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The common respiratory abnormality, small airway dysfunction (fSAD), is easily

neglected. Its prognostic factors, prevalence, and risk factors are unclear. This

study aimed to explore the early detection of fSAD using radiomic analysis

of computed tomography (CT) images to predict fSAD progress. The patients

were divided into fSAD and non-fSAD groups and divided randomly into a

training group (n = 190) and a validation group (n = 82) at a 7:3 ratio. Lung

kit software was used for automatic delineation of regions of interest (ROI)

on chest CT images. The most valuable imaging features were selected and

a radiomic score was established for risk assessment. Multivariate logistic

regression analysis showed that age, radiomic score, smoking, and history of

asthma were significant predictors of fSAD (P < 0.05). Results suggested that

the radiomic nomogram model provides clinicians with useful data and could

represent a reliable reference to form fSAD clinical treatment strategies.

KEYWORDS
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Introduction

Small airway refers to the bronchioles located at the end of the bronchus, whose
luminal diameter is < 2 mm. Most bronchioles are terminal bronchioles, which are
important for lung gas exchange (1, 2). Initially, small airway blockage results in
little detectable change in airway resistance, producing a small airway known as “the
silent zone of lung disease” (3). Unfortunately, as the disease progresses, small airway
obstruction detrimentally affects lung function (4, 5). Almost 40% of Chinese adults
have small airway dysfunction (fSAD) defined by lung function tests (6). Therefore,
maintaining the normal physiological function of small airways is significant for
respiratory health, and the early detection of small airway lesions helps to inhibit
respiratory disease progression.

Inflammation or stenosis of the small airway are the main causes if fSAD and small
airways abnormalities are characterized by premature air trapping and airway closure,
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and the increased limitation of the dependence on airflow
volume (7). Without treatment or improvement, the body
enters a state of long-term oxygen insufficiency. Recent
research demonstrated that in patients with chronic obstructive
pulmonary disease (COPD), the characteristics of the small
airways are peribronchial fibrosis, hyperplasia of airway
smooth muscle, inflammatory cell infiltration of the airway
wall, and thickening of the airway wall with epithelial
changes. Pathological evidence of emphysema is preceded by
a marked loss of small airways (8). Furthermore, in asthma,
chronic epithelial inflammation thickens the small airways,
correlating with asthmatic exacerbation and the increased
severity/frequency of dyspnea (9). This was supported by
the observation that fSAD occurs prior to CT detection of
emphysema and spirometric evidence of COPD, and is thus
considered a precursor of asthma and COPD (10).

To assess whether early or high-risk groups have lung
diseases, small airway function can be measured. However,
detecting early physiological abnormalities in small airways is
challenging. In addition to the spirometry test, high resolution
CT (HRCT) scanning can be used to detect small airway injury
at the early stage; however, it needs? to detect the degree of
air retention by dual phase breathing (11). Certain quantitative
imaging features can reveal the shape of the lung, the intensity
changes, and fine and rough lung tissue structures. For example
the long run high gray level emphasis (LRHGLE) reflects the
image intensity and uniformity, and quantifies the relationship
between image attenuation and tissue uniformity (12).

However, there is no research proving the relationship
between early lung imaging findings and the late occurrence

of fSAD in patients. Our research aimed to explore whether
early changes in lung CT microstructure are predictive of
fSAD, to evaluate the factors influencing fSAD, leading to early
fSAD prediction by non-invasive methods, and to understand
its risk factors (i.e., the associations among fSAD, lifestyle,
and environment), allowing early clinical intervention delayed
disease progression.

In this study, we used radiomic feature to assess the risk
of fSAD, and together with the with radiomic score (rad-
score) and clinical risk factors, established a predictive model
(radiomic nomogram). This model might aid precise treatment
and clinical decision-making of fSAD in the future.

Materials and methods

Ethical approval

The Ethics Committee of our hospital approved this
retrospective study. As a retrospective study, informed consent
was not required.

Study design

The study’s overall workflow comprised patient and image
collection, region of interest (ROI) definition, radiomic feature
extraction, modeling, and evaluating of performance. Figure 1
provides a brief overview of the modeling strategy.

