactome, and then sub-

sets of STPs of interest are identified for each cancer type based on the TCGA omics data.

Minimal set coverings are typically not unique. However, despite the differences between

the coverings we can define a “core”, namely, the STPs that appear in every (minimal) solution.

From a biological perspective, the core is a novel signature of the most salient events associated

with tumors of a given type. We apply these concepts (STPs, cores and estimated entropies) to

measuring cross-sample heterogeneity in tumor populations for a selection of tissues repre-

sented in TGCA data.

2.1 Source-target pairs

Based on the genes and interactions found in the Reactome [19], source-target pairs (STPs)(gs

) gt) are built, with the only parameter used being the maximum length of the directed chain

from the source to the target (k; see see Table C in S1 Text). There are then 272,237 valid STPs

with 3,124 distinct source genes and 598 distinct target genes.

Our samples are those in TCGA with available matched mutation, extreme copy number

variation (deleting or amplifying both copies), and mRNA expression data; the conversion of

expression counts to aberration states was described in Section 1.2.1.

Nearly all samples exhibit at least one paired aberration.
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2.2 Filtering

Given there are too many STPs to meaningfully analyze, we first filter based on rejecting the

hypothesis that the existence of source and target aberrations are independent (see Section

1.2.2). The statistics of the STPs remaining after this filtering procedure for different tissue

types are shown in see (see Table D in S1 Text). For example, for the 953 TGCA breast cancer

samples, there are 17,261 valid STPs after the test for independence, with 2,130 source genes

and 421 target genes.

Next we omit very rare events. For each tissue, and at each of the three levels (source, target,

pair), we require each binary variable to be aberrant in at least 2% of the samples for that tissue.

For details about the choice of 2%, see S1 Text. The number of qualifying variables after the 2%

filter was applied are given in Table F in S1 Text.

For instance, for breast cancer samples, there are 4, 026 STPs, 690 distinct source genes,

and 256 distinct target genes after separately applying the 2% filter at each level.

2.3 Paired aberrations

Table 1 shows examples of STPs λ = (g) g0) and their associated probabilities of aberration in

the indicated tissue. For example, in the STPs shown for colon cancer in Table 1, APC is the

source gene, AXIN2 is the target gene, and there exists a directed signaling path from APC to

AXIN2 of length at most three links (two intermediate genes) in Reactome such that the sec-

ond-to-last link, namely the direct parent of AXIN2, controls the mRNA expression of AXIN2.

This STP is aberrant in a given sample if APC is either mutated, deleted, or amplified and the

mRNA expression of AXIN2 is aberrant (with respect to baseline mRNA expression for

AXIN2). In the case of APC, the DNA aberration is nearly always a mutation and AXIN2 is

over-expressed. See Table E in S1 Text for more information.

In Table 1, probability P(DNA&RNA) is the sample estimate, namely the fraction of colon

samples for which APC is mutated and AXIN2 is RNA-aberrant. Similarly, P(DNA) and

P(RNA) stand for the marginal probabilities that the source is DNA-aberrant and the target

RNA-aberrant, respectively. The conditional probabilities are then self-explanatory. For

example, APC is mutated in 73.9% of our samples and in 79.1% of those samples AXIN2 is

RNA-aberrant. Multiplying these two probabilities gives the frequency of the joint occurrence

(58.5%). Other STPs commonly found in colon samples include the four core STPs described

in Table 2.

The probabilities for APC) AXIN2 are atypically large. In particular, most pair probabili-

ties are smaller than .575, generally of order 0.01–0.10 with a few above 0.3, usually involving

main tumor drivers such as PIK3CA in breast cancer, and TP53 and KRAS in lung cancer.

Moreover, DNA aberrations tend to be considerably rarer than RNA aberrations, i.e., the mar-

ginal source probabilities are generally far smaller than the marginal target probabilities. It is

Table 1. Examples of STPs. For each of the six tissues, one example of a common STP λ = (g) g0) is shown. P(DNA&RNA) is our sample-based estimate of the probabil-

ity that λ is an aberrant pair, namely, the fraction of samples of the indicated tissue for which the source gene g is DNA-aberrant and the target gene g0 is RNA-aberrant.

Similarly, P(DNA) (respectively, P(RNA)) is the fraction of samples for which g is DNA-aberrant (resp., g0 is RNA-aberrant), and P(RNA|DNA) is the (estimated) condi-

tional probability that g0 is RNA-aberrant given g is DNA-aberrant.

Tissue Pair P(DNA&RNA) P(DNA) P(RNA) P(RNA|DNA) P(DNA|RNA)

Breast PIK3CA) S100B 0.316 0.356 0.838 0.888 0.377

Colon APC) AXIN2 0.585 0.739 0.676 0.791 0.864

Kidney VHL) CA9 0.482 0.485 0.967 0.994 0.498

Liver TP53)MYBL2 0.308 0.319 0.814 0.965 0.379

Lung TP53) TOP2A 0.529 0.535 0.923 0.988 0.573

Prostate PTEN) TWIST1 0.161 0.216 0.654 0.745 0.246

https://doi.org/10.1371/journal.pcbi.1008944.t001
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noteworthy that the conditional probability of a particular RNA aberration given a particular

DNA aberration (as those in Table 1) is usually in the range 0.5–1, whereas the reverse is not

the case: given a target gene is RNA-aberrant the probability of any particular gene serving as a

source rarely exceeds 0.2 (see Tables G—K in S1 Text).

