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Abstract

Protein-DNA interactions play important roles in regulations of many vital cellular processes,
including transcription, translation, DNA replication and recombination. Sequence variants
occurring in these DNA binding proteins that alter protein-DNA interactions may cause sig-
nificant perturbations or complete abolishment of function, potentially leading to diseases.
Developing a mechanistic understanding of impacts of variants on protein-DNA interactions
becomes a persistent need. To address this need we introduce a new computational
method PremPDI that predicts the effect of single missense mutation in the protein on the
protein-DNA interaction and calculates the quantitative binding affinity change. The Pre-
mPDI method is based on molecular mechanics force fields and fast side-chain optimization
algorithms with parameters optimized on experimental sets of 219 mutations from 49 pro-
tein-DNA complexes. PremPDlI yields a very good agreement between predicted and exper-
imental values with Pearson correlation coefficient of 0.71 and root-mean-square error of
0.86 kcal mol™'. The PremPDI server could map mutations on a structural protein-DNA com-
plex, calculate the associated changes in binding affinity, determine the deleterious effect of
a mutation, and produce a mutant structural model for download. PremPDI can be applied
to many tasks, such as determination of potential damaging mutations in cancer and other
diseases. PremPDl is available at http:/lilab.jysw.suda.edu.cn/research/PremPDI/.

Author summary

Developing methods for accurate prediction of effects of amino acid substitutions on pro-
tein-DNA interactions is important for a wide range of biomedical applications such as
understanding disease-causing mechanism of missense mutations and guiding protein
engineering. Very few methods have been developed for predicting the effects of muta-
tions on protein-DNA binding affinity. Here we report a new computational method,
PRedicts the Effects of single Mutations on Protein-DNA Interactions (PremPDI). The
core of the PremPDI method is based on molecular mechanics force fields and fast side-
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chain optimization algorithms that makes the PremPDI algorithm efficient and being fast
enough to handle large number of cases. The performance of the PremPDI protocol was
tested against experimentally determined binding free energy changes of 219 mutations
from 49 protein-DNA complexes and yields very good correlation coefficient. The Pre-
mPDI webserver is available to the community at http://lilab.jysw.suda.edu.cn/research/
PremPDI/.

Introduction

There has been a rapid development of genome-wide techniques in the last decade along with
significant lowering of the cost of gene sequencing, which generated widely available genomic
data. However, the interpretation of genomic data and prediction of the association of genetic
variations with diseases and phenotypes still require significant improvement [1]. Crucial
prerequisite for proper biological function is a protein’s ability to establish highly selective
interactions with macromolecular partners. Protein-DNA interactions play important roles in
regulations of many vital cellular processes, including transcription, translation, DNA replica-
tion, repair and recombination. Sequence variants occurring in these DNA binding proteins
that alter protein-DNA interactions may cause significant perturbations or complete abolish-
ment of function, potentially leading to many diseases, such as cancer and heart diseases [2-4].
One possible way to assess the effect of a mutation on protein-DNA interaction is to experi-
mentally measure the binding affinity change. However, while site-directed mutagenesis meth-
ods are inexpensive and fast, surface plasmon resonance [5], isothermal titration calorimetry
[6], FRET [7] and other methods used to measure binding affinity can be time-consuming and
costly. Therefore, the development of reliable computational approaches to predict the effects
of missense mutations on proteins and their complexes would give us important clues for
identifying functionally important missense mutations, understanding the molecular mecha-
nisms of diseases and facilitating their treatment and prevention.

With recent rapid advances in computational biology, many approaches have been devel-
oped to offer a phenotypic classification of mutations into damaging and neutral categories
[8-10], to calculate the impact of mutations on protein stability [11-13] and protein-protein
interactions [14-18]. Previously, we developed two methods for predicting the effect of single
mutation on protein-protein binding affinity change. One used modified MM/PBSA, statisti-
cal scoring energy functions and structure minimization protocol with explicit solvent model
[17]. The other updated method of MutaBind [14], which combined additional features and
used a 100-step energy minimization in the gas phase that considerably increases the predic-
tion accuracy and calculation speed. Our method was applied to predict the effects of cancer
mutations on the binding between CBL ubiquitin ligase and E2 conjugating enzyme, where
predicted binding affinity changes were successfully compared with the experiments using
cancer and non-cancer cell lines [19]. However, very few methods can predict the effects
of mutations on protein-DNA binding affinity [20]. Very recently, two prediction methods
with servers, nCSM-NA [21] and SAMPDI [22], were proposed for performing this task.
mCSM-NA relies on graph-based signatures and can predict the effect of single mutation on
protein-DNA and protein-RNA binding, while SAMPDI combines modified MM/PBSA
based energy terms with additional knowledge-based terms for predicting the protein-DNA
binding affinity change upon single mutation. As we know, machine learning methods that
use different features and training sets may produce different performances on diverse muta-
tions and complexes[23]. Therefore, more fast and accurate computational methods need to
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be developed for increasing the range of applications on different kinds of complexes and
mutations and explaining the mechanisms, such as the molecular mechanisms of disease pro-
gression caused by mutations.