FIGURE 1

Flowchart showing how the radiomic signature was developed. CT, computed tomography; LASSO, least absolute shrinkage and selection
operator; RLM, run length matrix; ROC, receiver-operator characteristic.
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Patient selection

Patients with fSAD were diagnosed via pulmonary function
tests (PFTs) in from July 2017 to August 2020 and collected
retrospectively. The PFT results and chest CT images of the
patients from a previous visit (with an interval of more than
1 year) were reviewed retrospectively. If the previous lung
function results showed no fSAD, they were recruited into the
study. The exclusion criteria were: (1) Patients who had not
received two lung function tests; (2) lack of complete clinical
data; (3) the interval between chest CT examination and the first
pulmonary function examination was more than 2 weeks; and
(4) patients with obstructive ventilation dysfunction. Finally,
the inclusion criteria were satisfied by 272 patients who were
thus recruited into this study. Figure 2 shows the flowchart
for recruitment of patients in this study. Radiomic features
were extracted from the patient’s chest CT scan. None of the
patients had a sign of respiratory tract infection, wheezing in
the lungs and a history of lung surgery. We extracted clinical
parameters such as sex, age, symptoms, lung function index,
smoking, asthma, and body mass index (BMI) from electronic

medical record system, lung function room data, and telephone
follow-up.

Lung computed tomography protocol
and pulmonary function tests

All the imaging data were from the picture archiving
and communications system (PACS) of our medical center.
The chest CT images were acquired on the same 64-slice
multidetector CT scanners (Somatom Definition AS, Siemens).
The CT protocol settings are shown in Supplementary material.
The American Thoracic Society guidelines were followed when
conducting the PFTs (diffusing capacity, lung volume, and
spirometry) on a flow spirometer (Vmax22; SensorMedics),
using as a reference the European Community Lung Health
Survey values. At 15 h post-inhalation of albuterol (400
µg), post bronchodilation measurements were made. The
ATS/ERS (American Thoracic Society/European Respiratory
Society) recommendations were followed when carrying out
forced expiratory flow (FEF) 25–75%, FEF50%, and FEF75%;

FIGURE 2

Flowchart for recruitment of patients in this study (PACS, picture archiving and communication system; COPD, chronic obstructive pulmonary
disease; CT, computed tomography).
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forced vital capacity (FVC); forced expiratory volume in 1 s
(FEV1); the ratio of FEV1 to FVC, maximal mid-expiratory flow
(MMEF), maximum voluntary ventilation (MVV), vital capacity
(VC), pre- and post-bronchodilator spirometry, and peak flow
measurement (PEF).

To eliminate the influence of sex, age, height, weight, and
other factors on the pulmonary function value, the pulmonary
function index was presented as the percentage of the measured
value compared with the predicted value (%PRED). Based
on previous studies’ the recommendations and guidelines, the
patients were classified into fSAD and non-fSAD (non-fSAD)
groups. The fSAD diagnostic criteria were based on two or
more of the following lung function indicators being less than
65% of the predicted value: forced expiratory flow 50%, forced
expiratory flow 75%, and maximal mid-expiratory flow (6).

Segmentation of the region-of-interest
for image processing and extraction of
radiomic features

The whole lung image was segmented automatically using
Lung Kit (LK Version V1.0.0.R, GE Healthcare) from the
baseline CT images, with a lung window width of 1,500
Hounsfield units (HU) and a window level of −400 HU [the
other lung tissues (bronchus and vessels) were removed from the
image]. Image standardization was carried out by preprocessing
before auto-segmentation: (1) Image resampling: the resolution
was resampled to a voxel size of 1.5 × 1.5 × 1.5 mm3;
(2) intensity standardization: we re-ranged the gray value to
0–255. Two experienced respirologists, who were blinded to
the clinical data, conducted manual modification of the CT
images independently. Artificial Intelligence Kit Version 3.0.1.A
(GE Healthcare) was used to extract the texture features from
the segmented CT images (see Supplementary material I
for details). Using an in-house software written in Python
(Pyradiomics version 2.12),1 we extracted 326 radiomic features
from each ROI for each patient. The extracted radiomic
features included: Form factor parameter, gray level co-
occurrence matrix (GLCM), run length matrix (RLM), texture
parameters, and histograms. Supplementary material II shows
the detailed description of the feature extraction. Patients in
the cohort were divided randomly at 7:3 ratio into a training
set (n = 190) and a validation set (n = 82). LASSO (least
absolute shrinkage and selection operator) regression was then
used to select the most useful predictive radiomic features
from the training set (Supplementary Figure 1). Then, to
predict fSAD for each patient, a radiomic signature was created
as a linear depiction of the selected features, weighted by
their respective coefficients. The accuracy of the predictions

1 https://pyradiomics.readthedocs.io/en/2.1.2/

of the radiomic signature in the training and testing groups
were evaluated using the area under the receiver-operator
characteristic (ROC) curve (AUC).

