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Abstract
Objective To develop an automatic COVID-19 Reporting and Data System (CO-RADS)–based classification in a multi-
demographic setting.
Methods This multi-institutional review boards–approved retrospective study included 2720 chest CT scans (mean age, 58 years
[range 18–100 years]) from Italian and Russian patients. Three board-certified radiologists from three countries assessed ran-
domly selected subcohorts from each population and provided CO-RADS–based annotations. CT radiomic features were
extracted from the selected subcohorts after preprocessing steps like lung lobe segmentation and automatic noise reduction.
We compared three machine learning models, logistic regression (LR), multilayer perceptron (MLP), and random forest (RF) for
the automated CO-RADS classification. Model evaluation was carried out in two scenarios, first, training on a mixed multi-
demographic subcohort and testing on an independent hold-out dataset. In the second scenario, training was done on a single
demography and externally validated on the other demography.
Results The overall inter-observer agreement for the CO-RADS scoring between the radiologists was substantial (k = 0.80).
Irrespective of the type of validation test scenario, suspected COVID-19 CT scans were identified with an accuracy of 84%.
SHapley Additive exPlanations (SHAP) interpretation showed that the “wavelet_(LH)_GLCM_Imc1” feature had a positive
impact on COVID prediction both with and without noise reduction. The application of noise reduction improved the overall
performance between the classifiers for all types.
Conclusion Using an automated model based on the COVID-19 Reporting and Data System (CO-RADS), we achieved clinically
acceptable performance in a multi-demographic setting. This approach can serve as a standardized tool for automated COVID-19
assessment.
Keypoints
• Automatic CO-RADS scoring of large-scale multi-demographic chest CTs with mean AUC of 0.93 ± 0.04.
• Validation procedure resembles TRIPOD 2b and 3 categories, enhancing the quality of experimental design to test the cross-dataset
domain shift between institutions aiding clinical integration.

• Identification of COVID-19 pneumonia in the presence of community-acquired pneumonia and other comorbidities with an AUC of
0.92.
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GLCM Gray-level co-occurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
LBP2D Local binary pattern 2D
LoG Laplacian of Gaussian
LR Logistic regression
MLP Multilayer perceptron
NR Noise reduction
RF Random forest
RT-PCR Reverse transcription–polymerase

chain reaction
SHAP SHapley Additive exPlanations

Introduction

Previously published articles have shown that COVID-19 has
distinct imaging features making screening of suspected cases
and evaluating disease progression using CT possible [1, 2].
Based on CT findings, several radiological societies have re-
leased standardized protocols for suspicion staging COVID-
19 patients [3–5]. The COVID-19 Reporting and Data System
or CO-RADS is a five-class suspicion classification scheme
released by the Dutch Radiological Society (NVvR) [4]. CO-
RADS includes discerning features related to unequivocal
noninfectious origins, or community-acquired pneumonia
from typical COVID-19 features on an unenhanced chest
CT in a population with high incidence of COVID-19. This
reporting system has shown high discriminatory power in
triaging COVID-19 and provides an appropriate reporting lan-
guage understandable by any radiologist [6, 7]. Therefore,
using a standardized score such as CO-RADS is the most
straightforward way of implementing an automated COVID-
19 detection method [8].

The urgency to aid radiologists to detect COVID-19
has resulted in a rush to develop machine learning and
deep learning models by neglecting a standardized ap-
proach. For example, the use of non-generalizable data
for model training (single demographic, public datasets
with different acquisition or reconstruction protocols, un-
availability of source DICOM, scans with image arti-
facts) has resulted in poor application of machine learn-
ing methodology. This limitation has led to reproducibil-
ity issues and biases in recent study designs [9]. This can
further aggravate as data characteristics change based on
demographics, immunity landscape and clinical practice
shift between different pandemic stages. Therefore, AI-
driven studies should follow standardized and reproduc-
ible pathways to confirm the performance of AI models
and their rapid adaptability and implementation into the
clinical workflows.