To address this need we present a new computational method and webserver, PremPDI
(http://lilab.jysw.suda.edu.cn/research/PremPDI/) which is based on molecular mechanics
force fields and fast side-chain optimization algorithms. PremPDI can evaluate the effects of
sequence variants and disease mutations (both interfacial and non-interfacial mutations) on
protein-DNA interactions; calculate the quantitative change in binding affinity upon single
mutation; assess deleterious effects and produce models of mutant complexes. PremPDI is val-
idated using different types of cross-validation and is compared with two other methods using
a variety of training and test sets. PremPDI can be applied to many tasks, including finding
potential driver missense mutations in cancer, investigating the effects of sequence variations
on protein fitness in evolution and protein design.

Methods
Compilation of experimental datasets of mutations

ProNIT database [24] includes experimentally measured values of changes in binding free
energies upon single and multiple amino acid substitutions (called “mutations” hereafter)
derived from the scientific literatures for protein-nucleic acid complexes with experimentally
determined structures. dbAMEPNI database [25], being developed recently, focuses on the
effects of single alanine-scanning mutations on the experimentally measured binding affinities
between protein and nucleic acid. It comprises a total of 577 mutations with quantitatively
characterized thermodynamic effects, among of them 345 were taken from ProNIT database.
Both databases were used for compiling the dataset for parameterization of PremPDI. The fol-
lowing criteria were applied in constructing our dataset: removal complexes without wild-type
protein structures or with modified residues or nucleotides at the binding interface of protein-
DNA; removal mutations for their mutated sites with missing coordinates in the correspond-
ing wild-type complex structures; eliminating ProNIT entries with multiple mutations restrict-
ing our set to single mutations. Furthermore, to avoid the inconsistency between nucleic acids
used for measuring binding affinity and those for developing prediction model based on com-
plex 3D structures, we carried out the comparison of sequence similarity between the nucleic
acids of binding sites observed in the protein-DNA structures and the sequences used in the
corresponding experiments. Then the entries with high sequence similarity (80%) for the
nucleic acids in the binding interface were kept. ProNIT database includes the sequences of
DNA used for measuring binding affinity, while dbAMEPNI database does not. So, we manu-
ally compiled them from the corresponding references. There are some entries where several
experimental values are available for the same mutation. For these cases that are not drastically
different from each other, we used an average value of experimental changes in binding free
energy. In addition, 20 mutations from five protein-DNA complexes abstracted from SAMPDI
training set [22] were also included in our dataset. As a result, the experimental set used in this
study includes 219 single mutations from 49 wild-type protein-DNA complexes (it will be
referred to as “Prempdi”) (S1 Table). Only 105 mutations obtained from ProNIT database
have the information of experimental pH. Thus, we chose the experimental pH to be neutral
assuming that at neutral pH the ionizable residues have default charged states. The number of
mutations for each protein-DNA complex is shown in S1 Fig We also compared our dataset
with the training datasets used for developing SAMPDI and mCSM methods, and the details
are shown in S1 Table.
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Structure optimization protocol

