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In association rule mining, evaluating an association rule needs to repeatedly scan database to compare the whole database with
the antecedent, consequent of a rule and the whole rule. In order to decrease the number of comparisons and time consuming,
we present an attribute index strategy. It only needs to scan database once to create the attribute index of each attribute. Then all
metrics values to evaluate an association rule do not need to scan database any further, but acquire data only by means of the
attribute indices. The paper visualizes association rule mining as a multiobjective problem rather than a single objective one. In
order to make the acquired solutions scatter uniformly toward the Pareto frontier in the objective space, elitism policy and uniform
design are introduced. The paper presents the algorithm of attribute index and uniform design based multiobjective association
rulemining with evolutionary algorithm, abbreviated as IUARMMEA. It does not require the user-specifiedminimum support and
minimum confidence anymore, but uses a simple attribute index. It uses a well-designed real encoding so as to extend its application
scope. Experiments performed on several databases demonstrate that the proposed algorithm has excellent performance, and it can
significantly reduce the number of comparisons and time consumption.

1. Introduction

Data mining is a very active and rapidly growing research
area in the field of computer science. Its aim is to extract
interesting and useful knowledge from a huge number of data
stored in the databases. Association rule mining is one of the
most well-known data mining technologies. It can find out
effectively interesting relations among attributes.

Existing algorithms for mining association rules are
mainly based on the approach suggested by Agrawal and
Srikant [1, 2]. Apriori [2], SETM [3], AIS [2], Pincer search [4,
5], DIC [6], and so forth are some of the popular algorithms
based on this approach.

The above algorithms can find out massive amount of
possible rules. However, a large number of rules will increase
the complexity and make the rule set harder to understand
by users. That is to say, the greater the number of rules in

the results is, the greater the complexity for the users is [7].
Therefore, generating the rules which are as valid and few as
possible is our ultimate aim. How to select representative and
useful rules and to remove those similar rules is our greatest
concern. In order to deal with the above problems, this paper
introduces elitism policy and uniform design.

In the meanwhile, the above algorithms depend on two
user-predefined parameters,minimum support andminimum
confidence. However, how to select them is not an easy issue.
If the value of minimum support is too large, the number of
frequent itemsets generated will be less, and thereby too few
rules may be generated. By contrast, if the value is too small,
then almost all possible itemsets will become frequent and
thus a huge number of rules may be generated. Similarly, if
the value ofminimum confidence is too large, many generated
rules will be removed, and thereby some useful rules may
be missing. However, if the value is too small, then almost
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all possible rules will become strong rules and thus a huge
number of rules may be generated. Therefore, multiobjective
ruleminingwith evolutionary algorithm is introduced,which
visualizes rule mining problem as a multiobjective problem
rather than a single objective problem. It need not specify
those two user-predefined parameters any further [8–10].

Association rule mining algorithms can be taken into
two steps. First they find the frequent itemsets and then
extract the important association rules from the frequent
itemsets. Among the two steps, the first step is the most time-
consuming [7]. The reason is that in order to evaluate an
association rule of the form 𝑋 → 𝑌, we need to repeatedly
scan the database to compare to thewhole databasewith𝑋,𝑌,
and𝑋∪𝑌 itemsets [11]. In this paper, we present an attribute
index method to decrease the number of comparisons. It is
remarkable that the proposed method scans database only
once.

The rest of this paper is organized as follows. Section 2
states the preliminaries of the proposed method. Section 3
presents our method in detail. Section 4 gives the numerical
results of the proposed method. The conclusion of the work
is made in Section 5.

2. Preliminaries

In this section, we describe some concepts concerning asso-
ciation rule, multiobjective evolutionary algorithms, uniform
design, and multiobjective association rule mining.

2.1. Association Rules and Metrics. Let 𝐼 = {𝑖
1
, 𝑖
2
, 𝑖
3
, . . . , 𝑖

𝑚
}

be a set of items or itemset. Let 𝐷 = {𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
} be

the set of transactions, called the transaction database, where
each transaction 𝑇

𝑖
∈ 𝐷 is an itemset such that 𝑇

𝑖
⊆ 𝐼. An

association rule is of the form 𝑋 → 𝑌 where 𝑋 ⊆ 𝐼, 𝑌 ⊆ 𝐼,
and 𝑋 ∩ 𝑌 = Φ. The itemsets 𝑋, 𝑌 are respectively called the
antecedent and consequent of the association rule.

A transaction 𝑇
𝑖
contains an itemset 𝑋, 𝑇

𝑖
⊇ 𝑋, if and

only if, for any item 𝑖 ∈ 𝑋, then 𝑖 ∈ 𝑇
𝑖
, namely, 𝑇

𝑖
, contains

each item in𝑋.
Support count of an itemset 𝐼

1
is denoted by SUP(𝐼

1
),

which is the number of transactions that contain 𝐼
1
in𝐷:

SUP (𝐼
1
) =
{𝑡 ∈ 𝐷 ∧ 𝑡 ⊇ 𝐼1}

 . (1)

Support count of an association rule 𝑋 → 𝑌 is denoted
by SUP(𝑋 → 𝑌), which is the number of transactions
compatible with both 𝑋 and 𝑌, namely, the number of
transactions that contain𝑋 ∪ 𝑌:

SUP (𝑋 → 𝑌) = SUP (𝑋 ∪ 𝑌) . (2)

In a similar way, SUP(𝑋) and SUP(𝑌) are the number of
transactions compatible with only𝑋 and 𝑌, respectively.

Support of an itemset 𝐼
1
is denoted by support (𝐼

1
), which

is the ratio of transactions that contain 𝐼
1
in𝐷, namely,

support (𝐼
1
) =

SUP (𝐼
1
)

|𝐷|
, (3)

where |𝐷| indicates the total number of transactions in the
database𝐷.

Support of an association rule 𝑋 → 𝑌 is denoted by
support(𝑋 → 𝑌) :

support (𝑋 → 𝑌) = SUP (𝑋 → 𝑌)
|𝐷|

=
SUP (𝑋 ∪ 𝑌)
|𝐷|

. (4)

An itemset, 𝑋, in a transaction database, 𝐷, is called a
large (frequent) itemset if its Support is larger than or equal to
a threshold of minimum support (minsupp), which is given
by users or experts.

The confidence or predictive accuracy of a rule 𝑋 → 𝑌,
written as confidence(𝑋 → 𝑌), is to measure specificity or
consistency. It indicates the probability of creating the rule
dependent on the antecedent part, and is defined as follows:

confidence (𝑋 → 𝑌)

=
support (𝑋 → 𝑌)

support (𝑋)
=
SUP (𝑋 ∪ 𝑌)
SUP (𝑋)

.

(5)

That is, support implies frequency of cooccurring pat-
terns, and confidence means the strength of a rule. The
support-confidence framework is as follows [1, 2].

The minimal support, minsupp, and the minimal con-
fidence, minconf, are given by users or experts. Then rule
𝑋 → 𝑌 is valid if

support (𝑋 → 𝑌) ≥ minsupp,

confidence (𝑋 → 𝑌) ≥ minconf.
(6)

Generally speaking, only those rules with support and
confidence larger than or equal to a given threshold are
interesting. These rules are called strong rules.

Mining association rules can be taken into the following
two subproblems.

(1) Generating all itemsets whose support are greater
than or equal to the user-specifiedminimum support,
that is, generating all frequent itemsets.