Radiomics is a method of quantifying phenotypic char-
acteristics of lesions in medical imaging using mathemat-
ical algorithms which can then be used to predict disease
severity and progression [10, 11]. This quantitative pro-
cess contrasts with the conventional radiological method,
where the radiologist describes the lesions mainly based
on qualitative attributes. The radiomic features are ex-
tracted at the sub-visual level, meaning that the computer
system can detect patterns that might not be discernible by
the human visual system. Therefore, when used in a stan-
dardized environment, radiomics may provide valuable
clinical information complementary to conventional radio-
logical analysis [12].

For the use of automated models in clinical practice, it is
essential to consider three key aspects of model validation.
The first aspect is to acquire high-quality data from a diverse
population (multi-demographic) cohort. The second is to adopt
a standardized annotation protocol understandable by radiolo-
gists. The third is to perform a thorough model analysis using
various testing scenarios (internal–external validation). In our
study, apart from including the aforementioned aspects, we
performed model evaluation using datasets processed with
and without noise reduction and interpreted the model output
using radiomic features based on SHapley Additive
exPlanations (SHAP) [13]. We hypothesize that in a multi-
demographic setting, COVID-19 can be discerned automatical-
ly by predicting the CO-RADS score on chest CT using a
classification algorithm combined with an optimal radiomic
signature.

Materials and methods

This retrospective study was approved by the ethics commit-
tees of the participating institutions. A graphical abstract of the
workflow is shown in Fig. 1.

Study population

This study included 1418 chest CTs from patients suspected
of having COVID-19 from two countries: the first population,
from MosMed in Moscow, Russia, collected between March
and April 2020 and the second population from the COVID
center of Università Campus Bio-Medico di Roma, Rome,
Italy, collected between February and May 2020 [14, 15].
Although the acquisition protocol was entirely different for
both populations, the received data set primarily consisted of
anonymized unenhanced chest CT imaging with an average of
300–400 images (slices) per patient scan. The inclusion and
exclusion criteria of the acquired dataset are shown in Fig. 2,
and the overview of the acquisition and reconstruction param-
eters is shown in Table 1.
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Radiologists’ annotation

To explicate the acquired datasets, three board-certified multi-
demographic radiologists (Electronic supplementary material,
section 1) with more than 5 years of experience reviewed the
CT images from multi-demographic datasets. The CO-RADS
annotation protocol was followed by each radiologist to cap-
ture the multi-class variation in COVID-19 suspected candi-
dates. The readers were blinded to the clinical–
epidemiological diagnosis of COVID-19 and the predefined
CT category (severity levels) that existed in the Russian
dataset. In the given time, we were able to retrieve systematic
annotations for 673 patient scans. An overlap subset of 43
patients was selected randomly from the included population
to calculate the inter-observer agreement between multi-
demographic radiologists. The CT scans were viewed using
an open-source Multi-image Analysis GUI [16], with readers
being able to modify the window settings.

Noise reduction

In our study, we used a proprietary deep learning–based noise
reduction (DLNR) algorithm (Pixelshine, AlgoMedica) which
has been shown to effectively reduce image noise of an al-
ready reconstructed DICOM image and can improve the im-
age quality [17–19]. All the scans irrespective of CT protocol
were processed using the DLNR algorithm for analysis. In
total, two subsets of data were created, one without noise
reduction (setting 1, 3, and 5) and one with noise reduction
(setting 2, 4, and 6). The reason for using noise reduction is to
ensure a more consistent presentation of the data obtained
with different protocols.

Feature extraction

After 3D lung lobe segmentation (Electronic supplementary
material, section 2) of each scan, radiomic features were de-
rived using the PyRadiomics library [20]. Most of the feature
descriptors extracted using PyRadiomics are in compliance
with feature definitions described by the Imaging Biomarker
Standardization Initiative (IBSI) [21]. Additionally, 26 new
radiomic descriptors known as co-occurrence of local aniso-
tropic gradient orientations (CoLlAGe) features were included
to capture the lobe-level anisotropy and encapsulate CO-
RADS [22].

Furthermore, to increase the feature diversity, features were
extracted after applying filters such as Wavelet, Laplacian of
Gaussian (LoG), Square, Square Root, Logarithmic,
Exponential, Gradient, and Local Binary Pattern 2D (LBP2D)
to the original image. However, filters were not applied to the
two-dimensional shape–based category and CoLlAGe features.