Construction and evaluation of a
radiomics signature

The LASSO coefficients of the selected features were used
to weight them to generate a radiomic signature. For each
patient, we calculated the radiomic score (rad-score), and
then used a linear kernel support vector machine (SVM) to
construct the radiomic features according to the subset of top
features from classified patients with fSAD to predict disease
progression. Figure 1 shows the main process of building the
radiomic signature. The details of SVM construction are shown
in Supplementary material IV. The accuracy and stability of
the SVM were assessed in comparison with alternative machine
learning methods, such as Logistic regression, K-Near Neighbor
(KNN), Bayes, Random Forest, and Decision Tree classifier.
fSAD and non-fSAD subjects could then be grouped according
to the predictions established using these methods models.

Construction of the radiomic
nomogram

Potential predictors were identified initially using univariate
logistic regression. We then selected independent predictors of
fSAD from among the potential predictive variables (sex, age,
BMI, smoking history, asthma, tuberculosis, and bronchitis)
using multivariate logistic regression. Finally, we used stepwise
logistic regression to construct a joint prediction model from the
independent predictors in the training set, and the performance
of the joint model was verified using the data from the test
sett. Then, we visualized the results using ROC curves and
quantified the prediction performance using the AUC values.
The good-ness-of-fit of this model was analyzed using the
Hosmer-Lemeshow test. We assessed the agreement between
the predicted disease progression probability and actual disease
progression probability using Calibration curves. The clinical
performance of the iconography in the two cohorts (training
group and validation group) was assessed using Decision
curve analysis (DCA).

Statistical analysis

The mean and standard deviation (SD) were used to express
continuous variables, and frequency and proportion were used
to express categorical variables. Categorical variables were
analyzed by a chi-squared or Fisher’s exact test. Continuous
variables were assessed using a Mann–Whitney U-test or an
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independent sample t-test. Medcalc software (Version 15.2.2),2

R software (Version 3.5.1), Python (Version 2.12), and SPSS
(Version 18.0; IBM) were employed to carry out the statistical
analyses. Statistical significance was accepted at p < 0.05.

Results

People

The 272 recruited patients were divided randomly into the
training group (n = 190) and the validation group (n = 82).
The characteristics of the patients are shown in Table 1 and
Supplementary Table 1. The rate of fSAD was not significantly
different between the training and validation groups (59/190,
31.1% vs. 24/82, 29.3%, P = 0.769). No differences were
observed among the other clinical parameters (sex, BMI,
asthma, tuberculosis and bronchitis). However, in both the
training and validation sets, age, asthma, and smoking differed
significantly between the patients with fSAD and the non-fSAD
subjects (Table 1).

2 https://www.MedCalc.org/

Feature selection

From each patient’s CT image, we extracted 328 imaging
features. Initially, the Mann–Whitney test and ANOVA
test identified 113 meaningful features. Sixty-four features
remained after removing redundant features through
Spearman correlation analysis. Finally, LASSO regression
selected 17 predictive features, which were employed to
construct the radiomic signature. Supplementary Table 2 and
Supplementary Figure 2 show the feature details and the
formula used to construct the radiomic signature.

Radiomic signature’s performance and
stability

The predictive performance of the rad-score in the two
sets was evaluated using a ROC curve (Figures 3A,B). In
general, patients with fSAD had higher rad-score values
(training group: −0.298 vs. −1.168, P < 0.001, validation
group: 0.188 vs. −1.335, P < 0.001). For the training set,
the AUC value was 0.842 (95% CI: 0.782–0.891), with a
sensitivity of 0.797 and specificity of 0.756. For the validation
set, the AUC value was 0.856 (95% CI: 0.761–0.924), sensitivity

TABLE 1 Preoperative clinical characteristics of patients with or without fSAD.

