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Allergic diseases including asthma, chronic rhinosinusitis, and atopic dermatitis are

common conditions worldwide. While type 2 immune responses induced by T-cells

significantly cause allergic inflammation, the recently identified group two innate lymphoid

cells (ILC2s) are emerging as critical players in the development of allergy. Upon allergen

exposure, ILC2s are rapidly activated by cytokines released by epithelial cells. Activated

ILC2s release various effector cytokines altogether contributing to the pathogenesis of

allergy and can even cause inflammation in the absence of T-cells, as observed in asthma.

Although the factors inducing ILC2 activation have been identified, evidence suggests

that multiple factors can enhance or repress ILC2 proliferation, trafficking, or secretion

of effector cytokines upon allergic inflammation. In this review, we discuss the recent

findings that influence ILC2 activation and the resulting effects on the pathogenesis of

allergy. A better understanding of how ILC2s are modulated will open the door to the

development of new therapeutic strategies against allergic diseases.
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INTRODUCTION

Allergic diseases are highly diverse and common conditions caused by the inappropriate
sensitization of the immune system to environmental antigens. Upon re-exposure to these
allergens, sensitized individuals develop allergic symptoms including rash, wheezing, and shortness
of breath. Most inflammatory responses seen in allergic diseases are caused by the release of type 2
cytokines from activated T helper 2 (Th2) cells. Main features of allergic reactions include smooth
muscle cell contraction, mucus production, release of IgE, increased vascular permeability and
recruitment of effector cells including eosinophils, basophils, and mast cells (1). However, type
2 cytokines are not only produced by Th2 cells, with Th9 (2), follicular T helper cells (3, 4) and
inflammatory cells further contributing to type 2 cytokine secretion. Invariant natural killer T-cells
also produce large amounts of cytokines and induce airway inflammation independent of T-cells
(5). Recently, group 2 innate lymphoid cells (ILC2s) were described as a source of cytokines during
allergic inflammation.

ILC2s are a subset of the innate lymphoid cells family described in three independent studies
(6–8), following pioneer work in the early 2000s (9). Mouse and human ILC2s are phenotypically
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TABLE 1 | Mouse and human ILC2 markers.

Biomarkers Mouse Human

CD45 + +

CD90 (Thy1) + –

CD25 (IL-2Ra) + +

CD127 (IL-7Ra) + +

ST2 (IL-33R) + +

IL17Rb (IL-25R) + +

CD161 (NKR-P1A) – +

CD278 (ICOS) + +

CD294 (CRTH2) + +

KLRG1 + +

CD117 (c-kit) + +

Sca-1 + –

CD194 (CCR4) – +

CD44 + –

Mouse lineage negative CD3, B220, Gr-1, CD11b, CD11c, Ter119, NK1.1,

TCR-γδ, FCεRI, Mac-1

Human lineage negative CD1a, CD3, CD14, CD16, CD19, CD20, CD56,

CD123, CD235a, CD11b, FCεRI, TCR-δ

comparable, lineage negative, non T-, non B-lymphocytes
(Table 1). Unlike T-cells, ILC2s lack antigen specific markers
and instead are rapidly activated by alarmins released following
tissue damage, pathogen recognition or allergen challenge.
Activated ILC2s release high amounts of type 2 cytokines
and contribute to a growing number of human diseases
(10, 11) including chronic rhinosinusitis with nasal polyps

(CRSwNP) (12–17) and atopic dermatitis (AD) (18, 19),
two common allergic diseases of the paranasal sinuses (upper
airways) and skin, respectively. Several studies have described the
involvement of ILC2s in human allergic asthma (20–24). Asthma
is a common, heterogeneous chronic inflammatory disease
of the lower airways characterized by airway hyperreactivity
(AHR) and reversible bronchoconstriction. Patients with asthma
have a greater number of total and activated blood ILC2s
compared to healthy controls (20), with increased numbers
of ILC2s further detected in bronchioalveolar lavage (BAL)
fluids of asthmatics (21). In line with this, ILC2s in blood
and sputum are increased in severe compared to mild
asthma patients (24), and in the sputum of children with
severe asthma (23). Interestingly, increased ILC2 numbers are
correlated with increased eosinophilia (22, 24). Altogether,
these findings suggest that ILC2s are critical in human
asthma.