Experimental design and performance evaluation

We used the machine learning (ML) models logistic regres-
sion (LR), multilayer perceptron (MLP), and random forest

Fig. 1 The overall workflow followed to validate machine learning models
for automatedCOVID-19 suspicion staging based on theCO-RADSprotocol.
The scans with COVID-19 suspicion were selected from the Italian and
Russian subcohorts retrospectively and annotated by experienced
radiologists from different countries. In the first step, the datasets were
processed using deep learning–based noise reduction (DLNR) and 3D
segmentation masks were generated for each scan. Next, radiomic features
were extracted and classified usingML algorithms. In the final step, statistical
evaluation of the standard performance metrics and visualization of class-
specific features were carried out to enhance the explainability of the models
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(RF) for automated CO-RADS classification. For comparison
purposes, we evaluated the ML models under different com-
binations of CO-RADS operating points as described recently
[8]. To account for the generalizability and reproducibility

using multi-demographic datasets in the three machine learn-
ing models, we considered two scenarios for model evalua-
tion. In the first scenario, we trained the classification models
on a mixed dataset (Russian and Italian datasets) and tested on

Table 1 Acquisition and
reconstruction parameters of
Italian and Russian subcohorts

Italy Russia

Acquisition parameters
Scanner SOMATOM force Toshiba Aquilion64
Scan mode Spiral Helical
Pitch 1.2–1.5 1.484
Tube voltage [kVp] 100–150 120
Tube current [mAs] 33–296 80–500 (automatically adjusted

to achieve noise level of 10 HU for
5.0-mm-thick slices)

Contrast No No
API (inspiration/expiration/mixed) Inspiration Suspended inspiration
Direction Craniocaudal Caudocranial
Upper limit Pulmonary apex 5 cm above lungs
Lower limit Lower diaphragmatic

limit
5 cm below lungs

Reconstruction parameters
Slice thickness [mm] 1–3 1.0
Slice increment [mm] 1 0.8
FOV [mm] 350–500 350–500
Reconstruction kernel BL64–BR40 FC07
Reconstruction method Iterative QDS + (FBP)
Window width [HU] 300/400 1500/1600 400 1500
Window center [HU] 30/40 − 500/− 600 40 − 500

Fig. 2 Data flowchart of Russian
and Italian subcohorts included
for the study with the training and
test split. Below the flowchart, a
description of different evaluation
settings of data scenarios is
depicted. Note that n refers to the
number of patients. CO-RADS–
COVID-19 Reporting and Data
Systems, CT 0, 1, 2, 3, 4–
severity–based Russian
annotations
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an internal hold-out dataset (Russian). In the second scenario,
the classification models were trained either on the Russian or
on the Italian dataset and externally validated on the other
population. Since these scenarios were evaluated with and
without noise reduction for classification, in total, we imple-
mented six different settings to thoroughly evaluate all the
possibilities of model training. The details of each setting in-
cluding the data split are shown in Fig. 2.

Statistics and evaluation metrics

To understand the inter-observer variability in CO-RADS an-
notation between the radiologists, we used Fleiss kappa and t
test.

Before model training, the extracted features were scaled to
the same bandwidth using Z-score normalization.We used the
Pearson’s correlation score (PCC), to eliminate the redundant
features with PCC greater than 0.95. As a feature selection
method, we used one-way ANOVA F-test and features with
a significant difference (p < 0.05) between the groups were
considered [23]. This feature scaling and feature selection ap-
plication is referred to as feature engineering in the rest of the
paper. To avoid over-fitting due to class imbalance that
existed in CO-RADS classes, we used the Synthetic
Minority Oversampling Technique (SMOTE) [24].

In our experiments, we calculated the area under the receiv-
er operation curve (AUC) to understand the performance of
ML–based automatic CO-RADS scoring along with F1 mea-
sure, recall, accuracy, and precision. DeLong’s test was used
to compare the statistical difference between AUC [25]. The
95% confidence interval (95% CI) for the metrics was evalu-
ated using non-parametric bootstrapping with 1000 iterations.
The complete experimental setup was built in-house using the
PyTorch framework in Python [26].