We have also defined separate source-level and target-level events in the sense of partially

aberrant STPs; see Section 1.2.3 of Methods. Recall that fZðsÞg ¼ 1g represents the event that a

given source gene g is DNA-aberrant and that there exists some target of g which is RNA-aber-

rant, denoted as “aberration with target” for “source aberration with downstream target aber-

ration”. The probability of this event is denoted by P(DNA&downstreamRNA); see Table 3 for

some examples in Colon. Similarly, for the other direction, fZðtÞg0 ¼ 1g is the event that some
source gene renders g) g0 an aberrant STP. Tables 3 and 4 provide the probabilities and con-

ditional probabilities for selected core genes at the source and target levels in colon; many

other examples appear in Tables G—U in S1 Text.

Given a source gene g is aberrant, typically there is a strong likelihood that at least one of its

targets g0 is RNA-aberrant. These targets represent plausible downstream consequences of g

Table 2. Colon core STPs. There are four “core” STPs which appear in every minimal covering of the colon samples. P(DNA&RNA) is the fraction of samples for which

the source gene g is DNA-aberrant and target gene g0 is RNA-aberrant; P(DNA) is the fraction of samples satisfying the source gene g is DNA-aberrant; P(RNA) is the frac-

tion of samples with g0 RNA-aberrant; P(RNA|DNA) is the fraction of DNA-aberrant samples for which g0 is RNA-aberrant.

P(DNA&RNA) P(DNA) P(RNA) P(RNA|DNA) P(DNA|RNA)

APC) AXIN2 0.585 0.739 0.676 0.791 0.864

TP53) PTPN12 0.396 0.560 0.604 0.707 0.656

PIK3CA) TNFRSF10B 0.198 0.271 0.589 0.732 0.336

MAML1) PBX1 0.034 0.039 0.401 0.875 0.084

https://doi.org/10.1371/journal.pcbi.1008944.t002

Table 3. Colon core source genes. There are five “core” source genes which appear in every minimal source covering of the colon samples. P(DNA) is the fraction of sam-

ples for which the indicated source gene is DNA-aberrant; P(DNA&downstreamRNA) is the fraction of samples for which the indicated source gene is DNA-aberrant and

there exists an RNA-aberrant gene among its targets. P(downstreamRNA|DNA) is the fraction of the samples with the indicated source gene DNA-aberrant for which

there exists some RNA-aberrant gene among its targets.

P(DNA&downstreamRNA) P(DNA) P(downstreamRNA|DNA)

APC 0.585 0.739 0.791

TP53 0.560 0.560 1.000

KRAS 0.425 0.425 1.000

LAMA5 0.217 0.217 1.000

MAML1 0.034 0.039 0.875

https://doi.org/10.1371/journal.pcbi.1008944.t003

Table 4. Colon core target genes. There are six “core” target genes which appear in every minimal target covering of the colon samples. P(RNA) is the fraction of samples

for which the indicated target gene is RNA-aberrant; P(RNA&upstreamDNA) is the fraction of samples for which the indicated target gene is RNA-aberrant and there

exists an DNA-aberrant gene among its sources. P(upstreamDNA|RNA) is the fraction of the samples with the indicated gene RNA-aberrant for which at least one of its

sources is DNA-aberrant.

Target P(RNA&upstreamDNA) P(RNA) P(upstreamDNA|RNA)

PERP 0.710 0.807 0.880

PDX1 0.671 0.957 0.702

AXIN2 0.662 0.676 0.979

SALL4 0.638 0.918 0.695

TNFRSF10B 0.565 0.589 0.959

MYBL2 0.261 0.300 0.871

https://doi.org/10.1371/journal.pcbi.1008944.t004
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having a DNA-aberration. The converse, however, is not valid; in particular, there are many

targets g0 for which there is no upstream DNA-aberrant source linked to g0. This makes sense

since a gene can be RNA-aberrant for many reasons other than an upstream genetic aberra-

tion. In particular, the event driving the aberration of g0 might be some perturbation not con-

sidered here, for example be epigenetic or fusion-related or as yet unrecognized.

2.4 Coverings

Recall that indexing a covering by source genes refers to leaving the particular aberrant target

gene unspecified (indexing by targets is the opposite). The corresponding events were denoted

in Methods by fZðsÞg ¼ 1g for a source gene and fZðtÞg ¼ 1g for a target gene.

As described in Section 1.3, minimal coverings composed of pairs, sources, or targets are all

found with the same optimization program. For the pair and source levels, we calculate the

optimal covering with the smallest possible α� 0 and r = 1. (Here, the smallest α is such 1 − α
is the fraction of samples that have at least r aberrant STPs.).

At the target level, however, we select but r = 3, still using the smallest possible α; that is, we

attempt to cover tumor samples with at least three target aberrations (with source). This choice

is justified by the higher frequency of RNA-aberrations in tumor samples.

Table 5 shows the optimal covering statistics at all levels for the six tissues of origin. For

example, the minimum number of STPs (resp., sources, targets) necessary to cover the 953

breast cancer samples is 67 (resp., 60, 53), with the realized rate being 95% (resp., 96%, 96%)

with α = 0.05 (resp., 0.04, 0.04). In contrast, all colon samples can be covered with many fewer

STPs, namely 11. In addition, the minimal covering size (size of solution) is usually largely

determined by the incidence of aberrations in any given population, e.g., mutation rates. In

particular, given two phenotypes A and B, if the samples of B are consistently more aberrant

Table 5. Statistics of optimal coverings. For each of the six tissues, this table provides basic information about the optimal coverings at all levels: STP, source with target,

target with source. For instance, for breast cancer, there are 4,026 candidate STPs after both filters (rejecting source-target independence and 2% tissue sample frequency);

the minimal covering size is 67 STPs; at least one of these 67 STPs is aberrant in 95.4% of the breast cancer samples; and there are 21 STPs which appear in every minimal

covering.