According to a recent genetic cluster analysis, there are at
least five different clinical phenotypes of asthma (25). One cluster
showed higher blood and sputum eosinophils, driven by a Th2-
dominant inflammatory response (26). Multiple studies have
shown that ILC2s are directly involved in eosinophilic asthma
(11). They are located near the basement membrane subjacent
to the airway epithelium, residing within 70µm of airway
branchpoints (27). This strategic location allows them to act as

sentinels and rapidly respond to allergen exposure. The main
activators of ILC2s are alarmins released by activated epithelial
cells such as IL-33, IL-25, or TSLP (18, 28–32). Activated ILC2s
release various effector cytokines including IL-4, IL-5, IL-9, and
IL-13 (6–8). IL-5 and IL-13 cause eosinophilia and smooth
muscle cell contraction respectively, altogether contributing to
the pathogenesis of asthma (33, 34). Interestingly, activated
ILC2s also release considerable amounts of pleiotropic cytokines
IL-6 and GM-CSF (35–37). While IL-6 is known to induce
the development of Th17 cells from naïve T-cells (38), ILC3-
derived GM-CSF is a key regulator of oral tolerance to dietary
antigens by modulating macrophage effector functions (39). It
remains to be elucidated whether ILC2-derived IL-6 and GM-
CSF can have similar immunoregulatory effects in the context
of allergic diseases. Furthermore, ILC2s contribute to tissue
homeostasis through the secretion of amphiregulin (40). Several
studies show that activated ILC2s enhance Th2-cell activation
in response to allergens (41–43). However, in the absence of
T-cells, effector cytokines released by ILC2s in response to
intranasal challenge with alarmins are strikingly sufficient to
induce airway inflammation and AHR (44, 45). ILC2s are
therefore emerging as important players in the pathogenesis of
allergic diseases such as asthma, and a better understanding
of their function will open the door to the development of
new therapeutic strategies. Factors modulating ILC2 functions in
allergic diseases will be discussed in this review, summarized in
Figure 1.

MODULATION OF ILC2 ACTIVATION

Regulatory Cytokines
We and others recently reported that regulatory T-cells
(Treg)-derived cytokines suppress the development of ILC2-
dependent lung inflammation (46). Induced Tregs (iTregs),
rather than natural Tregs (nTregs) efficiently suppress the
production of ILC2-derived IL-5 and IL-13, ultimately inhibiting
the development of airway inflammation and AHR. The
suppressive effects of Tregs depend on ICOS:ICOSL interactions,
but also on the release by Tregs of IL-10 and TGF-

β. In line with our results, studies have confirmed the
suppressive effects of IL-10 and TGF-β on mouse and human
ILC2s in the context of asthma (47) and upper airway
inflammation (48). Further studies are however required to
better characterize the role of TGF-β, as epithelial-derived
TGF-β was recently shown to drive pulmonary inflammation
(49).

Interferons have various immunomodulatory functions
and are classified in two families: Type I Interferons such
as IFN-α and IFN-β, and Type II Interferons such as
IFN-γ (50). We recently reported that plasmacytoid DC
(pDC)-derived IFN-α directly suppresses ILC2 activation
in models of asthma (51). In our study, we showed that
IFN-α inhibits pulmonary ILC2-derived secretion of IL-5
and IL-13, ultimately preventing the development of airway
inflammation and AHR. Depletion of pDCs strikingly reverses
the suppressive effects on ILC2s. Interestingly IFN-β and
IFN-γ also strongly suppress pulmonary ILC2 proliferation
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FIGURE 1 | Factors modulating ILC2 activation in the context of allergy. Main ILC2 activators are alarmins released by epithelial cells, as activated ILC2s release

various effector cytokines including IL-4, IL-5, IL-6, IL-9, IL-13, and GM-CSF. Several groups of molecules can enhance or inhibit ILC2 activation. These include

contact independent pathways such as regulatory cytokines, hormones, growth factors, complement peptides, neuropeptides, neurotransmitters, and lipid mediators.