Explainable visualizations

For better understanding of model prediction, we used
SHapley Additive exPlanations (SHAP) which measures the
feature importance based on the model output [27]. The
SHAP five-class plot was used to visualize feature importance
on the CO-RADS classification for the best model. The inde-
pendent class summary plot for COVID-19 (CO-RADS 5)
was used to understand the relationship between the feature
and the impact on the prediction.

Results

Patient characteristics

We excluded 15 scans for which CO-RADS grade 0 (not
interpretable) was assigned. In total, 34.5% (227/658) of the

patients had no COVID-19 CT findings (CO-RADS 1) or
normal, and 6.8% (45/658) of the patients had CT findings
consistent with infections other than COVID-19 (CO-RADS
2), which mainly included multiple nodules, emphysema, fi-
brosis, bronchiectasis, calcification, lung abscess, tree-in-bud
patterns, and pulmonary metastasis. About 17.2% (113/658)
of the patients who had CT findings compatible with COVID-
19, but also other disease like bacterial infection (aspecific
GGOs, consolidations, pleural fluids), were categorized as
CO-RADS 3. The CO-RADS 4 category contained 16.6%
(109/658) of the patients who were suspected with COVID-
19 abnormalities, and 24.9% (164/658) of the patients who
had confirmed COVID-19 infection were categorized as
CO-RADS 5 (Table 2). In the confirmed cases of both the
subcohorts, more than 50% (194/297, 200/361) of the cases
were found to have ground glass opacities. Other commonly
observed findings were pleural effusion, consolidation, crazy
paving, and vascular thickening.

Inter-observer agreement of multi-demographic ra-
diologist CO-RADS grading systems

For overall CO-RADS annotation, we observed substantial
agreement between the radiologists with a mean Fleiss’ kappa
(k) of 0.802 (95% CI: 0.705–0.899). For individual CO-
RADS class, between the readers, there was almost perfect
agreement for CO-RADS 5 (k = 1.00, 95% CI: 0.84–1.17),
CO-RADS 1 (k = 0.93, 95% CI: 0.76–1.10), and CO-RADS 3
(k = 0.91, 95% CI: 0.74–1.00). Substantial agreement was
observed for CO-RADS 2 and CO-RADS 4 with a k value

Table 2 Data characteristics and CT features of participants in Italian
and Russian subcohorts

Parameter Italy Russia Total

n 308 365 673

Age – 18–97 years –

No. of CT scans per scoring

CO-RADS 1 87 (29%) 140 (38%) 227

CO-RADS 2 15 (5%) 30 (8%) 45

CO-RADS 3 74 (25%) 39 (11%) 113

CO-RADS 4 45 (15%) 64 (18%) 109

CO-RADS 5 76 (26%) 88 (24%) 164

CT patterns

GGO 194 (65%) 200 (55%) 394

Pleural effusion 77 (26%) 3(0.8%) 80

Consolidation 101 (34%) 102(28%) 203

Crazy paving 74 (25%) 30(8%) 104

Vascular thickening 63 (21%) 106(29%) 169

Number of samples (n) includes CO-RADS-0

6388 European Radiology (2022) 32:6384–6396



of 0.76 (95% CI: 0.58–0.93) and 0.72 (95% CI: 0.56–0.92)
respectively (Table 3).

Performance of models in different data settings

In this section, we report mean AUC of each classifier for
overall CO-RADS classification and the percentage change
in performance after noise reduction.

The logistic regression (LR) classifier, in setting 1, per-
formed with a mean AUC of 0.83 ± 0.01 for overall CO-
RADS classification and 0.83 ± 0.025 after noise reduction
(setting 2). In settings 4 and 6 (after noise reduction), the LR
classifier performance increased by 4% when compared to
settings 3 and 5; that is, AUC increased from 0.71 ± 0.06 to
0.74 ± 0.04 and from 0.70 ± 0.02 to 0.75 ± 0.03 respectively.