Tissue Samples Covering Type Quantity Size of solution Fraction of samples covered Size of core set

Breast 953 STP 4,026 67 0.954 21

Source 690 60 0.964 34

Target 256 53 0.955 35

Colon 207 STP 1,195 11 1.000 4

Source 525 10 1.000 5

Target 226 15 0.995 6

Kidney 336 STP 347 26 0.827 12

Source 133 28 0.854 21

Target 176 60 0.890 45

Liver 360 STP 1,198 32 0.931 11

Source 460 34 0.958 20

Target 287 41 0.942 26

Lung 465 STP 3,154 27 0.985 10

Source 908 25 0.989 19

Target 350 29 0.985 26

Prostate 491 STP 430 53 0.686 32

Source 211 53 0.743 42

Target 160 72 0.699 66

https://doi.org/10.1371/journal.pcbi.1008944.t005

PLOS COMPUTATIONAL BIOLOGY Representing tumor diversity with paired DNA-RNA aberrations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008944 June 11, 2021 14 / 30

https://doi.org/10.1371/journal.pcbi.1008944.t005
https://doi.org/10.1371/journal.pcbi.1008944


than those of A, then the minimal B covering will be smaller. More comprehensive statistics

for all tissues are given in Table F in S1 Text; as seen in the column labeled “No. of solutions”,

there are in general a great many instances of minimal coverings.

Fig 2 shows one such tissue-level covering obtained for breast cancer as a graphical network

with nodes representing genes forming the STPs. The source and target genes are shown in

orange and blue respectively, while genes representing the intermediary links are shown in

green. Note that while the union of the coverings may also be visualized in a similar manner, it

contains many more STPs that make readability of the resulting graph difficult; therefore we

have opted to show only individual coverings here. Figs C—G in S1 Text depict the networks

associated with the coverings obtained for the other types of cancer.

These visual representations allow us to go beyond lists of names and numbers and begin to

interpret coverings in biological terms and incorporate mechanism (see Discussion). For

instance, in the breast network shown in Fig 2, several important breast cancer genes (e.g.,

STAT3 [27], TP53 [28], BRCA1 [29], and ERBB4 [30]) all form important hubs through which

multiple sources and targets in the covering link according to Reactome. Similarly, the net-

work figures for the remaining networks show similar positioning for many important cancer

genes: NOTCH1 [31] in liver, NOTCH3 [32, 33] and EGFR [34] in lung are some other

Fig 2. Networks of pair coverings in breast cancer. The network shown in the center depicts one covering of breast cancer samples by STPs, with source

genes in orange, target genes in blue, and intermediary link genes in green. The thin and thick edges represent, respectively, the two types of relationships:

“controls state change of” and “controls expression of” as designated in Reactome [19]. On the left are presented a selection of covering realizations for

three ER-positive samples, where aberrant STPs are highlighted, while and on the right, three ER-negative samples samples are shown. The samples have

different realizations over the covering network, and are ranked (top to bottom) by the number of events they exhibit. The sample networks demonstrate

the inter-sample heterogeneity among the source and target realizations.

https://doi.org/10.1371/journal.pcbi.1008944.g002
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examples. Finally, KRAS, TP53 [28] and STAT3 [27] make an appearance in multiple cancers.

See Figs C—G in S1 Text.

For a given tissue and fixed covering level, about 30%–60% of the genes appearing in any

covering in fact appear in all coverings, referred to as the core set (see Tables 2–4 for colon, and

in Tables G—U in S1 Text for the other tissues). The STP TP53) PTPN12 is aberrant in

39.6% of the colon samples (see Table 2), the source gene KRAS in 42.5% of samples (see

Table 3), and the target gene PERP in 80.7% of samples (see Table 4). From Table 3 we see that

there is some aberrant target for every sample for which KRAS is DNA-aberrant in colon;

hence the probability that KRAS is DNA-aberrant and there is a matching target gene is again

42.5%. Finally, from the target covering we see that targets gene PDX1 is RNA-aberrant in

95.7% of colon samples (see Table 4) but only 70.2% of samples for which PDX1 is RNA-aber-

rant have some corresponding corresponding upstream DNA-aberrant source gene.

Fig 3 shows 18 core source genes across multiple tissues. TP53 is a core source gene shared

by all 6 tissues, and is DNA-aberrant in more than 60% of colon cancers, and also a large

Fig 3. Core set across tissues at source level. There are 18 source genes which appear in the core set of at least two tissues. For instance, gene TP53 is a core

gene for all six tissues, and genes PTEN and PIK3CA are core genes for three tissues. The color in the heatmap on the left represents the probability that the

corresponding source gene is DNA-aberrant and there exists an RNA-aberrant target gene (thereby forming an aberrant source-target pair). On the right,

black marks indicate the membership of each gene to the corresponding core set for each tumor type.

https://doi.org/10.1371/journal.pcbi.1008944.g003
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percentage in other cancers. All core source genes across multiple tissues are shown in Fig L in

S1 Text. In Fig M in S1 Text, we show all core target genes across multiple tissues. For instance,

CDC25C appears in core set of breast, lung and prostate cancer, and the probability that

CDC25 is RNA aberrant and there exist an upstream aberrant source is nearly 0.8.

2.5 Subtype coverings

Having computed the tissue-level coverings, we examine them with respect to certain pheno-

types of interest, including the PAM50 subtypes in breast cancer [17], smoking history in lung

cancer [35], Gleason grade in prostate cancer [16], and and the CRIS-classes in colon cancer

[18]. We observe a large range of aberration frequencies among subtypes. Table 6 shows the

probabilities of DNA-aberration (with targets) for PAM50 subtypes, with genes selected from

the core set of source breast cancer coverings; Tables 7–9 show similar selections of sources.