Crystal or NMR structures of wild-type protein-DNA complexes were obtained from the Pro-
tein Data Bank (PDB) [26], and biological assembly 1 of crystal structure or the first model of
NMR was used as the initial structure. First we introduced a single mutation on the wild-type
Protein-DNA complex structure using BuildModel module from FoldX [27] software package.
Missing heavy side chain atoms and hydrogen atoms were added for the wild type and mutant
using VMD program [28] based on the topology file from the CHARMM36 force field [29].
Then a 100-step energy minimization in the gas phase was carried out for both wild type and
mutant using harmonic restraints (with the force constant of 5 kcal mol™ A™?) applied on the
backbone atoms of all residues. Minimization was done only for protein-DNA complexes, and
protein or nucleic acid structures of binding partners were retained assuming the rigid-body
binding. The energy minimization was carried out with NAMD program version 2.12 [30]
using the CHARMM36 force field [29]. A 12 A cutoff distance for nonbonded interactions
was applied to the systems. Lengths of hydrogen-containing bonds were constrained by the
SHAKE algorithm [31]. The current structure optimization protocol was chosen based on its
highest accuracy and speed. The performances for other structure optimization protocols that
have been tried are shown in S2 Table. The minimized structures of wild-type and mutant
complexes were used for the calculation of energy terms.

Calculation of binding energy terms

Our goal is to design a method to assess the effects of mutations on protein-DNA binding.
Mutations can affect binding in different ways [32]. They may change the components of
protein-DNA interaction energies, may affect the solvation of a complex, may change the
hydrogen-bond network and may directly disrupt binding hotspot sites [33]. Besides, the
interactions between protein and the two types of nucleic acids (DNA and RNA) are also dif-
ferent, which was validated by a detailed computational comparison at the atomic contact level
[34]. Here, through analysis of different kinds of protein sequence and structural features

(S3 Table shows all features considered in our model selection), we found that nine features
contributed significantly to the quality of multiple linear regression model (MLR) for the cal-
culation of AAG value (change in binding affinity upon mutation) affecting protein-DNA
interactions (Table 1). The features that contribute significantly to the quality of PremPDI
model are described below.

Table 1. The p-value and importance of each feature in energy function for binding affinity change determined
by multiple linear regression (MLR).

Feature P-value Importance
wt

SAL.m 5.74e-09 0.47
AAG,,p, 6.34e-08 0.41
AN P2 5.37e-06 0.33
AE;',':C"(‘”"’Z) 1.98e-07 0.28
N;“,‘b‘ff,fff’“") 2.33e-06 0.27
Lt 9.42e-04 0.26
AAES ! 4.30e-04 0.18
AEg,14 3.03e-03 0.17
A 2.28e-03 0.17

location

All features have significant contribution to the quality of the model with p-value < 0.01 (-test). Standardized
coefficients are used for describing the importance for MLR.

https://doi.org/10.1371/journal.pcbi.1006615.t001
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o AAGy,y, is the difference between polar solvation energies of mutant and wild-type protein-
DNA complexes (AAG,,, = AG™ — AGY,). AGY, and AG”}! are the differences between
polar solvation energies of a complex and each interacting partner (AG = G,,, — Gy1 — Gp2)
(p1: partnerl, proteins; p2: partner2, DNA) in water for wild-type and mutant complexes
respectively. These terms are calculated from solving the Poisson-Boltzmann equation with
PBEQ module [35] of CHARMM program [36]. For the PB calculation, dielectric constants,
€=2,6, 10, 14, 18 and 20, were tested using the optimized minimization protocol and energy
function. As a result, € = 2 for the protein interior and € = 80 for the exterior aqueous envi-
ronment were used for polar solvation energy calculations in our energy model with the best
performance (the testing results using different dielectric constants are shown in S4 Table).
The ion concentration of zero was used for energy calculation[17].

o AAES ! is the difference between Van der Waals interaction energies of mutant and wild
type (AAE:/’;;?;“H — AEvmdr:j.(site—ull) _ AEWt.(site—ull))' AE:/;;/I(,site—all) and AEmut.(site—all) are Van der

vdw vdw
Waals interaction energies between residue in the mutated site and the rest of protein-DNA
complex located within 10 A from it for wild-type and mutant complexes respectively. They

are calculated using ENERGY module of CHARMM program [36].

AE® ) i electrostatic interaction energy between protein and DNA within 10 A from

each other in mutant. They are calculated using ENERGY module of CHARMM program [36].

« AND P and Nyt~ - ANPL P is the difference between the number of hydrogen bonds

ond
Npl—p? _ Nmut.(pl—p?) _ Nwt.(pl—p?)).

formed in mutant and wild-type protein-DNA complexes (ANp,.ri = Nipout fi

N2 722 and NP7 terms account for the number of hydrogen bonds formed between
protein and DNA for wild-type and mutant complexes respectively; N7~ is the number of
hydrogen bonds formed between residue in the mutated site and the rest of wild-type protein-
DNA complex. Hydrogen bonds are identified with the CORMAN command of CHARMM
program using the following criteria: the maximum distance between acceptor and hydrogen is

2.5 A and the minimum angle of donor—hydrogen—acceptor is 90°.

o SAY, o is the ratio of SAY) and SAY;.SAY and SAT; are the solvent accessible surface areas

of complex and DNA respectively for wild type. Solvent accessible surface area is calculated
using SASA module of CHARMM program.