The multilayer perceptron (MLP) classifier in setting 1 and
setting 2 performed with an AUC of 0.84 ± 0.02 and 0.87 ±
0.06 respectively. In setting 3, the AUC was 0.72 ± 0.02, and
in setting 4, the AUC was 0.77 ± 0.04. In setting 4, the AUC
was 0.69 ± 0.021, and in setting 5, the AUC was 0.75 ± 0.01.
Hence, after noise reduction, we observed 3%, 5%, and 6%
increase in the performance of theMLP classifier in settings 2,
4, and 6 respectively.

The random forest model had an AUC of 0.88 ± 0.02 in
setting 1 and 0.93 ± 0.04 in setting 2. In setting 3, the AUC
was 0.76 ± 0.04, and in setting 4, the AUCwas 0.78 ± 0.04. In
setting 5, the AUC was 0.70 ± 0.02, and in setting 6, the AUC
was 0.77 ± 0.02. Hence, after noise reduction, we observed
5%, 2%, and 7% increase in performance settings 2, 4, and 6
respectively. RF classifier outperformed other classifiers in
most of the settings.

The details of the CO-RADS score of all combinations for
COVID predictions are shown in Table 4, and the other eval-
uation metrics are shown in Table 5. It can be observed that
the performance of all the three classifiers in settings 1 and 2
was better than that of the rest of the settings. Additionally, we
investigated the model capability for prediction of “normal
chest CT” both with and without noise reduction and the plot

is shown in Fig. 3. Among all the threeML classifiers, random
forest performed the best in almost all settings.

COVID-19 prediction

Here, we present the results for COVID-19 prediction (CO-
RADS 5) for the best classifier in each setting. In setting 1, on
the hold-out dataset, the random forest (RF) classifier classi-
fied patients with COVID-19 with an AUC of 0.88 ± 0.06.
The sensitivity and specificity in identifying COVID-19 fea-
tures for the RF algorithm was 0.86 ± 0.11 and 0.88 ± 0.06
respectively. After noise reduction, the performance of the RF
model increased to AUC of 0.92 ± 0.06 with sensitivity = 0.91
± 0.07 and specificity = 0.94 ± 0.04.

We observed a performance drop in the RF model for sce-
nario 2, when trained on the Russian dataset and externally
validated on the Italian dataset, and vice versa. The RF clas-
sifier achieved an AUC of 0.79 ± 0.07 without any noise
reduction. The sensitivity and specificity of the RF model
was 0.72 ± 0.10 and 0.73 ± 0.05 respectively. In setting 4,
with noise reduction, AUCwas 0.75 ± 0.08, sensitivity = 0.95 ±
0.03, and specificity = 0.63 ± 0.03 for COVID-19 prediction.

For setting 5 of scenario 2, the optimal model performance
was observed with an AUC of 0.71 ± 0.06, sensitivity = 0.74 ±
0.09, and specificity = 0.66 ± 0.05. After noise reduction, the
optimal model performance increased to 0.75 ± 0.09 (AUC),
sensitivity = 0.75 ± 0.09, and specificity = 0.75 ± 0.05. The
detailed evaluation metrics of the RF classifier in each setting
are shown in Table 4.

Interpretation of radiomic signature

To recognize the important features in each scenario for CO-
RADS classification, we visualized the SHAP values of the
top 20 features. The SHAP values of each setting are summa-
rized in Fig. 4.

Out of the top 20 features responsible for CO-RADS clas-
sification of scenario 1, we found “log (sigma=1)-3D-GLCM
Auto-correlation,” “log (sigma=1) 3D GLCM Joint Entropy,”
“log (sigma=1) 3D GLCM Idm,” “log(sigma=1) 3D GLDM
Low Gray Level Emphasis,” and “original Firstorder-
10Percentile” features to be the most common in settings 1
and 2. Similarly, for other settings, important CO-RADS clas-
sification features can be realized in Fig. 4.

The individual summary plot showed class-specific fea-
tures for CO-RADS 5 (Fig. 5). For each setting, a positive
SHAP value indicates an increase in the risk of COVID-19.
“Log (sigma=1) GLDM Small Dependence Low Gray Level
Emphasis” showed negative impact, and “wavelet (LH)
GLCM Imc1” showed positive impact on COVID prediction
in almost all settings.