We observe potential discriminating sources between subtypes. For example, TP53 has a

much lower likelihood of aberration for the luminal subtypes in comparison to the basal-like

and HER2-enriched subtypes. Similar observations can be made among the subtypes of other

cancers (see Tables 7–9). Finally, such patterns persist for target-level analyses and are pre-

sented in Tables V—I in S1 Text.

A comparison between subtypes can also be captured as a graphical network, as shown in

Fig 4. Similarly, Fig H in S1 Text presents the breast covering with the size of the nodes repre-

senting the source (with target) and target (with source) aberration probabilities for the molec-

ular subtypes considered. Finally, similar networks are also presented in Fig I in S1 Text for

lung cancer with respect to smoking history, and in Fig J in S1 Text for Gleason grade in for

prostate cancer.

We also compared coverings of subtypes controlling for population sizes. For each of the

phenotypes under a given sub-typing, an equal number of samples were selected and coverings

for all these samples simultaneously were obtained. Then we examined the proportion from

each subtype that was covered, repeating over multiple sampling iterations (Fig 5). A general

pattern of more pathological phenotypes having higher coverage proportions can be observed

throughout these results (see Fig K in S1 Text for further results). The more malignant pheno-

types tend to have larger aberration probabilities. This corresponds with the observation that

the size of the covering obtained for a subtype while sampling equal numbers from each group

Table 6. Probabilities of source aberration with downstream target for breast cancer subtypes. For PAM50 subtypes of breast cancer, the heatmap represents the proba-

bilities that the indicated gene is a DNA-aberrant source gene with some downstream RNA-aberrant target. The sources are selected from the set of core genes for cover-

ings of the given tissue; the selection criterion is that the probability of a DNA-aberration is high for at least one of the subtypes for that tissue. Core sources with varying

probabilities present interesting candidates for discrimination between subtypes. For example, the DNA-aberration frequency of TP53 is much higher in the HER2-e-

nriched and Basal-like subtypes than in Luminal A and Luminal B, whereas an aberration in PIK3CA is less frequent among basal-like samples than among the other

subtypes.

Luminal A Luminal B HER2-enriched Basal-like

TP53 0.123 0.273 0.655 0.770

MED1 0.055 0.116 0.545 0.046

PIK3CA 0.438 0.314 0.418 0.172

CLTC 0.068 0.190 0.255 0.057

PTEN 0.050 0.074 0.073 0.253

PTK2 0.105 0.190 0.182 0.310

GATA3 0.151 0.190 0.055 0.253

NCSTN 0.068 0.132 0.127 0.264

NCOA2 0.064 0.149 0.218 0.126

https://doi.org/10.1371/journal.pcbi.1008944.t006
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indicated larger covering solutions obtained for more benign subtypes in comparison to more

malignant ones.

2.6 Measuring heterogeneity

We applied the approach described in Section 1.4 to assess the relative heterogeneity of differ-

ent cancer phenotypes and subtypes in the analyzed tissues. Note that we are analyzing hetero-

geneity within phenotypes at a population level, so that our measurements are primarily about

the variability across tumors in this population. Without single-cell data, one cannot evaluate

variability within a tumor, although it is likely that a higher variability at this level should also

trigger larger heterogeneity at the population level. It is worth noting, however, that the analyt-

ical framework we propose here can be easily extended to single cell data once paired molecu-

lar measurements will become available in the future.

Table 7. Probabilities of source aberration with downstream target for lung cancer subtypes. For smoking history based categories of lung cancer, the heatmap repre-

sents the probabilities that the indicated gene is a DNA-aberrant source gene with some downstream RNA-aberrant target. The sources are selected from the set of core

genes for coverings of the given tissue; the selection criterion is that the probability of a DNA-aberration is high for at least one of the subtypes for that tissue. TP53 and

KRAS are both more frequently DNA-aberrant (with some downstream RNA-aberrant target) among smokers than non-smokers whereas EGFR is a more aberrant source

among non-smokers.

Smoker Recently reformed Reformed Non smoker

TP53 0.581 0.452 0.500 0.259

EGFR 0.093 0.129 0.233 0.370

KRAS 0.395 0.371 0.350 0.148

ANK2 0.140 0.274 0.117 0.037

STK11 0.140 0.290 0.183 0.074

SPTA1 0.372 0.355 0.317 0.185

https://doi.org/10.1371/journal.pcbi.1008944.t007

Table 9. Probabilities of source aberration with downstream target for prostate cancer subtypes. For primary glea-

son grade subtypes of prostate cancer, the heatmap represents the probabilities that the indicated gene is a DNA-aber-

rant source gene with some downstream RNA-aberrant target. The sources are selected from the set of core genes for

coverings of the given tissue; the selection criterion is that the probability of a DNA-aberration is high for at least one

of the subtypes for that tissue.

3 4 5

TP53 0.071 0.143 0.286

MYC 0.036 0.094 0.245

PTEN 0.133 0.245 0.347

ZFHX3 0.056 0.102 0.184

FGF17 0.102 0.139 0.163

https://doi.org/10.1371/journal.pcbi.1008944.t009

Table 8. Probabilities of source aberration with downstream target for colon cancer subtypes. For CRIS-class subtypes of colon cancer, the heatmap represents the

probabilities that the indicated gene is a DNA-aberrant source gene with some downstream RNA-aberrant target. The sources are selected from the set of core genes for

coverings of the given tissue; the selection criterion is that the probability of a DNA-aberration is high for at least one of the subtypes for that tissue.