(2) Generating all the rules which satisfy the minimum
confidence constraint. If the confidence of a rule is
greater than or equal to the minimum confidence,
then the rule can be extracted as a valid rule [8–10].

Apart from the above metrics, other several important
metrics are illustrated as follows.

Coverage of an association rule 𝑋 → 𝑌, denoted by
coverage(𝑋 → 𝑌), is to measure the extent to which the
consequent part is covered by the rule (the maximum value
is reached when all the elements that satisfy 𝑌 are covered
by the rule) [7]. It shows the probability of creating the rule
dependent on the consequent part, and is defined as follows:

coverage (𝑋 → 𝑌) =
support (𝑋 → 𝑌)

support (𝑌)
=
SUP (𝑋 ∪ 𝑌)
SUP (𝑌)

.

(7)

Both the confidence and coverage are two important
measuring factors for the rule quality or rule interest, but if
we use them separately we will reach bad conclusions [7].



The Scientific World Journal 3

The generated rulesmay have a large number of attributes
involved, which may make them difficult to understand [12].
If the generated rules are not understandable to the users, the
users will never use them. A careful study of an association
rule infers that if the number of conditions involved in the
antecedent part is less, the rule is more comprehensible.
Therefore, comprehensibility of a rule 𝑋 → 𝑌 can be
measured by the number of attributes involved in the rule.
It is quantified by the following expression [8, 9]:

comprehensibility =
log (1 + |𝑌|)

log (1 + |𝑋 ∪ 𝑌|)
. (8)

Here, |𝑌| and |𝑋∪𝑌| are the number of attributes involved in
the consequent part and the whole rule, respectively.

Another comprehensibility of a rule is defined as follows
[13]:

comprehensibility = 1 − 𝑛
𝑁
, (9)

where 𝑛 and𝑁 are, respectively, the numbers of attributes in
antecedent part and in the whole dataset.

Comprehensibility of a rule tries to increase the readability
by shortening the length of an association rule.

Interestingness of a rule, denoted by interestingness(𝑋 →
𝑌), is used to quantify how much the rule is surprising for
the users. As the most important purpose of rule mining is to
find some hidden information, it should extract those rules
that have comparatively less occurrence in the database. The
following expression can be used to quantify the interesting-
ness [8, 9, 14, 15]:

Interestingness (𝑋 → 𝑌)

=
SUP (𝑋 ∪ 𝑌)
SUP (𝑋)

×
SUP (𝑋 ∪ 𝑌)
SUP (𝑌)

× (1 −
SUP (𝑋 ∪ 𝑌)
|𝐷|

) ,

(10)

where |𝐷| indicates the total number of transactions in the
database.

Yan et al. defined the relative confidence as the interest-
ingness measure as follows [10]:

rconf = supp (𝑋 ∪ 𝑌) − supp (𝑋) supp (𝑌)
supp (𝑋) (1 − supp (𝑌))

. (11)

Here, supp indicates support.
Hipp et al. [16] compared the popular association rule

mining approaches includingApriori [1, 2], Partition [17], and
Eclat [18] and made conclusions that these approaches have
shown similar runtime behavior. They found no algorithm
that fundamentally outperforms others. For example, Apriori
is superior in the market basket database, but it performs
poorly with the car equipment database. The FP-growth
algorithm is very efficient in many cases, but it requires a
large amount of memory to store the FP-tree [19]. Although
there may be differences with different implementations and
datasets, association rule mining approaches have the same

performance behavior with respect to the support threshold
value. The experiments conducted in articles [1, 16, 20, 21]
have shown that the decrease of the support threshold leads to
an exponential increase on the number of frequent itemsets,
which consequently results in an exponential increase in
runtime and resource usage (i.e., memory and disk space)
during the frequent itemset mining process [22].

2.2. Multiobjective Evolutionary Algorithms. The notion of
Pareto-optimality is one of the major approaches to multiob-
jective programming. For any two points 𝑥

1
and 𝑥

2
in Ω, if

the following conditions hold:

𝑓
𝑖
(𝑥
1
) ≤ 𝑓
𝑖
(𝑥
2
) , for all 𝑖 ∈ {1, 2, . . . ,𝑀} ,

𝑓
𝑗
(𝑥
1
) < 𝑓
𝑗
(𝑥
2
) , for some 𝑗 ∈ {1, 2, . . . ,𝑀} ,

(12)

then 𝑥
1
is at least as good as 𝑥

2
with respect to all the

objectives (the first condition), and𝑥
1
is strictly better than𝑥

2

with respect to at least one objective (the second condition).
Therefore, 𝑥

1
is strictly better than 𝑥

2
. If no other solution

is strictly better than 𝑥
1
, then 𝑥

1
is called a Pareto-optimal

solution. A multiobjective programming problem may have
multiple Pareto-optimal solutions, and these solutions can
be regarded as the best compromise solutions. Different
decision-makers may select different Pareto-optimal solu-
tions in terms of the preference for themselves. It may be
desirable to find all the Pareto-optimal solutions, so that
the decision-makers can select the best one based on his
preference. The set of all possible Pareto-optimal solutions
constitutes a Pareto frontier in the objective space.

Many multiobjective programming problems have very
large or infinite numbers of Pareto-optimal solutions. When
it is not possible to find all these solutions, it may be desirable
to find as many solutions as possible in order to providemore
choices to the decision maker [23].

Evolutionary algorithms, EAs, simultaneously deal with
a set of possible solutions, which allows finding several
members of the Pareto optimal set in a single run of the
algorithm. Additionally, they are not too susceptible to the
shape or continuity of the Pareto front (e.g., they can easily
deal with concave and discontinuous Pareto fronts).

Schaffer is generally considered as the first to design a
Multiobjective Evolutionary Algorithms (MOEAs), during
the mid-1980s [24]. However, it was until the mid-1990s that
MOEAs started to attract serious attention from researchers.
Nowadays, it is possible to find applications of MOEAs in
almost all domains [25].

Schaffer’s approach, called Vector Evaluated Genetic
Algorithm (VEGA), consists of a simple genetic algorithm
with amodified selectionmechanism. After VEGA, there has
been a growing interest in applying evolutionary algorithms
to deal with multiobjective optimization. The researchers
designed a first generation MOEAs where the main lesson
learned was that successful MOEAs had to combine a
good mechanism to select non-dominated individuals. The
most representative algorithms of this generation MOEAs
are as follows: Non-dominated Sorting Genetic Algorithm
(NSGA) [26], Niched-Pareto Genetic Algorithm (NPGA)
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[27], and Multi-Objective Genetic Algorithm (MOGA) [28].
A second generation MOEAs started when elitism became
a standard mechanism. In fact, the use of elitism is a theo-
retical requirement in order to guarantee convergence of a
MOEA.ManyMOEAshave been proposed during the second
generation. The Strength Pareto Evolutionary Algorithm 2
(SPEA2) [29] and the NSGA-II [30] can be considered as the
most representative MOEAs of the second generation [31].
There are many works about MOEAs published every year.
Zhou et al. surveys the development of MOEAs primarily
during the last eight years [32].The paper indicates that more
than 5600 publications have been published on evolutionary
multiobjective optimization By January 2011. Among these
papers, 66.8% have been published in the last eight years,
38.4% are journal papers, and 42.2% are conference papers.

2.3. UniformDesign. Themain objective of uniform design is
to sample a small set of points from a given set of points, such
that the sampled points are uniformly scattered [23, 33–35].