Contact-dependent pathways include co-stimulatory and adhesion molecules.

and cytokine production, suggesting that both Type I and Type
II Interferons can dampen ILC2-derived lung inflammation
(52, 53).

The classical view of the Th1/Th2 paradigm supports that
Th1 cytokines inhibit Th2 cell differentiation and vice versa
(54). This holds true for ILC2s, as they resemble Th2 cells.
IL-12, a Th1 cytokine, reduces ILC2 activation and promotes
their transition to T-bethigh GATA-3low ILCs (55), suggesting
that ILC2s retain plasticity. Furthermore, IL-27, a member of
the IL-12 cytokine family, suppresses ILC2 cytokine production
in the lungs (53, 56). On the other hand, Th2 cytokines were
reported to enhance ILC2 cytokine production. A study shows
in a model of lung inflammation that key type 2 cytokine
IL-4 derived from basophils enhances ILC2 secretion of IL-5
and IL-13, ultimately favoring eosinophilia (57). Besides being
known as a Th9 cell signature cytokine, IL-9 is also required
for the survival and homeostasis of ILC2s (58, 59). Furthermore,
lung ILC2s themselves secrete IL-9 as autocrine IL-9 is crucial
for ILC2 effector functions (60, 61). Similar to T-cells, ILC2s

require survival factors for efficient activation (62). IL-2 is
crucial in the maintenance of ILC2 activation (43, 63), as
they further rely on IL-7 for their development (64, 65) and
efficient activation (20). A recent report however reveals that
IL-7 is not strictly required for the development of ILC2s (66).
Interestingly, human lung ILC2s are further activated by IL-

1β and closely related cytokine IL-18 (37, 67). In addition
to affecting ILC2 activation, several lines of evidence suggest
that cytokines from the local microenvironment affect ILC2
plasticity depending on the context. ILC2s may develop into
specific subsets or even express an ILC1-phenotype, although
further studies are warranted to better understand such processes
(68–70).

Co-stimulatory Molecules
ILC2s express multiple receptors on their surface that bind
to ligands present on other immune cells. Among those are
co-stimulatory molecules, known to modulate T-cell activation
(71). Both mouse and human lung ILC2s express Inducible
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T-cell co-stimulator (ICOS) at steady state but also upon
inflammation (72–75), and we were the first to show that they
also express ligand ICOS-L (76). We show that the ICOS:ICOS-
L trans-interaction is crucial for ILC2 homeostasis and effector
functions inmodels of lung inflammation. Compared to controls,
mice genetically deficient in ICOS develop less AHR and lung
inflammation as a result of a defect in pulmonary ILC2-derived
IL-5 and IL-13 secretion and increased apoptotic rates. The
observed effects were strictly ILC2-dependent, as alymphoid
mice adoptively transferred with ICOS-deficient ILC2s develop
less AHR compared to control mice. In a separate study,
we further studied the interaction of pulmonary ILC2 surface
expression of ICOS with its ligand on T-cells. Strikingly,
we found that binding of iTregs via ICOS-L to ILC2s via
ICOS inhibits ILC2 cytokine secretion and development of
AHR (46). A recent study reveals that PD-1, another co-
stimulatorymolecule, is expressed on ILC2s and acts as a negative
regulator of ILC2s by inhibiting proliferation and IL-13 cytokine
production in a model of lung inflammation (77). Although
PD-1 is expressed on ILC2s, further studies are required to
better understand its function in the context of allergic asthma.
For example, it is not clear whether a PD-1 agonist can be
used as a therapeutic agent in the context of ILC2-dependent
asthma.