CRIS-A CRIS-B CRIS-C CRIS-D CRIS-E

APC 0.348 0.217 0.686 0.750 0.710

TP53 0.261 0.478 0.771 0.571 0.774

KRAS 0.500 0.478 0.057 0.393 0.581

LAMA5 0.370 0.261 0.229 0.107 0.194

https://doi.org/10.1371/journal.pcbi.1008944.t008
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We base our analysis on coverings estimated on source aberration with targets and on tar-

get aberration with sources (see Tables II and III in S1 Text). In all cases, coverings are

obtained for each tissue of origin separately, and entropy estimates are computed after restrict-

ing the data to samples exhibiting each considered cancer phenotype (e.g., the breast cancer

molecular subtypes, smoking status in lung cancer, and so on. . .).

At the source level, the general trend is that heterogeneity estimates increase with increasing

disease severity. In prostate cancer, for instance, entropy grows with Gleason sum, primary

Gleason grade, and with tumor status, while no clear ordering is observable for lymph node

status (see Table 10). Similar observations can be also made for tumors originating in other tis-

sues (see Table II in S1 Text). In breast cancer, the entropy for ER positive tumors is less than

that for ER negative ones, and it also increases with tumor size, and with more aggressive

molecular subtypes (i.e., Luminal A < Luminal B< HER 2< Basal, with a small overlap

between confidence intervals for Luminal B and HER 2). For lung, samples from patients with

recent smoking history (reformed for less than 15 years or current smokers) have a higher

entropy than those with either ancient or no history.

At the target level, a similar trend of increasing heterogeneity with increasing disease sever-

ity is observed: in prostate cancer for all variables considered (Gleason sum, primary Gleason

grade, tumor stage, size, and lymph node status), in kidney cancer for tumor stage and tumor

size, and in breast cancer for the molecular subtypes (with Luminal A samples exhibiting the

lowest heterogeneity while Luminal B the highest). Finally, in the tumor types originating in

the other tissues, we observe large overlaps between confidence intervals, and no obvious and

clear trends emerged across cancer subtypes. Complete summaries for this analysis can be

found in Table III in S1 Text.

Fig 4. Comparison of one covering network for luminal breast cancer subtypes. The probabilities of DNA aberration (with targets) and RNA aberration

(with sources) over the Luminal A and Luminal B populations of breast cancer are depicted by the size of each node in the network, which corresponds to

one possible covering. The red arrows indicate some sources and target genes that have noticeable differences in the respective probabilities between the

two luminal subtypes (e.g., TP53, CHEK1, PIK3CA, and TOP2A, also see Table 6).

https://doi.org/10.1371/journal.pcbi.1008944.g004
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2.7 Partitioning

We applied the approach described in Section 1.5 to all six cancer types. Let T denote a coding

tree with terminal nodes {t1, t2, . . ., tl}. Recall that for each subtype, the resulting histogram

(number of samples per bin) is, by construction, as balanced as possible for the whole popula-

tion. It is then easy to visualize the histograms conditional on tumor sub-populations (samples

for a given subtype), and assess differences across subtypes or phenotypes in this representa-

tion (See Fig 6, for ER status in breast cancer based on target aberration with sources).

For instance, the event chosen at the root node is whether both MMP1 and E2F1 are RNA

aberrant, each with some upstream DNA aberrant source. Such samples take the left branch

whereas all others go to the right. The number in the terminal node t is the overall number of

tumor samples reaching t (regardless of subtypes). The two histograms show the numbers of

samples collected at terminal nodes for the ER positive and the ER negative sub-populations.

In particular, the two distributions are significantly different (permutation test p� 0.0001).

Other coding trees for other cancer subtypes are showed in Figs N—P in S1 Text.

Fig 5. Rates of covering assembly. For each of four tissues (breast, colon, lung and prostate), several phenotypes are compared based on the proportion of

samples actually covered when requesting 90% coverage or more for the given tissue by the optimization procedure. The boxplots represent the results of 20

iterations of normalizing for sample size among the phenotypes by random sampling. In general, coverings for more aggressive phenotypes assemble faster.

https://doi.org/10.1371/journal.pcbi.1008944.g005
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3 Discussion

Our approach in introducing this framework is rooted in the biological tenant that cancer is

driven by genetic and genomic alterations that alter normal cell behavior through the modifi-

cation of downstream gene expression programs governing cell proliferation, cell identity, and

cell differentiation. The representation of a cancer profile is binary and integrative, centered

on STPs which encode paired DNA and RNA aberrations. The set of possible pairings is fixed,

based on signaling pathways and regulatory network topology; the STP is aberrant in an indi-

vidual profile if the first, or “source”, gene carries the specified DNA aberration and the gene

expression of the second, or “target”, gene diverges from the normal baseline. Note that we are

not assuming that the DNA alterations are decidedly always “drivers” of cancer or that the

source-target links are necessarily causative; rather, given an aberrant STP, we regard the aber-

rant target as a putative effect of the upstream source aberration, which itself provides a puta-

tive explanation for the aberration of the target.

Whereas we do not deal directly with the driver-passenger distinction, i.e., we treat all

mutations in the same way, most of the genes that emerge from our analysis are known drivers,

particularly the core covering. This is further expected given our requirement that candidate

DNA aberrations have at least 2% incidence in the cancer population. That said, given the het-

erogeneous nature of cancer as a disease, it is likely that the list of currently accepted, known

cancer drivers is not exhaustive. In this perspective, our approach—requiring additional con-

straints for defining aberrant STPs—might also be helpful in prioritizing previously unknown

driver events from the large set of potential candidates.