Let there be 𝑛 factors and 𝑞 levels per factor. When 𝑛 and
𝑞 are given, the uniform design selects 𝑞 from 𝑞𝑛 possible
combinations, such that these 𝑞 combinations are uniformly
scattered over the space of all possible combinaions. The
selected 𝑞 combinations are expressed as a uniform array
𝑈(𝑛, 𝑞) = [𝑈

𝑖,𝑗
]𝑞 × 𝑛, where 𝑈

𝑖,𝑗
is the level of the 𝑗th factor

in the 𝑖th combination, and can be calculated by the following
formula:

𝑈
𝑖,𝑗
= (𝑖𝜎
𝑗−1 mod 𝑞) + 1, (13)

where 𝜎 is a parameter given in Table 1.

2.4. Multiobjective Association Rule Mining with Evolutionary
Algorithm. The rules produced by the rule mining approach
need to be evaluated using various metrics like the support
and confidence. There are also other metrics such as the
comprehensibility and interestingness of the rules. These
make the rules more usable. If these metrics are consistent,
they can be merged. However, the metrics are conflicting
sometimes. For example, a user may wish to have rules which
are both novel and accurate. However, these two objectives
are conflicting since if the accuracy of the rule increases
its novelty will decrease. Thus the problem of constructing
rules with specificmetrics should be faced as amultiobjective
optimization problem [36].

In the early years, some optimization methods for associ-
ation rule mining have been proposed. However, the process
is toomuch resource consuming, especially when there is not
enough available physical memory for the whole database.
A solution to this problem is to use evolutionary algorithm,
which reduces both the cost and time of rule discovery.
Evolutionary algorithm (EA), genetic algorithm (GA), ant
colony optimization (ACO), and particle swarmoptimization
(PSO) are instances of single objective association rule
mining algorithms. A few of these algorithms have been used
for multiobjective problems [9].

Multiobjective association rule mining with EA is to use
EA to solve the association rule mining problem. Those
metrics mentioned in Section 2.1 can be taken as multiply

objectives to optimize in multiobjective rule mining. The
operators such as select, crossover, and mutate are used to
evolve the chromosome representing an association rule.

2.5. Related Works. There have been some attempts and
works formultiobjective association rulemining using evolu-
tionary algorithms. Ghosh andNath visualized an association
rule mining as a multiobjective problem rather than a single
objective one [8], where multiobjective genetic algorithm,
MOGA, was applied to maximize the confidence, compre-
hensibility and interestingness of a rule. Khabzaoui et al. used
a parallel MOGA to optimize the support, confidence, 𝐽-
measure, interest, and surprise [37]. Dehuri et al. presented
an elitist MOGA for mining classification rules, which take
three conflicting metrics with each other, accuracy, compre-
hensibility, and interestingness, as multiply objectives [38].
Iglesia et al. used multiobjective evolutionary algorithm to
search for Pareto-optimal classification rules with respect to
support and confidence for partial classification [39]. A mul-
tiobjective evolutionary algorithm combined with improved
niched Pareto genetic algorithm was applied to optimize two
conflicting metrics with each other, predictive accuracy and
comprehensibility of the rules in multiobjective rule mining
[40]. Rule mining method with PSO, chaos rough particle
swarm algorithm [41], and numeric rule mining method
with simulated annealing [42] have been proposed. Alatas
et al. proposed multiobjective differential evolution algo-
rithm for mining numeric association rules [43]. Later, they
proposed another numeric association rule mining method
using rough particle swarm algorithm. Yan et al. proposed
a method based on genetic algorithm without considering
minimum support [10]. Qodmanan et al. applied MOGA
to association rule mining without taking the minimum
support and confidence into account by applying the FP-tree
algorithm [9]. Hoque et al. presented a method to generate
both frequent and rare itemsets using multiobjective genetic
algorithm [14]. Fung et al. suggested a novel MOGA based
rule mining method for affective product design, which can
discover a set of rules relating design attributes with customer
evaluation based on survey data [44].

3. The Proposed Method

Section 2.1 has described several importmetrics for the evalu-
ation of an association rule. As using separately the confidence
and coverage of a rule can reach bad conclusions [7], the two
metrics are selected together in the proposed method. If the
generated rules are not understandable to the users, they will
never use them. Therefore, the comprehensibility of a rule is
selected. As the most important purpose of association rule
mining is to find some hidden information, therefore the
interestingness of a rule is selected to quantify how much the
rule is surprising for the users. The proposed method selects
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the four metrics as multiple objectives to optimize. Namely,
we need to optimize the following multiobjective problem:

Maximize confidence

Maximize coverage

Maximize comprehensibility

Maximize interestingness.

(14)

3.1. Attribute Index. In the above fourmetrics, 3 of themneed
to calculate the support count of a rule. The support count of
an itemset 𝑋 is the number of transactions that contain 𝑋
in 𝐷. A transaction 𝑇

𝑖
contains an itemset 𝑋, if and only if,

for any item 𝑖 ∈ 𝑋, then 𝑖 ∈ 𝑇
𝑖
, namely, 𝑇

𝑖
, contain all the

items in𝑋.Therefore, to evaluate an association rule𝑋 → 𝑌,
the database 𝐷 will be repeatedly scanned to compare each
transaction 𝑇

𝑖
∈ 𝐷 with an itemset 𝑋, 𝑌 and 𝑋 ∪ 𝑌. In order

to judge whether a transaction 𝑇
𝑖
contains an itemset 𝑋 or

not, we need to judge whether𝑇
𝑖
contains each of the items of

itemset𝑋. Namely, the number of comparisons for an itemset
𝑋 is formulated as follows:

NC
𝑋
= |𝐷| × |𝑋| , (15)

where NC
𝑋

indicates the number of comparisons for an
itemset 𝑋, |𝐷| indicates the total number of transactions in
the database 𝐷, and |𝑋| indicates the number of all items in
the itemset𝑋.

Therefore, the number of comparisons for a rule𝑋 → 𝑌
is formulated as follows:

NC
𝑋→𝑌

= NC
𝑋
+ NC
𝑌
+NC
𝑋∪𝑌

= |𝐷| × (|𝑋| + |𝑌| + |𝑋 ∪ 𝑌|) .

(16)

In the above formula, |𝑋|, |𝑌|, and |𝑋 ∪ 𝑌| indicate the
number of the items in the antecedent, consequent, and the
whole rule, respectively. If any of them turns less, the number
of comparisons for a rule will turn smaller. In the meanwhile,
from (8) and (9), we can see that the comprehensibility of a
rule will also turn smaller. Namely, the smaller the size of the
itemsets in a rule is, themore easily comprehensible the rule is
and the smaller the number of comparisons is. In other word,
selecting the more easily comprehensible rule can decrease
the number of comparisons.

As |𝐷| is fixed, we cannot decrease the number of
comparisons through the parameter. However, if only by
means of comparing a part of transactions rather than all
transactions in𝐷, we can still evaluate an association rule and
calculatemetrics values, then the number of comparisons can
certainly decrease.

Hadian et al. presented a method that only compares the
transactions the size ofwhich is larger than or equal to the size
of the itemset, which is in terms of the fact that a transaction
contains an itemset only if theminimal size of the transaction
is equal to size of the itemset [11]. This method can prevent
some unnecessary comparisons by excluding the transactions
whose size is less than the size of the itemset. However, a
majority of transactions that do not contain the itemset are
still compared. An example is illustrated as follows.