Members of the tumor necrosis factor receptor superfamily
(TNFRSF) and their ligands (TNFSF) provide key co-stimulatory
signals to T-cells (78). They contribute to T-cell homeostasis
and induce or restrict immune responses. Such findings have
led to the design of treatments of autoimmune diseases and
tumors (79, 80). Similar to T-cells, several TNFRSF and their
ligands are involved in ILC2 homeostasis and activation in the
context of allergic diseases. TNFRSF25 (DR3) was first shown
to be required for mouse and human ILC2 expansion and
function (81, 82). ILC2s express TNFRSF25, and engagement
with TNFSF15 induces ILC2 expansion, survival and cytokine
secretion in the lungs (82). Interestingly, TNFSF15 alone is
sufficient to activate ILC2s. In a mouse model of dermatitis,
a recent study further shows that TNFSF15 activates skin
ILC2s in a TNFRSF25-dependent manner (83). A report
describes the co-stimulatory role of TNFRSF18 (GITR) in
ILC2-dependent lung inflammation (61). Interaction of the
receptor with GITR-L (DTA-1) enhances autocrine IL-9-induced
IL-5 and IL-13 secretion by ILC2s, ultimately driving lung
inflammation. However, further studies are required to better
characterize the function of TNFRSF18 on ILC2s during
inflammation. Upregulation of the tumor-associated surface
molecule B7-H7 is observed in human AD lesions (84).
Binding to its receptor NKp30 on ILC2s induces type 2
cytokine secretion, suggesting this pathway may be involved
in ILC2-derived skin inflammation (84). Although no effect
on ILC2 activation was reported, a recent study describes
ILC2s as a source of TNFSF4 (OX40L), promoting IL-33-
driven Th2 and Treg lung inflammation by binding to
TNFRSF4 (OX40) (85, 86). Altogether, these studies suggest
that co-stimulatory molecules are potent modulators of ILC2
activation.

Lipid Mediators
Lipids are generally known as a source of energy for the
human body and crucial components of cellular membranes
(87). However, eicosanoids such as prostaglandins (PG), cysteinyl
leukotrienes (cystLT) and lipoxins (LX) are bioactive lipids
also involved in cell signaling (88, 89). In the context of
ILC2-driven allergic inflammation, several prostaglandins were
described to modulate ILC2 functions (90–92). The most
studied prostaglandin is PGD2, which binds to CRTH2 and
induces human and mouse ILC2 chemotaxis and type 2
cytokine production in the inflamed lungs (90, 93, 94). Unlike
PGD2, other prostaglandins were shown to inhibit ILC2
functions (91, 92). In a mouse model of airway inflammation,
PGI2 binds to PGI2 receptor IP on ILC2s and reduces
the number of lung-expressing IL-5 and IL-13 ILC2s (91).
Another recent study shows that PGE2 inhibits human tonsillar
ILC2 proliferation and cytokine secretion by binding to EP2
and EP4 on ILC2s (92). Cysteinyl leukotrienes are important
inflammatory mediators in the context of allergy. Mouse and
human ILC2s express cystLT-R1, as LTD4 was first shown to
induce ILC2 proliferation and production of cytokines during
lung inflammation (95). Furthermore, it was recently reported
that LTC4 given intranasally with low dose IL-33 increases
lung ILC2 proliferation and type 2 cytokine secretion in mice
(96). In another recent study using an AD model, LTE4

induces migration, reduces apoptosis and enhances cytokine
secretion in human ILC2s (97). Finally, lipoxins are are generally
associated with resolution of inflammation (98), with LXA4

shown to inhibit IL-13 production on activated human ILC2s
(99). Altogether, these studies suggest that lipid mediators are
potent modulators of ILC2 activation and chemotaxis.