We apply STPs, together with integer programming, to extract parsimonious sets of impor-

tant aberrations in the tumor populations. In addition to minimal coverings with paired aber-

rations, the same algorithm can be applied to find the minimal coverings by DNA aberrations

alone for which there is some downstream effect (the source gene appears in some aberrant

STPs), and vice-versa for coverings by RNA-aberrant target genes (i.e., gene expression alter-

ations plausibly associated with some upstream DNA aberrations).

UNCOVER by [36] utilizes a similar computational method, attempting to distinguish

driver and passenger somatic event sets with a high degree of mutual exclusivity between alter-

ations. As posed in [36], the problem is NP-hard [37] and only small sets of genes, usually of

Table 10. Entropy estimation at source level. Entropy estimates for source aberrations with target for prostate Glea-

son sum, primary Gleason grade, tumor status, and lymph-node status. N is the total number of samples available in

the given subtype.

Subtype Value N Entropy Conf. Interval

All 491 12.16 [11.67, 12.68]

Gleason sum 6 45 8.05 [6.82, 8.98]

Gleason sum 7 244 10.80 [10.10, 11.45]

Gleason sum 8 63 11.33 [10.07, 12.41]

Gleason sum 9 135 14.21 [13.24, 15.06]

Primary Gleason grade 3 196 9.45 [8.68, 10.12]

Primary Gleason grade 4 245 12.33 [11.65, 13.01]

Primary Gleason grade 5 49 16.60 [15.07, 17.88]

Tumor Status T2 186 10.73 [9.92, 11.45]

Tumor Status T3-T4 298 12.88 [12.26, 13.52]

Lymph Node Status Negative 342 12.14 [11.55, 12.71]

Lymph Node Status Positive 77 12.82 [11.66, 13.76]

https://doi.org/10.1371/journal.pcbi.1008944.t010
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size three or four, can be found. In contrast, we seek to cover a tumor population with sets of

paired aberrations, of size usually ranging from 10–100. Our use of an apriori network of inter-

actions and binarization of aberrations allow this to computationally feasible.

The search for minimal coverings somewhat resembles the body of work on maximal fre-

quent sets [38, 39] whose goal is to list all “closed” sets of binary variables that are aberrant in a

large proportion of the samples, where closedness refers to some notion of maximality among

such frequent sets. In contrast, with minimal coverings the sets intersect the aberrant set of a

large proportion of the samples (the frequent set problem is of polynomial complexity [40]

while the minimal covering problem is NP hard).

In [41], the authors presents Gene Graph Enrichment Analysis (GGEA) to detect consis-

tently and coherently enriched gene sets based on prior knowledge driven from a directed

gene regulatory network. And in [42], the authors proposes a probabilistic graphic models

(PARADIGM) based on factor graphs to infer patient specific genetic activities incorporating

curated pathway interactions among genes. In contrast we do not score gene interactions,

instead we use the core set to quantify tumor heterogeneity.

Fig 6. Coding tree for breast ER status at target level. For Breast tumor samples, a weighted coding tree T with depth

d = 5 is constructed using one covering at target level. At each internal node, a sample is sent to the left if the indicated

two genes at the node are both RNA aberrant with some aberrant source, whereas it is sent to the right otherwise.

Sample counts for each terminal nodes are indicated and highlighted using a green palette. The two histograms at the

bottom show the sample distribution at the 32 terminal nodes for the ER negative and ER positive sub-populations.

https://doi.org/10.1371/journal.pcbi.1008944.g006
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3.1 Cores

In general the minimal coverings are not unique; of particular interest are the core STPs which

are those belonging to every minimal solution. The restriction to coverings, especially to cores,

massively reduces the number of considered aberrations in a given tumor population, making

it mathematically feasible to quantify and measure tumor heterogeneity at the population level

in a natural, information-theoretic way.

Overall, we were able to identify well-known cancer aberrations, as well as to uncover novel

potential molecular circuits involved in this disease. The presence of tumor suppressor TP53
in all cores confirm the well-known notion that this DNA alteration is the most frequent and

(possibly) important aberration across multiple tumor types of different lineage [43]. Other

aberrations involving key cancer drivers, are discussed in our supplementary results section

(see S1 Text).

No single gene appears in the core target set of all tissue types. In fact, only one gene,

FABP4, lies in at least four out of six tissue-specific core signatures. Irrespective of source, tar-

get, or pair level, all core genes belong to signaling pathways commonly disrupted in the ana-

lyzed cancer types. For instance, paradigmatic examples of affected cancer pathways emerging

from our analyses are Ras and Wnt in colon cancer and the PI3K and mTor pathways in breast

and prostate cancers.

More unexpected and presumably novel genes of interest include for instance, GRIN2B—a

gene encoding for a subunit of a N-methyl-D-aspartate (NMDA) receptor family member—is

a source-level core gene for both breast and kidney cancer. Despite a relatively low incidence

of DNA aberration (2.1% and 3.6% respectively in kidney and breast cancer), this gene was

always associated with the divergent expression of a downstream RNA in both tumor types.

Our findings, along with the previously reported promoter hyper-methylation observed in gas-

tric [44], esophageal [45], and lung cancer [46], collectively suggest this gene might play a role

as tumor suppressor.

Another interesting example is PTK6 which encodes a cytoplasmic protein kinase also

known as breast cancer kinase. This is a core target gene in breast, lung, and prostate cancer,

with high probabilities of RNA aberration and upstream DNA aberration in breast and lung

(17.2% and 50.1% respectively).

Possibly, effects of different upstream DNA alterations can propagate and converge on

downstream targets to explain their aberrant expression. Thus PTK6 could represent a suitably

“unifying” target for treatment, despite the heterogeneous set of mutations observed in the

patient population. Interestingly, inhibition of PTK6 has been proposed for treatment in triple

negative breast cancer [47] and PTEN-null prostate cancer [48].