Table 3 Inter-observer variability between radiologists for each CO-
RADS classification

Type Kappa (95% CI)
Lower

(95% CI)
Upper

p value

Overall 0.868 0.705 1.20 < 0.001

CO-RADS 1 0.938 0.765 1.10 < 0.001

CO-RADS 2 0.769 0.589 0.934 < 0.001

CO-RADS 3 0.913 0.741 1.00 < 0.001

CO-RADS 4 0.721 0.560 0.92 < 0.001

CO-RADS 5 1.00 0.841 1.17 < 0.001

CI confidence interval
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Discussion

Several deep learning [28, 29], radiomic [30, 31], and integrated
models [32, 33] have been developed since the outbreak of
COVID-19, focusing on screening, diagnosis, and prognosis of
COVID-19. To facilitate the translation of COVID-19 detection
models into clinical practice, we followed a systematic approach
to develop simple, generalizable, and reproducible automated
COVID-19 detection models. In this study, (A) we successfully
evaluated multi-site or public–private dataset scenarios and
showed overall CO-RADS classification improvement by using
noise reduction technique; (B) by choosing high-quality data
from two clinical centers and heterogenous imaging protocols,
we significantly reduced the population selection bias encoun-
tered in many recent studies as mentioned in a recent review [9];
(C) the annotation was done by three experienced radiologists
from different countries avoiding the annotation bias that can
occur when using inexperienced radiologists or radiologists from
the same site; (D) by using a standardized annotation protocol,
we made our study easy to implement and compare; (E) the
interpretation of radiomic signatures via SHAP enabled us to
pinpoint the key features that influence classification; and (F)
finally, by carrying out validation procedures resembling the

guidelines listed in category 2b and 3 of the Transparent
Reporting of a multivariable prediction model for Individual
Prognosis or Diagnosis (TRIPOD) statement, we have enhanced
the quality of experimental design, and demonstrated the useful-
ness of the prediction models by testing the cross-dataset domain
shift between different institutions [34].

Regardless of the type of validation scenario, CT radiomic
features facilitated the identification of CT scans with suspected
COVID-19 with accuracy of 84% (138/164) in a two-
dimensional setting. Homayounieh et al, Fang et al, and Liu
et al reported higher accuracies using a combined clinical–
radiological radiomic signature, with their training based solely
on a single demographic group, whichmay raise concerns of bias
[30, 31, 35]. Lee et al used a deep learning algorithm and
achieved accuracies similar to ours while investigating a hetero-
geneous population from more than eight countries [36].

We observed that among the two validation methods, the
internal hold-out method had the highest AUC for COVID
classification (CO-RADS 5) with 0.92 compared to the exter-
nal validation (0.75). This shows that the model trained on
multi-demographics and tested on internal hold-out performs
better when compared to the model trained on single demo-
graphic data [36]. There have been many automatic models to

Table 4 Area under the receiver
operating curve (AUC) of all the
machine learning (ML)
algorithms for respective CO-
RADS classification in each
setting

Settings Type Logistic regression Multilayer perceptron Random forest

Setting 1 CO-RADS ≥ 2 0.82 (± 0.08) 0.85 (± 0.06) 0.89 (± 0.07)

CO-RADS 3 + 4 + 5 0.83 (± 0.06) 0.85 (± 0.06) 0.89 (± 0.06)

CO-RADS 4 + 5 0.85 (± 0.06) 0.86 (± 0.06) 0.84 (± 0.06)

CO-RADS 5 0.82 (± 0.08) 0.81 (± 0.07) 0.88 (± 0.06)

Setting 2 CO-RADS ≥ 2 0.86 (± 0.06) 0.89 (± 0.06) 0.97 (± 0.04)

CO-RADS 3 + 4 + 5 0.83 (± 0.06) 0.92 (± 0.06) 0.94 (± 0.06)

CO-RADS 4 + 5 0.84 (± 0.06) 0.88 (± 0.05) 0.88 (± 0.04)

CO-RADS 5 0.80 (± 0.04) 0.79 (± 0.04) 0.92 (± 0.07)

Setting 3 CO-RADS ≥ 2 0.77 (± 0.09) 0.75 (± 0.07) 0.79 (± 0.08)