« A}, isequal to 1 if the mutation occurs on protein-DNA interface, otherwise it is 0. We

define a residue to be located on a protein-DNA interface if residue’s solvent accessibility in
the complex is lower than in the corresponding unbound partners.

o AEj, is a pairwise statistical potential for protein folding which was obtained from an opti-
mization procedure that maximizes thermodynamic stability for all proteins simultaneously
[37]. It is obtained from Amino Acid Index Database with identifier of MIRL960101 (AAin-
dex, http://www.genome.jp/aaindex/).

o L, is the length of mutated protein chain.

Results and discussion
Model training through multiple linear regression

The p-value and contribution of each term to the PremPDI model are shown in Table 1,
and all terms contribute significantly to the energy model with p-values less than 0.01. If we
train and test our model on the ‘Prempdi’ set, the Pearson correlation coefficient between
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Fig 1. PremPDI performance. Pearson correlation coefficients between experimental and calculated changes in binding free energies (AAG) for “Prempdi”
training/test set (a), for two types of cross-validation (CV1 and CV2) (b) and for “leave-one-complex-out” cross-validation (CV3) (c). ROC curves for
predictions of deleterious mutations applied on “Prempdi” set (d).

https://doi.org/10.1371/journal.pcbi.1006615.9001

experimental and calculated changes in binding free energies is R = 0.71 (Fig la and Table 2)
and the corresponding root-mean-square error (RMSE) is 0.86 (Table 2). Among 219 muta-
tions in “Prempdi” dataset, 179 ones belong to alanine-scanning single mutations defined as
substitutions of residues into alanine and 134 ones located on the interfaces of protein-DNA
complexes according to our definition (see Method® section). The results show that our model
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Table 2. PremPDI performance.

Test set Method R RMSE (kcal mol™) Slope
Prempdi PremPDI 0.71 0.86 1
PremPDI (CV1) 0.68 0.90 0.94
PremPDI (CV2) 0.68 0.90 0.95
PremPDI (CV3) 0.63 0.95 0.90
Alanine-scanning mutations PremPDI 0.68 0.87 0.97
PremPDI (CV3) 0.58 0.96 0.87
Non-Alanine- scanning mutations PremPDI 0.64 0.81 0.88
PremPDI (CV3) 0.58 0.88 0.72
Interfacial mutations PremPDI 0.71 0.86 1.01
PremPDI (CV3) 0.64 0.95 0.89
Non-interfacial mutations PremPDI 0.69 0.85 0.98
PremPDI (CV3) 0.59 0.95 0.91

R: Pearson correlation coefficient between experimental and predicted AAG values. RMSE: root-mean square error.
The last column shows the slope of the regression line between experimental and predicted AAG values. All
correlation coefficients are statistically significantly different from zero (P-value << 0.01). CV1 and CV2 results for
“Alanine-scanning mutations”, “Non-Alanine-scanning mutations”, “Interfacial mutations” and “Non-interfacial

mutations” test sets are shown in S5 Table.

https://doi.org/10.1371/journal.pchi.1006615.t002

does not present bias to alanine-scanning mutations and yields good performance for non-ala-
nine-scanning mutations with R = 0.64 and RMSE = 0.81 (Table 2). As was shown previously
[14,17], mutations located on the interface region present average larger effects on protein-
protein interactions and are better predicted compared to non-interface mutations. In this
study, PremPDI yields statistically significant correlation (p-value < 0.01) in predicting non-
interfacial mutations and the correlation reaches value as high as 0.69 and RMSE is 0.85. We
also tried several other machine learning methods such as random forest, support vector
machine and neural network to build our model using these nine features. Cross-validation
and leave one complex validation that will be discussed in the next section show that multiple
linear regression represents the best performance.