Characteristics Training cohort (n = 190) P-value Validation cohort (n = 82) P-value

fSAD (n = 59) Non-fSAD (n = 131) fSAD (n = 24) Non-fSAD (n = 58)

Age, years <0.001 <0.001

<60 7 56 3 43

≥60 52 75 21 15

Sex 0.779 0.776

Man 43 98 20 45

Women 16 33 4 13

BMI 0.023 0.018

<24 46 80 18 27

≥24 13 51 6 31

Smoking <0.001 0.001

Yes 34 40 16 15

No 25 91 8 43

Asthma <0.001 0.001

Yes 35 35 13 11

No 24 96 11 47

Tuberculosis 0.074 0.695

Yes 7 5 3 4

No 52 126 21 54

Bronchitis 0.469 0.109

Yes 11 19 8 10

No 48 112 16 48

BMI, body mass index; fSAD, small airway dysfunction.
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FIGURE 3

Evaluating the accuracy of the radiomic signature. Prediction of a high risk of fSAD using the radiomic signature in the training cohort (A)
(AUC = 0.842) and in the validation cohort (B) (AUC = 0.856). AUC, area under the receiver-operator characteristic (ROC) curve; fSAD, small
airway dysfunction.

TABLE 2 Predictive performance of the radiomic signature and radiomic nomogram.

Model Radiomic signature Radiomic nomogram

Specificity Sensibility AUC (95% CI) Specificity Sensibility AUC (95% CI)

Training cohort 0.756 0.797 0.842 (0.782–0.891) 0.893 0.814 0.910 (0.860–0.946)

Validation cohort 0.708 0.897 0.856 (0.761–0.924) 0.879 0.875 0.933 (0.856–0.977)

AUC, area under the receiver operating characteristic (ROC) curve; CI, confidence interval.

TABLE 3 Discrimination performance of the different model construction methods in the fSAD and non-fSAD groups.

Method Training cohort Validation cohort

Accuracy F1_ score Sensitivity Specificity AUC Accuracy F1_ score Sensitivity Specificity AUC

SVM 0.770 0.43 0.797 0.756 0.842 0.84 0.45 0.897 0.708 0.856

Logistic regression 0.674 0.061 0.982 0.301 0.667 0.78 0.130 0.996 0.203 0.640

Bayes 0.653 0.411 0.802 0.359 0.748 0.598 0.108 0.746 0.105 0.578

KNN 0.732 0.44 0.944 0.312 0.863 0.768 0.345 0.921 0.263 0.761

Decision Tree 0.837 0.627 0.993 0.4 0.853 0.634 0.211 0.873 0.148 0.538

Random forest 0.784 0.453 0.985 0.304 0.922 0.671 0.229 0.927 0.148 0.630

AUC, area under the curve; CI, confidence interval; KNN, K-Near Neighbor; SVM, support vector machine.

was 0.708, and specificity was 0.897. Table 2 shows the
predictive performance of the rad-score. Table 3 shows the
comparison of the different model construction methods.
Next we determined the quantitative scores of the radiomic
signature for each patient with respect to the classification
of risk assessment of fSAD, to show the effectiveness
of the radiomic signature model at the individual level
(Figures 4A,B).

Construction of a radiomic nomogram

In the training set, by univariate analysis, age [odds ratio
(OR): 1.072, 95% CI: 1.038–1.107, P < 0.001], BMI index
(OR: 0.443, 95% CI: 0.218–0.901, P = 0.024), smoking history
(OR: 3.094, 95% CI: 1.637–5.846, P = 0.001), SVM-signature
(OR: 9.159, 95% CI: 4.521–18.553, P < 0.001), tuberculosis
(OR: 3.392, 95% CI: 1.030–11.176, P = 0.045), and asthma
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FIGURE 4

fSAD risk prediction using rad-score. Score dot diagrams showing the rad-score in (A) the training cohort and (B) the validation cohort. High
fSAD risk is shown in yellow risk of fSAD, and low risk of fSAD is shown in blue. A high change of fSAD is indicated by a higher score. fSAD, small
airway dysfunction; Rad-score, radiomic score.

TABLE 4 Stepwise logistic regression analysis predicting small airway dysfunction.