CO-RADS 3 + 4 + 5 0.75 (± 0.06) 0.71 (± 0.06) 0.73 (± 0.06)

CO-RADS 4 + 5 0.65 (± 0.06) 0.70 (± 0.07) 0.79 (± 0.09)

CO-RADS 5 0.66 (± 0.06) (0.71 ± 0.06) 0.71 (± 0.06)

Setting 4 CO-RADS ≥ 2 0.78 (± 0.08) 0.82 (± 0.06) 0.83 (± 0.07)

CO-RADS 3 + 4 + 5 0.77 (± 0.06) 0.78 (± 0.05) 0.78 (± 0.03)

CO-RADS 4 + 5 0.73 (± 0.06) 0.73 (± 0.06) 0.75 (± 0.05)

CO-RADS 5 0.70 (± 0.06) 0.73 (± 0.06) 0.75 (± 0.04)

Setting 5 CO-RADS ≥ 2 0.69 (± 0.06) 0.67 (± 0.06) 0.68 (± 0.06)

CO-RADS 3 + 4 + 5 0.73 (± 0.08) 0.72 (± 0.07) 0.73 (± 0.06)

CO-RADS 4 + 5 0.70 (± 0.06) 0.68 (± 0.07) 0.69 (± 0.07)

CO-RADS 5 0.70 (± 0.07) 0.69 (± 0.10) 0.71 (± 0.08)

Setting 6 CO-RADS ≥ 2 0.74 (± 0.06) 0.76 (± 0.06) 0.76 (± 0.06)

CO-RADS 3 + 4 + 5 0.71 (± 0.04) 0.76 (± 0.06) 0.77 (± 0.07)

CO-RADS 4 + 5 0.79 (± 0.06) 0.73 (± 0.08) 0.79 (± 0.07)

CO-RADS 5 0.74 (± 0.09) 0.75 (± 0.09) 0.74 (± 0.08)
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Table 5 Performance metrics of
the best machine learning (ML)
algorithms for respective CO-
RADS classification in each
setting

Settings Type TP FP Precision Recall F-
measure

AUC

Setting 1 CO-RADS ≥ 2 50 5 0.91 0.91 0.91 0.89 (± 0.07)

CO-RADS 3 + 4 + 5 44 7 0.86 0.92 0.89 0.89 (± 0.06)

CO-RADS 4 + 5 35 9 0.80 0.92 0.85 0.86 (± 0.06)

CO-RADS 5 19 8 0.70 0.86 0.78 0.88 (± 0.06)

Setting 2 CO-RADS ≥ 2 52 2 0.96 0.95 0.95 0.97 (± 0.04)

CO-RADS 3 + 4 + 5 45 5 0.90 0.94 0.92 0.94 (± 0.06)

CO-RADS 4 + 5 36 9 0.80 0.95 0.87 0.88 (± 0.06)

CO-RADS 5 20 4 0.83 0.91 0.87 0.92 (± 0.07)

Setting 3 CO-RADS ≥ 2 159 12 0.93 0.76 0.83 0.79 (± 0.07)

CO-RADS 3 + 4 + 5 124 15 0.89 0.64 0.74 0.75 (± 0.06)

CO-RADS 4 + 5 100 52 0.66 0.83 0.73 0.79 (± 0.09)

CO-RADS 5 55 72 0.43 0.72 0.54 0.71 (± 0.06)

Setting 4 CO-RADS ≥ 2 163 7 0.96 0.78 0.86 0.83 (± 0.07)

CO-RADS 3 + 4 + 5 169 37 0.82 0.86 0.84 0.78 (± 0.03)

CO-RADS 4 + 5 102 52 0.65 0.84 0.73 0.75 (± 0.04)

CO-RADS 5 72 82 0.47 0.95 0.63 0.75 (± 0.08)

Setting 5 CO-RADS ≥ 2 145 45 0.76 0.66 0.71 0.69 (± 0.07)

CO-RADS 3 + 4 + 5 142 58 0.71 0.74 0.73 0.73 (± 0.06)

CO-RADS 4 + 5 114 71 0.62 0.75 0.68 0.69 (± 0.06)