Example 1. Assume a transaction database 𝐷 contain 6
transactions, as shown in Table 2. The universal itemset 𝐼
contains 6 attributes {𝑖

1
, 𝑖
2
, 𝑖
3
, 𝑖
4
, 𝑖
5
, 𝑖
6
}. For a rule of the form

𝑖
1
𝑖
3
𝑖
5
→ 𝑖
4
, the above method can exclude 𝑇

1
and 𝑇

2
as their

sizes are less than the size of the rule. It compares 𝑇
3
, 𝑇
4
,

𝑇
5
and 𝑇

6
with the rule. However, it is obvious that 𝑇

3
, 𝑇
4
,

𝑇
5
, are unsuitable as they miss a certain item of the rule, are

impossible to contain the rule.
In order to overcome the above problems, the work

presents the strategy of the attribute index. It can prevent a
great deal of unnecessary comparisons by only comparing
those transactions directly related to the rule.Therefore, it can
significantly improve the performance of an algorithm.

The strategy creates the attribute index for each attribute
in database. Its index value is the successive link of
all transactions containing the attribute. For example,
𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, 𝑇
5
, and 𝑇

6
can be previously defined as

1, 2, 3, 4, 5, 6 or 0, 1, 2, 3, 4, 5, and so on. The attribute index
of the above example is as follows. The attribute index of the
attribute 𝑖 can be formulated as follows:

Idx (𝑖) = {𝑘 | 𝑖 ∈ 𝑇 ∧ 𝑇 ∈ 𝐷 ∧ 𝑇 is defined as 𝑘} . (17)

Example 2. For Table 2, the attribute index of each attribute
is as follows:

Idx (𝑖
1
) = {1, 3, 5, 6} ;

Idx (𝑖
2
) = {3, 4} ;

Idx (𝑖
3
) = {1, 4, 5, 6} ;

Idx (𝑖
4
) = {2, 3, 4, 6} ;

Idx (𝑖
5
) = {1, 2, 3, 4, 5, 6} ;

Idx (𝑖
6
) = {5, 6} .

(18)

In this method, the database is scanned once to create
the attribute index of each attribute before rule generations.
The pseudocode of creating the attribute index is shown in
Pseudocode 1.

The created attribute indices make it easy to calculate the
support count of the antecedent, consequent, and the whole
rule. Therefore, several import metrics to evaluate a rule can
also be easy to calculate as these calculations do not need scan
a database anymore. The calculations of the support count of
an itemset only acquire the same values of the attribute index
of each item in the itemset. As the same values represent those
transactions that contain the itemset, therefore, the number
of the same values is just the support count of the itemset.The
pseudocode of calculating the support count of an itemset is
shown in the function SUPItem of Pseudocode 2.

To calculate the support count of an association rule𝑋 →
𝑌, we can take 𝑋, 𝑌 and 𝑋 ∪ 𝑌 as an itemset or parameter
to call the function SUPItem so as to calculate the support
count of the antecedent, consequent, and the whole rule. The
pseudocode of calculating the support count of an association
rule is shown in the function SUPRule of Pseudocode 2.

Example 3. For a rule of the form 𝑖
1
𝑖
3
𝑖
5
→ 𝑖
4
, the attribute

indices of each item 𝑖
1
, 𝑖
3
, and 𝑖

5
in the antecedent part
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are Idx(𝑖
1
) = {1, 3, 5, 6}; Idx(𝑖

3
) = {1, 4, 5, 6}; Idx(𝑖

5
) =

{1, 2, 3, 4, 5, 6}. The same values of them are {1, 5, 6}. This
indicates 𝑇

1
, 𝑇
5
, and 𝑇

6
contain the antecedent of the rule,

as can be verified from Table 2. Therefore, SUP(𝑖
1
𝑖
3
𝑖
5
) =

|{1, 5, 6}| = 3. In the similar way, SUP(𝑖
4
) = |{2, 3, 4, 6}| = 4;

SUP(𝑖
1
𝑖
3
𝑖
5
→ 𝑖
4
) = SUP(𝑖

1
𝑖
3
𝑖
5
∪𝑖
4
) = |{1, 5, 6}∪ {2, 3, 4, 6}| =

|{6}| = 1.
If the support count of the antecedent, consequent, and the

whole rule is known, the confidence and coverage of the rule
can easily be acquired according to (5) and (7). Formula (8)
or (9) can easily calculate the comprehensibility of the rule in
terms of the number of attributes involving in the consequent
part and the whole rule.

The interestingness of an association rule can be calculated
by (10) or (11). However, we can obviously see that the
acquired interestingness according to (11) may be less than
0 because it is possible that supp(𝑋 ∪ 𝑌) is less than
supp(𝑋) supp(𝑌). The negative interestingness does not meet
our requirements. Therefore, (11) is not what we need. For
(10), we can deduce it as follows:

interestingness (𝑋 → 𝑌)

=
SUP (𝑋 ∪ 𝑌)
SUP (𝑋)

×
SUP (𝑋 ∪ 𝑌)
SUP (𝑌)

× (1 −
SUP (𝑋 ∪ 𝑌)
|𝐷|

)

= confidence × coverage × (1 − support) .
(19)

From (19), we can obviously see that the interestingness
of an association rule consists of 3 parts, the confidence,
coverage, and complement of the support. Among them, the
confidence and coverage are both larger than 0 and less
than or equal to 1, and their product is also larger than 0
and less than or equal to 1. However, if they are very small,
their product will be a great deal less than any of them. For
instance, confidence = 0.3, coverage = 0.5, their product 0.15
is much less than 0.3 and 0.5. Therefore, the interestingness
of a rule is often rather small. This has been confirmed by the
results of many works.

According to the definition of the interestingness of a
rule, it is to extract the rules that have comparatively less
occurrence in the database. Namely, the interestingness is
to mine such association rules as low support but higher
confidence. Therefore, we revise (19) as follows:

interestingness (𝑋 → 𝑌)

= 𝛼 × confidence + 𝛽 × confidence × (1 − support)

= 𝛼 ×
SUP (𝑋 ∪ 𝑌)
SUP (𝑋)

+ 𝛽 ×
SUP (𝑋 ∪ 𝑌)
SUP (𝑋)

× (1 −
SUP (𝑋 ∪ 𝑌)
|𝐷|

) , 𝛼 + 𝛽 = 1 ∧ 𝛼, 𝛽 > 0,

(20)

where 𝛼, 𝛽 are two regulating coefficients with the interval
[0, 1].

From (20), we can see that the interestingness of a rule is
the linear combination of the confidence and the complement

of the support. As the two parts and two regulating coeffi-
cients all belong to the interval of [0, 1], the interestingness of
a rule lies also in the interval of [0, 1]. Meanwhile, it can also
be seen that if the confidence keeps invariable, the support
is the less, the interestingness is the larger, and vice versa;
and when the support is fixed, the confidence is the larger,
the interestingness is the larger, and vice versa. This is just in
accordance with the definition of the interestingness of a rule.

From the above-mentioned, it can be seen that only by
means of the attribute indices can all metrics to evaluate a
rule be calculated out. Namely, the calculations of all metrics
do not need to scan database any further, but only fetch from
the created attribute indices.Therefore, there is no doubt that
the proposedmethod can highly improve the performance of
algorithm.