In addition, we performed multicollinearity analysis to investigate the linear association
across each feature. Pearson correlation matrixes and variance inflation factors (VIF) for the
energy features in PremPDI are shown in S6 Table. The results show that AAGy,;, has relatively

strong correlation with AN?, % (R = -0.71), SA™ /p» has relatively strong correlation with L,,,,,,

with R of 0.74, and the rest of the correlations are either small or are not significantly different
from zero. The VIFs of all features are less than three representing relatively low multicolli-
nearity. We removed highly correlated features from our energy function that results in
decrease of prediction accuracy. For instance, removal AN?, *% from PremPDI MLR model
leads to the decrease of correlation from 0.71 to 0.68. Thus, all nine features were kept in our
final model to achieve the optimal performance.

PremPDI takes about five minutes to perform calculations for a single mutation in a pro-
tein-DNA complex with 300 residues and 30 nucleotides running on a single processor core,
and it requires additional two-to-three minutes for each additional mutation per complex.

Evaluating the performance of PremPDI using cross-validation and leave
one complex validation
Our goal is to construct a computational method that can achieve a high prediction accuracy

for large and diverse sets of single mutations. In many cases, overfitting may occur when the
parameters of computational methods are tuned to minimize the mean square deviations of
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predicted from experimental values in the training set, thus leading to the decreased general-
ized performance [38]. At the same time the training set should be as comprehensive as possi-
ble, while in our study the data set used for training and testing is relatively small. To address
this issue, we performed three types of cross-validation. In case of “CV1” cross-validation (Fig
1b), 50% mutations selected randomly from “Prempdi” set were used for training and the
remaining mutations for testing, the procedure was repeated 50 times. In “CV2” cross-valida-
tion we randomly chose 80% of all mutations as training and used the remaining 20% muta-
tions for testing, also repeated 50 times. The average Pearson correlation coefficient is R = 0.68
for both “CV1” and “CV2” with small standard error of 0.06 (Fig 1b). The RMSE is 0.9 kcal
mol ™! for both cross validations (Table 2).

Since the prediction accuracy of mutational effects largely depends on sequence and struc-
ture of a complex, we performed a “leave-one-complex-out” procedure (“CV3” cross-valida-
tion). Namely, we trained the parameters on experimental AAG values of mutations from 48
protein-DNA complexes and then applied the model to mutations from the remaining one
complex. This procedure was repeated for each complex. The Pearson correlation coefficient
between experimental and computed AAG values using this procedure is R = 0.63 with RMSE
0f0.95 kcal mol™ (Fig 1c and Table 2). In addition, for alanine-scanning, non-alanine-scanning,
interfacial and non-interfacial mutations, they also present relatively high correlation coeffi-
cients and low RMSEs in “CV3” cross-validation, especially for interfacial mutations (Table 2).

We also analyzed the variation of the weighting coefficient for each feature in “CV17,
“CV2” and “CV3” cross-validation respectively. The results are shown in S7 Table. The stan-
dard deviations of the weighting coefficients are relatively small even for “CV1” cross-valida-
tion, 50% mutations from “Prempdi” set were used for training and the remaining mutations
for testing, which indicates the variation is not significant across each fold. In addition, the
average weighting coefficients in each cross-validation were compared with the weighting
coefficients of the final PremPDI model and the results show that the differences for all energy
features are very small. All the validations indicate that our PremPDI model does not overfit
on its training set and all features have significant contribution to the energy function.

Evaluating the performance of PremPDI to predict deleterious effects of
mutations

Predicting the quantitative values of binding affinity changes is quite challenging. A much eas-
ier task, attempted by many studies, is to classify mutations based on their effects into deleteri-
ous or neutral. Several thresholds of experimentally determined AAG, 1, 1.5, 2.0 and 2.5 kcal
mol™, were tested for defining mutations with deleterious (highly destabilizing) effects (see S2
Fig). The number of mutations in each category is shown in S2a Fig Threshold of 1 kcal mol™
has the most balanced dataset. To quantify the performance of PremPDI scores, we performed
Receiver Operating Characteristics (ROC) and precision-recall analyses. Sensitivity or true pos-
itive rate was defined as TPR = TP/(TP + FN) and specificity or true negative rate was defined
as TNR = 1-FPR = TN/(FP+TN). Additionally, in order to account for imbalances in the
labeled dataset, the quality of the predictions was described by Matthews correlation coefficient
(MCC), a performance measure which is known to be more robust on unbalanced datasets:

TP+« TN — FP % FN
/(TP + FP) % (TP + FN) * (TN + FP) % (TN + FN)