In addition, our analyses also point to specific interaction pairs, further underscoring the

importance of adopting a network view that goes beyond “hubs”, individual genes, and known

cancer driver, when interpreting the core sets. Table 2 include a number of pairs for colon can-

cer that can be directly mapped to specific signaling pathways. The APC) AXIN2 pair partici-

pates into Wnt signaling, while the MAML1) PBX1 pair is part of the Notch3 signaling

network. Both these pathways are known to regulate the homeostasis of the colonic epithelium,

and their alterations are well documented in colon cancer [49].

Finally, interesting differences between cancer subtypes and phenotypes emerged when we

analyzed STP coverings and tumor heterogeneity at population level. For instance, in lung can-

cer, source-level paired aberrations involving KRAS were most strongly associated with smok-

ing, whereas those involving EGRF showed an opposite trend, consistent with well-established

patterns [50]. Similarly, KRAS aberrations were virtually absent in the CRIS-C colon cancer

subtype, which was in turn enriched for aberrations involving TP53, as previously described
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[18]. CHEK1 in breast cancer is also a notable regulator of the response to DNA damage,

which is over-expressed in triple-negative breast cancer (TNBC) and has therefore been pro-

posed as a potential target for treatment [51]. Notably, we were not only able to confirm

CHEK1 aberration (with over-expression) in basal-like tumors (which are enriched for

TNBC), but also reveal this aberration in the luminal B subtype, suggesting a possible vulnera-

bility of this more aggressive type of breast cancer.

3.2 Heterogeneity

Regarding significant differences in the computed entropy (of the joint distribution of aberra-

tions) between tumor groups, larger entropy estimates were typically associated with more

severe disease phenotypes. This suggests that there is more diversity or variation in the DNA

and RNA profiles of sub-populations of patients with more aggressive disease phenotypes.

Such heterogeneity observed at the population level probably reflects the variability present at

the individual level—i.e., the intra-tumoral heterogeneity, stemming from genetic, epigenetic,

and cellular variation—which is a well-known factor impacting clinical outcome and therapy

response [52, 53]. Also notably, aggressive phenotypes are covered more efficiently than are

less aggressive ones. This may be reflective of more aggressive phenotypes accumulating many

more aberrations over time.

Large inter-patient variations in the genetic aberration profiles have been reported for indi-

viduals with the same diagnosis. Due to this heterogeneity combined with small sample sizes,

it is difficult to associate specific changes in gene expression with specific aberrations in cancer

genomes. In a recent pan-cancer study [11], the authors use matched whole-genome DNA and

RNA sequencing data for 1,188 patients in order to identify co-occurrent DNA and RNA aber-

rations focusing on fusions, copy number changes, and mutation-driven aberrant splicing, fol-

lowed by putative causal or mechanistic explanations. In contrast we leverage mechanistic

constraints via prior, independent, biological information.

One finding with some commonality is the significant correlation between DNA and

RNA alterations, observed in [11]. Results on our end can be seen from the values of P
(upstreamDNA|RNA) (see Table 4 and Tables Q—U in S1 Text). In our framework, STPs can

and usually do involve different partners and therefore our probabilities are not strictly com-

parable to those of PCAWG. Thus for us, “RNA” in P(upstreamDNA|RNA) refers to RNA-

aberration in a fixed target gene and “upstream DNA” means that the target gene is linked

(forms an STP) with some DNA-aberrant gene. Thefore a larger set of explanations is avaibale

for a given RNA aberration.

A multivariate statistical approach is seen in [10], where the authors first predict gene

expression from (phospho)protein expression and gene-specific transcription factor (TF)

binding sites using affinity regression, then predict TF and protein activities from somatic

changes. Biological analysis centers on specific genes and pathways, notably the dysregulating

effect on TFs of activating mutations in the PIK3CA pathway. This pathway also emerges as

pivotal in our results: indeed, the most common STPs in breast cancer are PIK3CA) S100B
and PIK3CA)MMP13 (see Table 1); PIK3CA is one of only three core source genes appear-

ing in at least three tissues (see Fig 3); and in breast cancer, PIK3CA is virtually certain to

have a downstream RNA aberrant target (see Table L in S1 Text). Whereas the methods here

and in [10] are largely non-overlapping, the spotlight falls on many of the same DNA-RNA

associations.

In [54], sample-specific Bayesian inference is applied to somatic genomic alteration and dif-

ferential gene expression data to identify driver genes. Characterizations of cancer types are

then obtained by summarizing the discovered relationships at the sample and the population
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levels. Whereas this program bears similarities with ours the objectives and methodology are

quite different: our analysis is top-down, based on applying a known network to directly char-

acterize a tumor population with a relatively concise set of paired genomic-transcriptomic

relationships, and designed for quantification of inter-tumor heterogeneity. In contrast, the

approach in [54] is model-driven and the networks are learned.

3.3 Limitations and extensions

At the DNA level, we have only considered non-synonymous somatic mutations and extreme

copy number variations. Specifically, we did not consider any annotation for mutations (e.g.,

specific base changes) beyond population frequencies. We have also limited our annotation of

downstream effects to the presence or absence of deviation of RNA expression from a baseline

(normal) population, not accounting for the direction of the aberration from baseline (i.e., up-

regulation or down-regulation). The simplicity of such a binarized representation has enabled

new findings and allows for some analysis of mechanism. Examination of source level paired

aberrations facilitate the process of annotating mutations with an unknown effect (so-called

variants of uncertain significance). Mutations that are recovered at the population level

together with copy number losses can be presumed to be inactivating, and vice-versa.