3.2. Fitness Function. Evolutionary algorithm, EA, is a
promising approach to findPareto-optimal solutions. It uses a
fitness function to guide the populationmembers to converge
toward the Pareto frontier. A well-known fitness function is
the weighted sum of the objective function

fitness = 𝜔
1
𝑓
1
(𝑥) + 𝜔

2
𝑓
2
(𝑥) + ⋅ ⋅ ⋅ + 𝜔

𝑀
𝑓
𝑀
(𝑥) , (21)

where 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑀
are nonnegative weights such that 𝜔

1
+

𝜔
2
+ ⋅ ⋅ ⋅ + 𝜔

𝑀
= 1. We call 𝑤 = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑀
) a weight

vector.
If an EA uses one weight vector to compose one fitness

function, there is only one search direction. To overcome this
shortcoming,multiple weight vectors can be used to compose
multiple fitness functions, so that there are multiple search
directions. Leung and Wang applied the uniform design to
compose multiple fitness functions, such that multiple search
directions are scattered uniformly toward the Pareto frontier
in the objective space. This method is as follows [23].

Firstly, normalize each objective function as follows:

ℎ
𝑖
(𝑥) =

𝑓
𝑖
(𝑥)

max
𝑦∈𝜓
{
𝑓𝑖 (𝑦)

}
, (22)

where 𝜓 is a set of points in the current population and ℎ
𝑖
(𝑥)

is the normalized objective function.
Then compose𝐷 fitness functions for any given𝐷, where

the 𝑖th fitness function is given by (1 ≤ 𝑖 ≤ 𝐷):

fitness
𝑖
= 𝜔
𝑖,1
ℎ
1
(𝑥) + 𝜔

𝑖,2
ℎ
2
(𝑥) + ⋅ ⋅ ⋅ + 𝜔

𝑖,𝑀
ℎ
𝑀
(𝑥) . (23)

Let 𝑤
𝑖
= (𝜔

𝑖,1
, 𝜔
𝑖,2
, . . . , 𝜔

𝑖,𝑀
). The uniform design is

applied to select the weight vectors𝑤
1
, 𝑤
2
, . . . , 𝑤

𝐷
as follows.

In the objective space, each objective function is treated as
one factor and hence there are𝑀 factors. Assume 𝐷 weight
vectors and hence there are 𝐷 levels. The uniform array
𝑈(𝑀,𝐷) is applied to determine 𝜔

𝑖,𝑗
for any and 1 ≤ 𝑖 ≤ 𝐷

and 1 ≤ 𝑗 ≤ 𝑀 as follows:

𝜔
𝑖,𝑗
=

𝑈
𝑖,𝑗

∑
𝑀

𝑗=1
𝑈
𝑖,𝑗

. (24)

The equation can ensure the square sumof theweight for each
fitness function to be one.
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The𝐷weight vectors𝑤
1
, 𝑤
2
, . . . , 𝑤

𝐷
can provide𝐷 search

directions. Using the uniform design to select the 𝐷 weight
vectors can ensure the 𝐷 search directions to be scattered
uniformly toward the Pareto frontier in the objective space.

In the proposed method, there are 4 objective functions,
namely,𝑀 = 4, and (23) can be modified as follows:

fitness
𝑖
= 𝜔
𝑖,1
confidence + 𝜔

𝑖,2
coverage

+ 𝜔
𝑖,3
comprehensiblity

+ 𝜔
𝑖,4
interestingness.

(25)

3.3. Encoding and Decoding. An association rule of the form
𝑋 → 𝑌 can be represented as a chromosome, among
which, each gene represents an attribute in the database.
The itemset 𝑋 and 𝑌 are, respectively, called the antecedent
and consequent of a association rule. In general, a rule only
contains a part of attributes, and the length, antecedent, and
consequent, of the various rules are all variable.Therefore, it is
a very urgent issue how to code a chromosome for the various
rules.

However, from the viewpoint of each attribute, the above
problem can be easily handled. The existence of an attribute
in an association rule can be classified into three situations as
follows.

(i) The attribute does not exists in the rule;
(ii) the attribute exists in the antecedent𝑋;
(iii) the attribute exists in the consequent 𝑌.

It can be noted that there is not the situation that the
attribute exists in both the antecedent and consequent, the
reason of which is 𝑋 ∩ 𝑌 = Φ in the definition of an
association rule.

If the above situations are, respectively, coded as 0, 1, and
2, then the chromosome representing a rule can contain each
attribute whose value is 0, 1, or 2. Therefore, the length of the
chromosome is fixed and is equal to the number of attributes
in the database.

The decoding of a chromosome is the reverse process of
the coding. Namely, each gene, whose value is 0, 1 or 2, is
translated as one of the above three situations. The index of
the gene whose value is equal to 1 or 2, respectively, decoded
as the antecedent and the consequent. The pseudocode of
decoding is illustrated in Pseudocode 3.

An example of coding and decoding is described as
follows.

Example 4. Assume the database with 6 attributes
(𝐴, 𝐵, 𝐶,𝐷, 𝐸, 𝐹). An association rule 𝐵𝐶 → 𝐸 can be
coded as 011020. A chromosome 101022 can be decoded as
the antecedent {1, 3} and consequent of {5, 6}, namely, the
corresponding rule is 𝐴𝐶 → 𝐸𝐹.

3.4. Initialization. Assume the size of the population and the
number of attributes in the database to be𝑀

𝑃
and𝑁, an𝑀

𝑃
-

by-𝑁 integer matrix is randomly generated. In the matrix,
the value of each element is equal to 0, 1, or 2, which present

three situations mentioned in Section 3.3. The matrix is the
initialized population.The pseudocode of the initialization of
a population is shown in Pseudocode 4.

In Pseudocode 4, the function isvalid is to judge whether
a chromosome representing a rule is valid or not. A valid rule
is that the size of the antecedent and consequent of a rule are
both larger than 0. Namely a chromosome is valid, if and only
if the geneswhose value is 1 and 2 in the chromosome are both
larger than 0. For instance, the chromosomes such as 22000,
00000, and 01010 are all invalid, and those such as 11020 and
01012 are all valid.

3.5. Crossover Operator of Variable Length. In order to ensure
that each gene in chromosome has as many chances as pos-
sible to implement crossover operation, a crossover operator
with variable lengths and positions is designed as follows.

First generate a random integer𝑁
1
, which represents the

number to exchange genes, where𝑁
1
< 𝑁,𝑁 is the number

of attributes in a database or the number of the genes in
a chromosome. Then generate two random integer vectors
of length 𝑁

1
, which represent the positions to exchange

genes. Lastly, the genes of the corresponding positions in two
chromosomes are exchanged with each other to generate two
novel offspring.

For example, two chromosomes 𝐶
1
and 𝐶

2
containing 10

genes are illustrated in Table 3(a). The steps of implementing
crossover operator on two chromosomes 𝐶

1
and 𝐶

2
are as

follows.

(i) Generate a random integer𝑁
1
= 5 which is less than

10.
(ii) Two random integer vectors pos

1
= {2, 4, 7, 8, 10} and

pos
2
= {1, 3, 4, 6, 8} are generated.

(iii) Those genes whose positions are pos
1
in𝐶
1
, and those

genes whose positions are pos
2
in 𝐶
2
, are exchanged

with each other.

The results of implementing crossover operation are
illustrated in Table 3(b). Notice those genes located at the
asterisk have been exchanged.

The pseudocode of the crossover function is shown in
Pseudocode 5. Here, the function isvalid can be referred to
Section 3.4. Only valid rule can be taken into the offspring.