MCC =

S2b-S2e Fig show the ROC and precision-recall curves by applying PremPDI on the “Pre-
mpdi” training/test set using different thresholds. S2f Fig depicts the basic summary of per-
formance metrics, including AUC for ROC and precision-recall curves and MCC. The
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results show that threshold of 1.5 kcal mol ™ has the highest AUC-ROC of 0.91 and MCC of
0.61 in distinguishing deleterious and neutral mutations (S2b and S2f Fig). Threshold of 1
kcal mol™ has the highest AUC-PR of 0.83 and its AUC-ROC and MCC is 0.84 and 0.58
respectively (S2d and S2f Fig). S2c and S2e Fig show that threshold of 1 kcal mol ™" classifica-
tion has the best performance in the deleterious mutation prediction with less than 10% false
positive rate and more than 50% precision. Here, we choose AAG,,, = 1 kcal mol ™ as the
threshold to define deleterious effect, and it is also in agreement with SAMPDI method for
classifying large and small effects [22]. Fig 1d shows the ROC curves for PremPDI and Pre-
mPDI (CV3) to distinguish deleterious and neutral effects using threshold of 1 kcal mol™.
Therefore, PremPDI classifies a mutation as deleterious if its predicted AAG is higher or
equal to 1.10 kcal mol™ (S3 Fig). This threshold corresponds to 14% FPR and 77% TPR

which minimizes the value of error ER = \/ (1 — TPR)? + FPR? to compensate retrieval sen-
sitivity and specificity.

Comparison of PremPDI with other methods

We compared our method with the other two available machine learning methods, mCSM-NA
[21] and SAMPDI [22]. mCSM-NA uses graph-based signatures to calculate the changes in
protein-nucleic acid binding affinity upon single mutations. SAMPDI uses a combination of
modified MM/PBSA based energy terms with additional knowledge-based terms to predict the
AAG values of interfacial mutations for protein-DNA complexes. The training sets for parame-
terizing PremPDI method and the other two have some differences, which is shown in S1
Table. Among 219 mutations from 49 complexes in PremPDI training set (“Prempdi”), 105
mutations from 16 complexes overlap with mCSM-NA training set of “Mcsm” (the overlapped
set is named as “P.0.M”) and 77 mutations from 11 complexes overlap with SAMPDI training
set of “Sampdi” (the overlapped set is named as “P.0.S”). 114 mutations from 33 complexes in
“Prempdi” are not included in the “Mcsm” (named as “P.D.M”) and 142 mutations from 43
complexes in “Prempdi” are not in the “Sampdi” (named as “P.D.S”). Since SAMPDI is used
in particular for interfacial mutations, we created a subset of “P.D.S” and named it as “P.D.S.I”
that includes 77 interfacial mutations from 32 complexes.

We performed several types of comparisons between our method and the other two using
four different test sets. “P.O.M” or “P.0O.S” is the test set of overlapped mutations used for
developing PremPDI and mCSM or SAMPDI respectively. So, we compared PremPDI with
them using the model that built on the whole ‘Prempdi’ dataset. “P.D.M” or “P.D.S.I” test
set represents the mutations that are included in the ‘Prempdi’ but not in the ‘Mcsm’ or
‘Sampdi’. So, to be fair, we used both “leave-one-complex-out” (CV3) results and the model
built on the independent ‘P.O.M’ or ‘Prempdi-P.D.S.I” dataset (named as PremPDI(Ind)) to
compare with the other methods respectively. Pearson correlation coefficients and RMSE
between experimental measurements (AAG.,,,,) and predictions show that PremPDI presents a
similar performance with mCSM-NA method and performs better than SAMPDI in predicting
quantitative values of AAG (Table 3). ROC curves shown in Fig 2 and AUC-ROC, AUC-PR
and MCC values presented in Table 3 (The number of mutations in each category is shown in
S4 Fig) demonstrate that the performance of PremPDI is notable in estimating deleterious
effects (highly destabilizing) for all test sets and better than mCSM-NA and SAMPDI methods.

Webserver input

The main requirement of the webserver is the 3D structure of a protein-DNA complex. The
users can either input PDB code of the complex, then structures of either biological assemblies
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Table 3. Comparison of methods’ performances on different test sets.