CO-RADS 5 65 93 0.41 0.74 0.53 0.71 (± 0.08)

Setting 6 CO-RADS ≥ 2 156 21 0.88 0.70 0.79 0.76 (± 0.06)

CO-RADS 3 + 4 + 5 160 49 0.77 0.84 0.80 0.77 (± 0.07)

CO-RADS 4 + 5 120 43 0.74 0.79 0.76 0.79 (± 0.06)

CO-RADS 5 66 68 0.49 0.75 0.59 0.75 (± 0.09)

Fig. 3 The receiver operating curves of machine learning algorithms showing their ability to classify normal chest CT from other CO-RADS stages on
the hold-out dataset (scenario 1). The performance of the classifiers increased after noise reduction

European Radiology (2022) 32:6384–6396 6391



differentiate COVID-19 from non-COVID-19 but a very few
that have the capability to segregate comorbidities such as
emphysema and lung cancer [2]. Notably, our multi-class clas-
sification model (RF) was able to identify other comorbidities
with the highest accuracy of 85% (329/386). Prior works have
shown that radiomics can be used to distinguish COVID-19
(CO-RADS 4) from other pneumonias (CO-RADS 3) on CT
[37, 38]. We observed an average performance of 0.80 (AUC)
in differentiating other community-acquired pneumonias
(CO-RADS 3) in patients with suspected COVID-19, and in
contrast to previous works, we used scans from patients with
suspected COVID-19 without including scans from the gen-
eral population.

Studies have shown the importance of using whole lung
CT radiomics for predicting outcome and disease severity

of COVID-19 patients compared with subjective radiolo-
gist assessment [30, 31, 39, 40]. Although the direct com-
parison of the features obtained in these studies cannot be
compared to our study, we observed that textural features
dominated feature importance for COVID-19 patients or
CO-RADS 5 (Fig. 5). Interestingly, by employing noise
reduction on non-contrast chest CTs, we were able to im-
prove the performance for all the classifiers. This could be
because apart from reducing noise and aiding dimension-
ality reduction of radiomic features, it helped in generaliz-
ing the scans acquired from different acquisition protocols
(minimizing the variance).

Although the radiologists were from different countries
(The Netherlands, Germany, and Italy), inter-observer agree-
ment in CO-RADS scoring in multi-demographic data was

Fig. 4 Top twenty feature visualization using SHAP for CO-RADS
classification in each data setting. The features are arranged in a
descending order of feature importance (SHAP values). Using this

feature importance map, one can observe how each feature contributes
to the machine learning model’s predictions and identifies the common
features
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substantial. Similar agreement was reported by Prokop et al,
Lessmann et al, and Dilek et al [4, 7, 8].

Some of the evident limitations of this study are that our
radiomic signature could also include epidemiological–
laboratory parameters and clinical symptoms to provide a more
comprehensive model. Secondly, it is a well-known fact that
variation in the acquisition process, reconstruction parameters,
or study protocol can result in different radiomic features. The
degree to which this variation affects classification performance
is an area of active research. The third limitation is that only non-
contrast images were included. However, comparing and com-
bining features engineered by deep learning approach would be
the primary focus of our future work [41, 42].

Conclusions

We have attempted to answer the question of whether we can
use a systematic approach to construct a radiomic signature
and employ simple ML classifiers that can effectively distin-
guish COVID-19 in a multi-demographic setting. The best
classifier on average correctly designates the CO-RADS score
in 80% of the cases. That is, by harnessing the power of
radiomics combined with noise reduction, it is possible to
predict the CO-RADS score from a non-contrast chest CT
with a relatively high accuracy. Adopting the aforementioned
model into clinical practice as a standardized tool may aid
radiologists in classifying COVID-19. Lastly, this study

Fig. 5 The class-specific feature summery plot for CO-RADS 5 using
SHAP in each setting. The feature impact on the classification is observed
by a positive SHAP value indicated by red color. For example, “wavelet

(LH) GLCM Imc1” shows positive impact on CO-RADS 5 prediction in
most of the settings
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design can be used as a research tool, facilitating reproducible
and comparable models in the field of automated COVID-19
detection.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08730-6.
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