3.6. Selection Scheme for Crossover Operation. The above
crossover operation needs to firstly select some chromosomes
from the population. A new selection scheme is designed
as follows. For each pair chromosomes, one is selected
randomly, another is chosen as the best one of chromosomes
from various directions. These directions are provided by
the weight vectors selected using the uniform design. The
detailed steps are as follows.

First randomly select𝐾
1
chromosomes to a setA from the

population according to the probability of crossover. Assume
the number of the needed weight vectors is 𝐷

1
, where 𝐷

1
is

a prime number. If 𝐾
1
≥ 𝐷
1
, any 𝐷

1
of the 𝐾

1
chromosomes

remain, the others are discarded. If 𝐾
1
< 𝐷
1
, randomly

select𝐷
1
−𝐾
1
chromosomes to A in order that A contain𝐷

1
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chromosomes. Next, apply the uniform design to select𝐷
1
−

𝑀weight vectors.The remainder𝑀weight vectors are single
objective weight vectors for 𝑀 objective functions. Then,
use (25) to generate 𝐷

1
fitness functions, which can provide

𝐷
1
search directions. Finally, adopt each fitness function to

evaluate the quality of each chromosome in the population,
and select the best one chromosome. Therefore, a total of 𝐷

1

chromosomes are selected as another part of chromosomes
to a set B.

Each pair of A and B can be used to perform crossover
operator. The pseudocode of the selection scheme for
crossover operation is illustrated in Pseudocode 6.

3.7. Mutation Operator. The functionmutate is to handle the
mutation operator. Its steps are as follows. Firstly fetch a
chromosome according to the probability of mutation from a
population and performmutate operator on the chromosome
in order to acquire a new one by calling the function mut. If
the new chromosome is invalid, call the function mut again
till the newly generated chromosome is valid. Next, the valid
chromosome is taken as one of the offspring. Then, return
to the first step and continue. Finally, return the generated
offspring.The pseudocode of the mutation function is shown
in Pseudocode 7.

In Pseudocode 7, mutate function is used to handle
mutation for the population contained many chromosomes
by calling mut function. The mut function is used to handle
mutation for the chromosome in the population. It firstly
generates a random number. If the random number is less
than the probability of mutation, the gene is changed into one
of the remainder values in the set {0, 1, 2}. The pseudocode of
the mut function is shown in Pseudocode 8.

3.8. Elitist Selection or Elitism. Elitism means that elite
individuals cannot be excluded from the mating pool of the
population. A strategy presented can always include the best
individual of the current population into the next generation
in order to prevent the loss of good solutions that have been
found. This strategy can be extended to copy the best 𝑛
individuals to the next generation. This is explanation of the
elitism. In evolutionary multiobjective optimization, elitism
plays an important role [45]. Elitism can speed significantly
up the performance of the genetic algorithm and help to
achieve better convergence in multiobjective evolutionary
algorithms,MOEAs [46]. MOEAs using elitist strategies tend
to outperform their non-elitist counterparts [47]. Elitism
usually has positive effects on both the convergence of
solutions toward the Pareto front and the diversity along the
Pareto front in MOEAs [48].

MOEAs often use two strategies to implement elitism.
One maintains elitist solutions in the population, the other
stores elitist solutions into an external secondary list and
reintroduces them to the population. The former copies all
non-dominated solutions in the current population to the
next population, then fills the rest of the next population
by selecting from the remaining dominated solutions in the
current population. The latter uses an external secondary list

to store the elitist solutions. The external list stores the non-
dominated solutions found, and the list is updated in the next
generation by means of removing elitist solutions dominated
by a new solution or adding the new solution if it is not
dominated by any existing elitist solution.

The work adopts the second strategy, namely storing eli-
tist solutions to an external secondary list. Its advantage is that
it can preserve and dynamically adjust all the non-dominated
solutions set till the current generation. The pseudocodes of
selecting elitist and updating elitist are, respectively, shown in
Pseudocodes 9 and 10.

3.9. Selection Scheme for Next Generation Combined with
Elitism. After performing the crossover operator and muta-
tion operator, weneed to select someof the potential offspring
to generate the new generation. Combining the elitism with
the uniform design, the proposed algorithms design a new
algorithm as follows.

We call the external secondary list the elitist pool. It
stores the non-dominated solutions found till the current
generation. Assume the size of the population and elitist
pool, respectively, are 𝑁

𝑝
and 𝑁pt. If 𝑁𝑝 ≤ 𝑁pt, then

𝑁
𝑝
nondominated solutions are randomly selected from the

elitist pool as the next generation.Otherwise, all𝑁pt solutions
in the elitist pool are taken as a part of the next generation,
and the remainder 𝐺 = 𝑁

𝑝
− 𝑁pt chromosomes are selected

as follows.
Among the parents and the offspring generated by

crossover and mutation, we select 𝐺 of them to append to
the next generation. In this selection, we adopt 𝐷

2
fitness

functions in order to realize 𝐷
2
search directions, where

𝐷
2
is a design parameter and it is prime. For each fitness

function, each chromosome in the parents and offspring is
evaluated using this fitness function and then the best ⌊𝐺/𝐷

2
⌋

or ⌈𝐺/𝐷
2
⌉ of them are selected, where ⌊𝐺/𝐷

2
⌋ mean the

nearest integer less than or equal to 𝐺/𝐷
2
, and ⌈𝐺/𝐷

2
⌉mean

the nearest integer larger than or equal to 𝐺/𝐷
2
. Overall,

a total of 𝐺 chromosomes are selected to append to the
next generation. Therefore, a total of 𝑁

𝑝
chromosomes are

selected for the next generation.

3.10. The Steps of the Proposed Algorithm. Thework proposes
the attribute index and uniform design based multiobjective
association rule mining with evolutionary algorithm, abbre-
viated as IUARMMEA. The steps of this algorithm are as
follows.

Step 1. Firstly, load the whole database or a sample of
records in the database 𝐷 according to the capacity of the
computer memory. Then, create the attribute index of each
attribute in database by calling the function attrIdx described
in Section 3.1. Finally, unload 𝐷 to release the computer
memory.

Step 2. Generate the initial population by calling the function
“initialize” described in Section 3.4.

Step 3. Calculate several metrics values of the confidence,
coverage, comprehensibility, and interestingness using (5),



The Scientific World Journal 9

(7), (8), and (20), respectively. Choose all non-dominated
solutions to the elitist pool from the initial populations by
calling the function “paretocreate” described in Section 3.8.

Step 4. Select some chromosomes for performing the
crossover operation from the population by calling the
function “seleforcross” described in Section 3.6.

Step 5. Perform the crossover operation on the selected
chromosomes by calling the function “crossover” described
in Section 3.5.

Step 6. Perform the mutate operation on the selected chro-
mosomes from the population in term of the probability
of mutation by calling the function “mutate” described in
Section 3.7.

Step 7. Regulate and update the non-dominated solutions
in the elitist pool by calling the function “paretoupdate”
described in Section 3.8. This step will compare the non-
dominated solutions and the generated offspring after per-
forming the crossover operator and mutation operator.

Step 8. Select some of the potential offspring to form the new
generation by the selection scheme described in Section 3.9.

Step 9. Go to Step 4 and continue if the stop criterion is not
met. Otherwise, go to Step 10.

Step 10. Decode all non-dominated solutions in the elitist
pool to acquire the final association rules by calling the
function “decode” described in Section 3.3.