Adhesion Molecules
Besides their role in cell migration, adhesion molecules are
required for efficient, tight cell-to-cell interactions and can
function as co-stimulatory molecules (100). ILC2s express
integrins such as leukocyte function-associated molecule (LFA-
1, αLβ2), interacting with members of the intercellular cell
adhesion molecule (ICAM) family of ligands (101). Interestingly,
disruption of LFA-1 and ICAM-1 binding impaired the
development of airway inflammation (102). A study recently
showed that mouse and human ILC2s express both LFA-1
and ICAM-1 (103). This study elegantly shows that LFA-1 is
required for ILC2 migration from the circulation to the lungs
during airway inflammation, although it did not affect ILC2
functions. This study strongly supports that ILC2s are not only
resident cells and can also be recruited to inflamed lungs, an
observation also made by others (104). Besides these observed
effects, ICAM-1 is furthermore required for ILC2 homeostasis
and efficient activation in the lungs, as absence of ICAM-
1 specifically on ILC2s significantly inhibits IL-5 and IL-13
secretion and development of airway inflammation (105). Killer
cell lectin-like receptor G1 (KLRG1) - E-cadherin interactions
inhibit ILC2 activation in the context of human AD lesions (19).
Skin ILC2s of AD lesions express high levels of KLRG1 compared
to healthy controls. Interaction with E-cadherin, an adhesion
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molecule found on epithelial cells, reduces ILC2 proliferation
and cytokine secretion in response to both IL-25 and IL-33.
The KLRG1-E-cadherin interaction is of particular interest, as
loss of E-cadherin on lung epithelium in humans is linked
to asthma severity (106). Altogether, adhesion molecules are
emerging as efficient modulators of ILC2 homeostasis, function,
and trafficking.

Neuropeptides and Neurotransmitters
Neuropeptides and neurotransmitters are proteins used by
neurons to communicate with each other. Interestingly,
the immune and nervous systems are closely linked (107).
Neurotransmitter acetylcholine binds to receptors including
nicotinic acetylcholine receptors (nAChRs). As opposed to
muscarinic AChRs, nAChRs also respond to nicotine, ultimately
affecting immune responses (108). We were the first to show
that human and mouse ILC2s express a7nAChR, regulating
ILC2-mediated lower airway inflammation and AHR (109).
Engagement of the a7nAChR with GTS-21, a specific agonist,
inhibits ILC2-derived IL-5 and IL-13 secretion, ultimately
inhibiting the development of airway inflammation and AHR.
ILC2s also express β2-adrenergic receptor (β2-AR), known to
interact with neurotransmitter epinephrine, and was recently
described as a negative modulator of ILC2 activation. This
study shows that mice treated with a β2-AR agonist exhibit less
lung ILC2 proliferation and cytokine production in response to
IL-33 (110).

Neuropeptides can amplify allergic lung inflammation (27,
111). First, a study shows that ILC2s express Neuromedin U
receptor 1 (NMUR1) at steady state and during inflammation
(111). NMUR1 ligand Neuromedin U (NMU) amplifies IL-25-
induced allergic lung inflammation by increasing ILC2-derived
IL-5 and IL-13 secretion. As a result, mice co-challenged with
NMU and IL-25 develop increased airway inflammation and
AHR compared to controls. Another study recently shows
that neuropeptide calcitonin gene-related peptide (CGRP)

induces ILC2-driven allergic lung inflammation by enhancing
ILC2-derived IL-5 secretion (27). Interestingly, the source
of CGRP are pulmonary neuroendocrine cells (PNECs) that
reside in close proximity to ILC2s at airway branchpoints.
Additionally, lung ILC2s release IL-5 after stimulation with
the neuropeptide vasoactive intestinal peptide (VIP). VIP
signals through VIP receptor type 2 (VPCA2) expressed
on ILC2s, as they release IL-5 after stimulation with a
specific agonist (34). Altogether, these studies suggest that
neuronal products are emerging as potent modulators of ILC2
activation.