Variable Univariate logistic regression Multivariate logistic regression

OR 95% CI P-value OR 95% CI P-value

SVM-signature 9.159 4.521–18.553 <0.001* 12.447 5.110–30.320 <0.001*

Age 1.072 1.038–1.107 <0.001* 1.111 1.059–1.167 <0.001*

Sex 1.105 0.551–2.217 0.779

BMI 0.443 0.218–0.901 0.024* 0.923 0.809–1.053 0.232

Smoking 3.094 1.637–5.846 0.001* 3.586 1.388–9.260 0.008*

Asthma 4.000 2.093–7.645 <0.001* 2.507 1.021–6.155 0.045*

Tuberculosis 3.392 1.030–11.176 0.045* 3.501 0.704–17.415 0.126

bronchitis 1.351 0.597–3.055 0.470

BMI, body mass index; CI, confidence interval; OR, odds ratio; SVM, support vector machine.
*p < 0.05.

history (OR: 4.000, 95% CI: 2.093–7.645, P < 0.001) displayed
significant differences between the fSAD and non-FSAD groups.
Multivariate logistic regression analysis identified the following
as independent risk factors for fSAD, SVM-signature (OR:
12.447, 95% CI: 5.110–30.320, P ≤ 0.001), smoking history (OR:

3.586, 95% CI: 1.388–9.260, P = 0.008), asthma (OR: 2.507,
95% CI: 1.021–6.155, P = 0.045), and age (OR: 1.111, 95% CI:
1.059–1.167, P < 0.001) (Table 4). Age, asthma, and smoking
history were then incorporated into the radiomic nomogram.
A weighted number of points was then assigned to each factor.
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For each patient, the total number of points was determined
according to the nomogram, and a higher points total correlated
with an increased estimated probability of fSAD (Figure 5A).

Performance evaluation of the
prediction model

The radiomic nomogram was evaluated for its ability to
judge and distinguish early fSAD. The discriminative ability
of the developed nomogram was assessed using a ROC curve.
The AUC value of training group was 0.910 (95% CI: 0.860–
0.946), specificity: 0.893, and sensitivity: 0.814, The AUC
value of validation group was 0.933, (95% CI = 0.856–0.977),
specificity: 0.879, and sensitivity: 0.875 (Figures 6A,B and
Table 2). Comparing the comprehensive prediction model
and the actual observations of the two cohorts showed good
consistency for predicted values using the calibration curve

(Figures 5B,C). Finally, whether the nomogram could help with
clinical prevention strategies was assessed using DCA curves.
In the two cohorts, when the threshold probability changed
between 0 and 1, the radiomic nomogram obtained the largest
net benefit in comparison with the “all treatment” strategy,
the “no treatment” strategy and a single radiomic signature
(Figures 7A,B).

Discussion

The present study investigated the prediction of fSAD
in a Chinese population. The results showed that increasing
age, cigarette smoking, asthma, and an SVM-signature were
the main preventable risk factors. We developed a new
imaging-based prediction model for the early identification
of patients with fSAD. The texture features included high-
and low-order radiomic features, similar to a previous study

FIGURE 5

Radiomics nomogram (A) to predict fSAD. Using the training cohort data, the rad-score, age, smoking history, and asthma history were used to
construct the radiomic nomogram. fSAD Calibration in (B) the training cohort and (C) the external validation cohort. The dashed reference line
indicates the optimal nomogram. A dotted line represents the performance of the radiomic nomogram to predict high risk, and the solid line
shows the correction of the nomogram’s deviation. fSAD, small airway dysfunction.
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FIGURE 6

Evaluating the accuracy of the radiomic nomogram. The training cohort (A) and the validation cohort (B) were used to evaluate how accurately
the radiomic nomogram predicted fSAD (AUC = 0.910 and 0.933, respectively). AUC, area under the receiver-operator characteristic (ROC)
curve; fSAD, small airway dysfunction.

FIGURE 7

DCA curve evaluation of the clinical utility of the radiomic signature and the radiomic nomogram. Training cohort evaluation (A) and validation
cohort evaluation (B). The net benefit is shown on the y-axis. The threshold probability is shown on the x-axis. The maximum net benefit was
obtained employing the radiomic nomogram (red line) in comparison with and the treat-none strategy (horizontal black line), the treat-all
strategy (gray line), and the radiomic signature (pink line). DCA, decision curve analysis.