4. Numerical Results

The proposed algorithm IUARMMEA is performed to test
its performance and compare with the algorithm ARMMEA,
which does not use the attribute index and uniform design.

4.1. Test Problems. We use six datasets to show the effective-
ness and performance of IUARMMEA. The specifications of
six datasets are described in Table 4. They represent various
kinds of domains and include both dense and non-dense
datasets, as well as various numbers of items. The first five
datasets are from UCI repository [49]. The last dataset was
generated using the generator from the IBM Almaden Quest
research group. It can be acquired from the workshop on
frequent itemset mining implementations [50].

For each dataset, the categorical attribute is converted or
divided into boolean attribute in terms of each attribute and
its various values. For instance, assume an attribute 𝑥 can
take any of the set {“a”,“b”,“c”,“d”,“e”} in a categorical dataset.
Therefore,𝑥 can be divided into 5 attributes, such as𝑥

1
,𝑥
2
,𝑥
3
,

𝑥
4
, 𝑥
5
. For each transaction, if 𝑥 = 𝑎, then 𝑥

1
= 1, otherwise

𝑥
1
= 0; If 𝑥 = 𝑏, then 𝑥

2
= 1, otherwise 𝑥

2
= 0, and so on.

However, it can be noted that the gene in the chromosome
only take one of the divided attributes, namely, only one
attribute can be larger than 0 in the divided attributes.
This is because the divided attributes are mutually exclusive.

Therefore, the evolution, initialization, and evaluation of the
population must consider the situation.

4.2. Parameter Values. The parameters of the proposed algo-
rithm are as follows.

(i) Population Size: the population size is 100.

(ii) Parameters for Crossover andMutation: we adopt 𝑝
𝑐
=

0.9,𝑁
1
= 23 and 𝑝

𝑚
= 0.5.

(iii) Parameters for Interestingness: the regulating coeffi-
cient 𝛼 is 0.5.

(iv) Parameters for Selection:𝐷
1
= 31.

(v) Stopping Condition: the algorithm terminates if the
number of iterations is larger than the given maximal
value 10.

4.3. Results. For each test problem, we perform 3 indepen-
dent executions and calculate the average values of the follow-
ing results, the number of scanning database, the number of
comparing transactions, the number of comparing attribute
indices, and execution times. Tables 5 and 6, respectively,
show these average values of two algorithms.

Tables 5 and 6 indicate that IUARMMEA compared
with ARMMEA, the number of scanning database is very
little and can be disregarded. This is because in ARMMEA
algorithm, each chromosome and each offspring generated by
crossover andmutation need to scan database to calculate the
support count of the antecedent, consequent, and the whole
rule, while in IUARMMEA algorithm, all chromosomes and
offsprings do not need to scan database any further, and
only need to scan database once to create the attribute index.
For the dataset T40I10D100, as the number of transactions
and attributes is very large, it is loaded in three batches
according to the capacity of the computermemory.Therefore,
the number of scanning database is 3.

The number of comparing transactions is the product
of the number of scanning database and the number of
transactions in database, since scanning database once is
to compare each transaction in database with each part of
the rule. As the algorithm ARMMEA has not the attribute
index, the number of comparing indices is certainly 0. From
Table 5, it can be seen that there is a relationship between
the number of comparing indices and the number of the
undivided attributes. This is because several metrics of a
rule need to compare the attribute indices of the undivided
attributes.

Tables 5 and 6 also indicate that the execution times of
IUARMMEA are significantly less than those of ARMMEA.
The former really outperforms the latter. In the meanwhile,
it can be seen that the execution times have relation to
not only the number of comparing the indices but also
the lengths of attribute index. For example, the dataset
mushroom compared with chess, the number of comparing
indices is less, but the execution times are even longer.This is
because the length of attribute index is much larger.
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attrIdx(𝐷, 𝐼): create the attribute index of each attribute.
Input:𝐷 indicates the transaction database; 𝐼 indicates

the universal itemset, namely 𝐼 contains all attributes.
Output: The attribute indices of the each attribute in 𝐼.

for each attribute 𝑖 in the universal itemset 𝐼
Idx(𝑖)← Φ;

end for
for each transaction𝑇 in database𝐷

define 𝑇 as𝑘;
for each attribute 𝑖 in the universal itemset 𝐼

if 𝑖 ∈ 𝑇
Idx(𝑖)← Idx(𝑖) ∪ {𝑘};

end if
end for

end for
return Idx;

Pseudocode 1: Pseudocode of creating the attribute index.

Table 1: Values of the parameter 𝜎 for different number of factors
and different number of levels per factor.

Number of levels per factors Number of factors 𝜎

5 2∼4 2
7 2∼6 3
11 2∼10 7

2 5
13 3 4

4∼12 6

17 2∼16 10

19 2∼3 8
4∼18 14

2, 13∼14, 20∼22 7
23 8∼12 15

3∼7, 15∼19 17

2 12
3 9

29 4∼7 16
8∼12, 16∼24 8

13∼15 14
25∼28 18

31 2, 5∼12, 20∼30 12
3∼4, 13∼19 22

5. Conclusion and Future Work

In this paper, we present a method of multiobjective associa-
tion rule mining based on the attribute index and uniform
design. The proposed method only scans database once to
create the attribute index and uses it to replace repeatedly
scanning database. This significantly reduces the number
of comparisons and time consumption, and improves the
performance of the algorithms.

Table 2: An example of transation database.

Transaction Containing items
𝑇
1

𝑖
1
, 𝑖
3
, 𝑖
5

𝑇
2

𝑖
4
, 𝑖
5

𝑇
3

𝑖
1
, 𝑖
2
, 𝑖
4
, 𝑖
5

𝑇
4

𝑖
2
, 𝑖
3
, 𝑖
4
, 𝑖
5

𝑇
5

𝑖
1
, 𝑖
3
, 𝑖
5
, 𝑖
6

𝑇
6

𝑖
1
, 𝑖
3
, 𝑖
4
, 𝑖
5
, 𝑖
6

Table 3: An example of crossover of variable length and positions.

(a) Before crossover
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(b) After crossover

𝐶
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𝐴
1
𝐵
1
𝐴
3
𝐵
3
𝐴
5
𝐴
6
𝐵
4
𝐵
6
𝐴
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𝐵
8

pos
1

∗ ∗ ∗ ∗ ∗

𝐶
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𝐴
2
𝐵
2
𝐴
4
𝐴
7
𝐵
5
𝐴
8
𝐵
7
𝐴
10

𝐵
9
𝐵
10

pos
2
∗ ∗ ∗ ∗ ∗

Table 4: The specifications of data sets.

Dataset Number transactions Number attributes
Balance scale 625 23
Solar flare 1066 48
Chess 3196 75
Mushroom 8124 119
Nursery 12960 32
T40I10D100K 100000 942

Table 5: The averages of several results for IUARMMEA.

Dataset
Number
scanning
database

Number
comparing
transactions

Number
comparing
indices

Execution
times
(sec)

Balance scale 1 625 8406 52.04
Solar Flare 1 1066 17047 99.36
Chess 1 3196 43683 282.81
Mushroom 1 8124 27123 363.05
Nursery 1 12960 9121 296.87
T40I10D100K 3 300000 85447 712.62

This algorithm is going on for further enhancement and
improvement. Attempt is to extend it to immediately use the
categorical or numeric dataset rather than converting them
into Boolean dataset.
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SUPRule(rul, Idx): calculate the support count of a rule.
Input: rul indicates an association rule; Idx indicates the

attribute indices of each attribute.
Output: SUP1, SUP2, and SUP3 indicate the support count of

the antecedent, the consequent and the rule,
respectively.