Test set Training set Method R RMSE (kcal mol ™) AUC-ROC AUC-PR MCC
P.O.M Prempdi PremPDI 0.80 0.81 0.88 0.87 0.54
Mcsm mCSM 0.76 0.95 0.82 0.79 0.50
P.O.S Prempdi PremPDI 0.68 0.63 0.88 0.81 0.52
Sampdi SAMPDI 0.39 0.80 0.66 0.53 0.27
P.D.M Prempdi PremPDI(CV3) 0.51 0.97 0.78 0.72 0.54
P.O.M PremPDI(Ind) 0.51 1 0.77 0.72 0.41
Mcsm mCSM 0.54 1.17 0.69 0.65 0.28
P.D.S.I Prempdi PremPDI(CV3) 0.70 1.10 0.85 0.82 0.62
Prempdi- P.D.S.I PremPDI(Ind) 0.74 1.08 0.85 0.83 0.68
Sampdi SAMPDI 0.53 1.32 0.79 0.71 0.35

R: Pearson correlation coefficient between experimental and predicted AAG values. RMSE: root-mean square error. AUC-ROC: the AUC values of ROC curves.

AUC-PR: the AUC values of Precision-recall curves. MCC: Matthews correlation. All correlation coefficients are statistically significantly different from zero (p-

value < 0.01). The descriptions of training and test set are shown in S1 Table. Nine mutations do not have SAMPDI scores in the P.D.S.I test set, so they were excluded

in the comparison.

https://doi.org/10.1371/journal.pcbi.1006615.t003

or asymmetric unit will be retrieved from the Protein Data Bank, or they can upload their own
file with atomic coordinates. In either case, the structure file should contain at least two chains.

After the structure was retrieved correctly, the server will display a 3D view of the complex
colored by chains or partners using the GLmol software. Each chain is listed with the corre-
sponding protein or nucleic acid name. At the second step, two interacting partners should be
defined. The user can assign one or multiple chains to either Partner 1 or Partner 2, but both
partners should include at least one chain. Here, we restrict Partner 1 to proteins and Partner
2 to DNA and the selected protein/DNA chain will be put into the box of Partner1/Partner2
automatically. Only the selected chains of two partners will be taken into account during the
calculation. If the interface size between two partners is more than 100 A, we define them
interacting with each other and then perform the calculation. Interface size is calculated as the
difference between the solvent accessible surface areas of complex and unbound partners.

The third step is to select mutations (Fig 3). Each mutation will be treated independently
and up to 16 single mutations can be selected for one submission. After the chain and the
mutated residue are selected, they can be visualized in the wild-type complex using the 3D
viewer.

Webserver output

For each mutation of a protein-DNA complex, PremPDI server provides the following results:

+ AAG (kcal mol™), predicted binding affinity change induced by single mutation. Positive
and negative signs correspond to destabilizing and stabilizing mutations predicted to
decrease and increase binding affinity respectively.

« Interface (yes/no), PremPDI defines a residue to be located on the protein-DNA interface if
residue’s solvent accessibility in the complex is lower than in the corresponding unbound
partners.

« Deleterious (yes/no), PremPDI classifies a mutation as deleterious if AAG is higher or equal
to 1.10 kcal mol ™. This threshold corresponds to a minimum value of ER to compensate
retrieval sensitivity and specificity.

« Coordinates of the minimized mutant structure are provided for download.
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Fig 2. Assessment of classification performance between deleterious and neutral mutations. ROC curves for PremPDI, mCSM-NA and SAMPDI methods

applied on different training and test set. More information is shown in Table 3.

https://doi.org/10.1371/journal.pchi.1006615.9002

« Protein binding sites in protein-DNA complexes homologous to the query are identified
using Inferred Biomolecular Interactions Server at NCBI (IBIS) server [39]. It allows testing
mutations of aligned binding site residues in homologous protein-DNA in PremPDI.

Results can be viewed directly on the browser (Fig 3) or downloaded as a plain text file.
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Fig 3. Left corner: The entry page of PremPDI server; right corner: The third step for selecting mutations, wild-type
residue (R124) in the mutated site is shown in the 3D viewer; and bottom: Final results table and alignment of
homologous binding sites.

https://doi.org/10.1371/journal.pcbi.1006615.9003
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S2 Fig. Assessment of classification performance between deleterious and neutral muta-
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nition and the number of deleterious, neutral and stabilizing mutations for four thresholds.
(b) ROC curves. (c) shows the ROC curves corresponding to FPR less than 10%. (d) Precision-
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