Further consistency constraints may be imposed for a deeper analysis of the biology. For

example, an STP may appear to be “inconsistent” if the source gene is duplicated or has an acti-

vating mutation and yet the target gene is down-aberrant, assuming the intermediate genes do

not further modulate signaling propagation through the network. Such situations should

clearly not be excluded. Needless to say there are many other explanations for such observa-

tions, e.g., methylation to take but one example. Indeed, there are many cases of aberrant target

genes which do not appear in any STP i.e., for which there is no putative explanation in terms

of upstream mutations and copy number variations. Uncovering a mechanistically coherent

picture of the upstream-downstream synergy would evidently require incorporating additional

types of data (e.g., gene fusions, histone modifications and changes in methylation), other

sources of transcriptional dysregulation (e.g., expression of microRNAs) and other down-

stream effects, such as post-transcriptional changes in regulation and aberrant protein struc-

ture and concentration. Without such data, making assumptions about consistency among the

catalogued and detected anomalies would result in damaging over-simplifications.

The covering signatures vary considerably from one tissue or subtype to another. For

instance, among our six tissues and at any level (source, target, or pair) the core set of features

(those shared by all minimal coverings) is the smallest in colon and accounts for all colon sam-

ples in TCGA, whereas substantially larger signatures were necessary in other tumors (e.g., in

breast), and some populations could not even be largely covered (e.g., in prostate) regardless of

the number of features. On one hand, a plausible bias here is that better and more refined net-

work information is available for some cancer types than others. For instance, colon cancer

has served for years as a model of tumorigenesis, and a wealth of data is available to derive

“realistic” signaling pathways and regulatory networks compared with cancer types studied to

a lesser extent. On the other hand other DNA alterations, beside mutations and copy number

changes, can drive tumorigenesis and may be necessary to efficiently “cover” a cancer popula-

tion. A prototypical example is that the exceptionally large coverings in prostate cancer may be

due to the absence of data on gene fusions; in fact, over a half of the tumors could be accounted

for by a small subset of such alterations (e.g., the fusion between TMPRSS2 and ERG, or other

ETS family genes [55]).

Finally, the theoretical framework we have developed is based on the “Regulators! Tar-
gets” paradigm and would support the incorporation of additional omics information. In fact,
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gene fusion, epigenetic measurements, epigenomic states, enhancer expression, and so forth,

could be simply integrated to generate an expanded repertoire of STPs, as could proteomics or

metabolomics serve as additional downstream “targets”. To this end, epigenetics events (e.g.,

methylation status, chromatin modification marks, and so on) could be easily integrated with

DNA aberrations at the “source” level, while protein levels could be combined with RNA mea-

surements. In both cases, a set of mechanistic rules would be required to integrate the different

data types. For instance, a specific “source” gene in a pair could be defined as “aberrant” if it

is mutated, OR it is deleted, OR it is hyper-methylated, and so on. Similarly, a “target” gene

could be deemed “aberrant” based on biologically justified rules for combining protein and

RNA data. Importantly, from the computational point of view, adding further modalities

would not change the number of constraints in the optimization.

4 Conclusions

We have described an integrated analysis of DNA and RNA aberrations, which is grounded in

cancer biology and enabled by a highly simplified summary representation of the complex and

heterogeneous landscape of aberrations in cancer populations. The summary is a collection of

STPs, each linking a particular DNA aberration with a downstream RNA expression change,

and derived automatically from a “covering” algorithm in combinatorial optimization. Beside

recapitulating many known alterations, our collection of STPs flags potentially important aber-

rations and interactions which might go unrecognized using simple frequency criteria, given

the accumulation of low frequency events at the population level. This integrated representation

could facilitate discriminating cancer drivers from passenger aberrations, and suggest potential

novel therapeutic targets for further functional studies. Furthermore, this representation allows

for a rigorous quantitative estimate of heterogeneity in a cancer population and across distinct

tumor phenotypes, which would not be otherwise feasible. Indeed, in order to quantify hetero-

geneity beyond a simple listing of possibilities, it is necessary to assign likelihoods to these possi-

bilities and their co-occurrences, in which case the entropy of the distributions over the possible

combinations is the natural measure. The heterogeneity differences observed between distinct

cancer phenotypes, along with the interactions among paired aberrations, suggest that our

approach can represent an alternative to standard statistical filtering to identify important fea-

tures for predictive model building and machine learning application in cancer. Finally, our

analytical framework provides a highly efficient and innovative computational tool for harness-

ing the expanding data on tumor samples emerging from large consortia projects.

Supporting information

S1 Text. The file contains all supplementary figures and tables referenced from the main

paper. Specifically, this supporting file contains two subsections. In the Supplementary

Table subsection, Tables A—B show results pertaining to the selection of parameters k and L.

Tables C—D show the basic statistics of interactions before and after filters. Tables F—U illus-

trate the statistics of “Optimal Covering” and core set with associated probabilities for 5 tissues

at 3 levels. Tables V—I display the divergence probabilities at different cancer subtypes. Tables

II and III show the entropy analysis across distinct tissues. In Supplementary Fig subsection,

Fig A shows probabilities relating to target cores, and Fig B shows effects of filter thresholds on

fraction of samples covered. Figs C—G show pair covering network across different cancers.

Figs H—J show annotated network for cancer subtypes. Figs L—M show the complete core set

across tissues. Figs N—P display coding trees for cancer subtypes.
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S1 Data. The compressed archive contains 6 “DNABinary.txt.gz” files which correspond to

binary DNA aberration matrices for all tumor types, 6 “RNABinary.txt.gz” files which cor-

responds to binary RNA aberration matrices for all tumor types, and “full_signature.xlsx”

which contains one full signature for each tumor type at each level (pair, source, target).
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