(12). We showed that LRHGLE emphasizes the combined
measurement of image uniformity, allowing the quantification
of the relationship between CT uniformity and attenuation,
which was consistent with the research of Lafata et al’s. (12).
And another previous study confirmed that the relationship
between pulmonary function and imaging features (13). A high
LRHGLE score reveals homogeneous and dense tissue, whereas
a low LRHGLE score reveals heterogeneous tissue with low
attenuation. The strong correlation coefficient of Short Run Low
Gray Level Emphasis (SRLGLE) indicated that isolated intensity
information is less important than spatially encoded texture

information (13). However, linking a single image feature to
the complex biological process of fSAD remains a challenge.
Our developed radiomics score demonstrated a satisfactory
prediction performance in the test and the validation groups.

In previous studies, fSAD was considered a precursor of
COPD and asthma (10). However, it is difficult to detect
early fSAD before the change of pulmonary function. We lack
methods to determine which patients will develop fSAD that
will eventually evolve into COPD (14). Currently, there are
no effective predictive biomarkers for fSAD. In this study, a
radiomics nomogram, including clinical factors (age, smoking
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etc.) and radiomic labels, was constructed, which showed a
good predictive ability. In this study, we considered age as an
independent predictor, which was supported by Miller’s findings
that as people aged, their lung structure also aged, leading to
a decline in lung function (15). Elderly people often show low
lung oxygenation and reduced exercise ability and this age-
related decrease in lung function correlates with lung structural
remodeling (16). Studies have shown that lung parenchyma
extracellular matrix structural remodeling causes an age-related
decline in the elastic recoil capacity of the lung, which reduces
the vital capacity, forced expiratory volume, and MMEF of the
elderly, making them more prone to fSAD (15, 17, 18). Although
age is closely related to fSAD, as a single factor, age is not
sufficient to accurately predict the occurrence of fSAD.

Few fSAD-related risk factors have been identified. Herein,
we identified that smoking increases the risk of fSAD. Some
studies have shown that smoking can lead to a variety of
severe airway dysfunctions in animals, and even in smokers
without airway obstruction, quantitative CT measurement of
emphysema can predict a significant decline in lung function
(19). Our study confirmed that the risk of fSAD in smokers
was significantly higher than that in non-smoking patients (20–
24) and there is a close association between fSAD and smoking,
supports efforts to strengthen smoking control in China to
improve lung health.

There is controversy surrounding the link between fSAD
and asthma (25). Herein, we found that asthma is an important
predictor of fSAD. A previous study showed that patients
with asthma will have more serious obstruction on PFTs, and
with increasing age, allergic sensitization and multiple allergen
sensitization gradually increase (26). However, in this study,
a single history of asthma was not sufficient to explain the
occurrence of fSAD in the later stage, which is related to the
patient’s age and exposure to allergens. The association of fSAD
with COPD requires further study. In addition, we lack evidence
that lung structural injury can be prevented by fSAD prevention,
diagnosis and treatment, as determined by spirometry (27).

Previous studies showed that BMI is associated with
fSAD, and considered obesity as an fSAD risk factor (28).
Obesity at any age can inhibit pulmonary function, and some
weight loss studies indicated that in obese patients who lost
weight, pulmonary function and symptoms improved (29, 30).
However, because of our limited sample size, we could not
confirm those results, which might be associated with racial and
demographic factors.

Compared with PFTs, lung CT combined with radiomics
shows the whole lung structure and reflects changes in
pulmonary function, which is more comprehensive and
timesaving. In addition, lung CT data is easily obtained, costs
less, and shows a good predictive ability.

However, there are several limitations associated with
the present study. Firstly, the retrospective nature of the
study might have led to selection bias. Secondly, our sample

size was relatively small. Third, the diagnosis of fSAD in
this study was entirely based on PFTs, which are not as
accurate as pathological examination. Therefore, our results
apply only to fSAD defined by PFTs. In addition, although
the selected time cut-off point was consistent with previous
studies, further supporting evidence is required. Fourthly,
environmental pollution exposure was an uncontrollable factor
in our research. Genetic factors, bronchopulmonary dysplasia,
bronchiectasis, premature delivery, birth weight, or birth age
were not assessed in this study, which will be included in
future research.

Conclusion

In conclusion, we established a new prediction model
that can effectively predict the early risk of fSAD, for which
the major preventable risk is smoking. Thus, our findings
reinforce comprehensive measures to control tobacco use and
lung CT screening for early lung care. Accurately determining
the possibility of fSAD would help to prevent early lung
structural injury. Although our results are encouraging, further
verification in larger and more diverse populations is required.
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