Hormones, Growth Factors and
Complement Peptides
Studies have shown that asthma incidence differs depending on
the sex (112). In human asthmatics, the number of blood ILC2s is
increased in women compared tomen (113). This highly suggests
a role for sex hormones as regulators of the development of
asthma, as they are already known to affect T-cell differentiation
and cytokine secretion in a different context (114, 115). Three
studies recently established a role for androgens in ILC2-driven

airway inflammation (113, 116, 117). A study shows that male
mice develop less severe IL-33-induced allergic asthma compared
to females (116). Interestingly, this difference is due to an
increase in androgen receptor (AR) signaling, which ultimately
decreases ILC2-dependent airway inflammation. In line with
this, a group recently found that a derivative of testosterone,
5α-dihydrotestosterone (5α-DHT) directly inhibits lung ILC2
proliferation and secretion of IL-5 and IL-13 in response
to IL-33 (113). As a result, testosterone decreases Alternaria
extract-induced airway inflammation. Interestingly, lung ILC2s
from gonadectomized females secrete less IL-5 compared to
controls, suggesting that ovarian hormones may also affect ILC2
homeostasis and function (118). In line with this, ILC2s were
shown to be regulated by female sex hormones in the uterus
(119).

Members of the vascular endothelial growth factors (VEGF)
including VEGF-A, VEGF-C, and VEGF-D are secreted by
multiple immune cells (120). Recently, a study shows that
both human and mouse ILC2s strikingly promote AHR via
the production of VEGF-A (121). ILC2s stimulated with IL-
33 release autocrine VEGF-A, which binds to surface VEGFR2,
altogether promoting cytokine secretion and lung inflammation.
Treatment of mice with a specific VEGFR2 inhibitor significantly
inhibits the development of AHR in response to allergen.
Interestingly, ILC2s from patients with asthma express increased
VEGF-A transcripts.

Finally, complement system activation and generation of
anaphylatoxins, or complement peptides, induces and regulates
the development of type 2 responses at mucosal surfaces (122).
A study recently shows that complement peptide C3a increases
ILC2 numbers in the lungs, as well as their secretion of IL-13
and GM-CSF in response to IL-33 (36). This novel mechanism
by which C3a drives type 2 immunity in the lungs is of particular
interest as elevated levels of C3a were found in asthmatics
airways (123).

Concluding Remarks and Future Directions
ILC2s are potent producers of type 2 cytokines, and it is therefore
not surprising that they are involved in the development of
various allergic diseases including asthma. Treating such diseases
by targeting upstream ILC2 activators such as alarmins will
likely have unwanted adverse effects on other immunological
pathways. In recent years however, multiple pathways were
described to modulate ILC2 effector functions, ultimately
affecting the pathogenesis of allergic diseases. Such findings
provide valuable information for the design of novel therapeutic
strategies, largely dependent on corticosteroids in the context
of asthma and AD. Open questions however remain to be
tackled. First, although research over the past years has revealed
the expression of multiple key receptors on ILC2s, no specific
marker has yet to be identified (Table 1). Second, although
ILC2s are considered as resident cells (124), emerging data
suggests that they express chemotactic/trafficking molecules
upon inflammation and are therefore also recruited to inflamed
tissues, as discussed (103, 104). A better understanding of ILC2
trafficking and tissue tropism will provide valuable information
for the treatment of allergic diseases. Third, several lines of
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evidence suggest that ILC2s retain plasticity and adapt to
signals from the local microenvironment, such as composition
of the local cytokine pool. ILC2s can develop into specific
sub phenotypes, such as the newly described IL-10 producing
ILC210 (69) or IL-17 producing ILC217 (70). Furthermore,
several lines of evidence describe conversion from ILC2 to an
ILC1-like phenotype such as following smoke exposure (68).
It will be crucial to delineate the factors inducing plasticity
or commitment among ILC2s particularly in the context of
allergic diseases. Finally, since asthma is a heterogeneous
disease, it will be essential to find a biomarker characterizing
the cohort of asthma patients with increased airway ILC2
activity.
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