𝑋 ← the antecedent of rul, 𝑌 ← the consequent of rul;
SUP1← Call SUPItem(𝑋, Idx);
SUP2← Call SUPItem(𝑌, Idx);
SUP3← Call SUPItem(𝑋 ∪ 𝑌, Idx);
return SUP1, SUP2, SUP3;

SUPItem(Iset, Idx): calculate the support count of an itemset.
Input: Iset indicates an itemset; Idx indicates the attribute

indices of each attribute.
Output: the support count of Iset.

same← Φ;
for each item 𝑎 ∈ Iset in Iset

same← same ∩ Idx(𝑎);
end for
num← |same|;
return num;

Pseudocode 2: Pseudocode of calculating the support count.

decode(chrom): decode from chrom to generate the antecedent and the consequent.
Input: chrom indicates a chromosome.
Output: the antecedent and the consequent of an association rule.

antecedent← Φ;
consequent← Φ;
for the 𝑖th gene chrom(𝑖) ∈ chrom

if chrom(𝑖) = 1
antecedent← antecedent ∪ {𝑖};

end if
if chrom(𝑖) = 2

consequent← antecedent ∪ {𝑖};
end if

end for
return antecedent, consequent;

Pseudocode 3: Pseudocode of decoding.

population initialize(𝑃size,𝑁)
Input: 𝑃size indicates the size of the population;𝑁 indicates the number

of the attributes in the database.
Output: an𝑀

𝑃
-by-𝑁 integer matrix indicates the initial population.

pop← Φ; indiv← Φ;
while sizeof(pop) < 𝑃size

while sizeof(indiv) < 𝑁
temp← generate a random integer whose value is 0, 1, or 2;
indiv = indiv ∪ temp;

end while
if isvalid(indiv)

pop = pop ∪ indiv;
end if

end while
return pop;

Pseudocode 4: Pseudocode of the initialization.
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population crossover(pop,𝑝
𝑐
,𝑀,𝑁

1
)

Input: pop indicates the population; 𝑝
𝑐
indicates the probability of

crossover;𝑀 indicates the number of the objective function;𝑁
1

indicates the number of the wanted weight vectors.
Output: offspring indicates the offspring after crossover.

offspring← Φ;
𝐴, 𝐵 ← call seleforcross(pop, 𝑝

𝑐
,𝑀,𝑁

1
)

𝐶
1
∈ 𝐴,𝐶

2
∈ 𝐵, 𝐶

1
̸= 𝐶
2
;

Nexch← ∀ random integer𝑟temp ∧𝑟temp < length(𝐶1);
pos
1
, pos
2
← ∀ two random integer vectors with length of Nexch;

𝐶
3
, 𝐶
4
← (𝐶

1
(pos
1
)↔ 𝐶

2
(pos
2
));

while 𝐶
3
= 𝐶
1
or 𝐶
3
= 𝐶
2
or not isvalid(𝐶

3
)

pos
1
, pos
2
← ∀ two random integer vectors with length of Nexch;

tmp1, tmp2 ← (𝐶
1
(pos
1
)↔ 𝐶

2
(pos
2
));

𝐶
3
← isvalid(tmp1), 𝐶3 ← isvalid(tmp2);

end while
while 𝐶

4
= 𝐶
1
or 𝐶
4
= 𝐶
2
or isvalid(𝐶

4
) is false

pos
1
, pos
2
← ∀ two random integer vectors with length of Nexch;

tmp1, tmp2 ← (𝐶
1
(pos
1
)↔ 𝐶

2
(pos
2
));

𝐶
4
← isvalid(tmp1), 𝐶4 ← isvalid(tmp2)

end while
offspring← offspring ∪ {𝐶

1
, 𝐶
2
};

return offspring;

Pseudocode 5: Pseudocode of the crossover operator.

population seleforcross(pop, 𝑝
𝑐
,𝑀,𝐷

1
)

Input: pop indicates the population; 𝑝
𝑐
indicates the probability of

crossover;𝑀 indicates the number of the objective function;𝐷
1

indicates the number of the wanted weight vectors.
Output: A indicates the randomly select chromosomes; B indicates the

chromosomes selected by the uniform design.
A← Φ; B← Φ;
for ∀ chrom ∈ pop
𝑟 ← generate a random;
if 𝑟 < 𝑝

𝑐

A←A ∪ chrom;
end if

end for
𝐾
1
← length(A);

if 𝐾
1
≥ 𝐷
1

A← take out𝐷
1
from A;

else
A←A ∪ {randomly select𝐷

1
− 𝐾
1
chromosomes}

end if
𝑤 ← apply the uniform design to select𝐷

1
–𝑀 weight vectors;

𝑤 ← 𝑤 ∪ {𝑀 single objective weight vectors};
for ∀ wv ∈ w

FitnV ← Φ;
fitness← generate fitness functions;
for ∀ chrom ∈ pop

FitnV ← FitnV ∪ fitness(chrom);
end for
B ← B ∪max(FitnV);

end for
return A, B;

Pseudocode 6: Pseudocode of the selection scheme for crossover operation.
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population mutate(pop, 𝑝
𝑚
)

Input: pop indicates the population; 𝑝
𝑚
indicates

the probability of mutation.
Output: offspring indicates the offspring after mutatation.

offspring← Φ;
for ∀ chrom ∈ pop
𝑟 ← generate a random;
if 𝑟 < 𝑝

𝑚

chrom2 ← mut(chrom, 𝑝
𝑚
);

while not isvalid(chrom2)
chrom2 ← mut(chrom, 𝑝

𝑚
);

end while
offspring← offspring ∪ chrom2;

end if
end for
return offspring;

Pseudocode 7: Pseudocode of the mutate operator.

population mut(chrom, 𝑝
𝑚
)

Input: chrom indicates a chromosome in the population;
𝑝
𝑚
indicates the probability of mutation.

Output: chrom2 indicates a chromosome after mutatation.
chrom2← chrom;
for the 𝑗th gene ∈ chrom
𝑟 ← generate a random;
if 𝑟 < 𝑝

𝑚

gene← ∀ 𝑡 ∈ {0, 1, 2} ∧ 𝑡 ̸= gene;
chrom2(𝑗)← gene;

end if
end for
Return chrom2;

Pseudocode 8: Pseudocode of the mut function.

Table 6: The averages of several results for ARMMEA.

Dataset
Number
scanning
database

Number
comparing
transactions

Number
comparing
indices

Execution
times
(sec)

Balance scale 2380 1487500 0 121.39
Solar flare 2326 2479516 0 232.66
Chess 2320 7414720 0 626.78
Mushroom 2320 18847680 0 1183.06
Nursery 2378 30818880 0 1312.82
T40I10D100K 6885 229500000 0 1937.53

Fundamental Research Funds for the Central Universities
(no. K50510030014).
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für Technische Informatik und Kommunikationsnetze (TIK),
2001.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[31] D. Martin, A. Rosete, J. Alcala-Fdez, and F. Herrera, “A multi-
objective evolutionary algorithm for mining quantitative asso-
ciation rules,” in Proceedings of the 11th International Conference
on Intelligent Systems Design and Applications (ISDA ’11), pp.
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