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A B S T R A C T   

Background: The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients 
could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill 
COVID-19 patients and discuss its potential utility in the ICU. 
Methods: We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We 
extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from 
the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) 
cross-validation procedure. 
Results: The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], 
respectively. The recalibrated model predictions showed a calibration intercept of − 0.04 [− 0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model 
and a calibration intercept of − 0.19 [− 0.27; − 0.10] and slope of 0.89 [0.84; 0.94] for the random forest model. 
Discussion: We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in- 
ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well 
as the development of models with more causal structure, should be topics for future research.   

1. Introduction 

The COVID-19 pandemic has put a lot of pressure on intensive care 
units (ICUs) worldwide. Risk stratification of critically ill COVID-19 
patients would be of value in decision making in the ICU setting. Well- 
known scoring systems like APACHE II [1] and SAPS II [2] provide 
static predictions for hospital mortality among the general ICU popu-
lation based on measurements obtained during the first 24 h of admis-
sion in the ICU. These static prediction models leave events 
unconsidered that occur later during ICU admission and potentially in-
fluence the prognosis. In contrast, a dynamic mortality model (i.e. one 
that enables repeated mortality predictions throughout the ICU stay) 
enables predictions based on all information available up to the moment 
of prediction. Recent works [3–5] have shown that dynamic mortality 
prediction for ICU patients is feasible. However, these models were 
developed for the general ICU population. Given the heterogeneity of 
this patient group, model prediction may benefit from focusing on 
specific patient’s subgroups. Several mortality models specifically for 
COVID-19 patients have also been developed e.g. for mortality pre-
dictions at ICU admission [6], mortality predictions on day 1, 7 and 14 
after ICU admission [7] and dynamic mortality predictions throughout 
the whole hospitalization [8]. In contrast, we present a dynamic mor-
tality model specifically for COVID-19 patients admitted to the ICU. 
Moreover, most developed mortality models use relatively long predic-
tion horizons, i.e. to predict ‘long-term’ mortality. Such models tend to 
identify patients who are generally more likely to die after ICU admis-
sion. Instead, we present a model that predicts the patient’s mortality 
within 24 h from the moment of prediction, i.e. ‘near-term mortality’. 
This can offer a more precise patient prognosis and is less dependent on a 
patient’s prior risk of not surviving ICU admission (e.g. due to high age). 
To compare near-term and long-term mortality predictions in our 
setting, we also carried out long-term mortality modeling based on the 
same data and model development procedure. 

In this work, we report on the development and validation of a dy-
namic mortality model, specifically for critically ill COVID-19 patients, 
and discuss its potential utility in the ICU. 

2. Methods 

2.1. Data sources 

We used data from the Dutch Data Warehouse (DDW) [9,10] which 
contains data from 25 ICUs of collaborating academic, general or 

teaching hospitals in the Netherlands, collected between February 2020 
and March 2021. This database is available to researchers upon request 
within ethical and legal boundaries. Included patients had proven or a 
high clinical suspicion of COVID-19 (defined as: positive real-time 
reverse-transcriptase polymerase chain reaction assay or a COVID-19 
Reporting and Data System [11] score and clinical suspicion with no 
obvious other cause of respiratory distress). We extracted demographic 
information, vital signs, laboratory test results and blood gasses. High 
frequency measurements were down-sampled by taking one value every 
30 min. For each patient admission, we collected multiple observation 
sets, or ‘samples’, at different time points during admission, starting at 
24 h after admission and adding one every 24 h until either discharge or 
death occurred. Loss to follow-up occurred for patients who were 
transferred to other ICUs (that were not included in the DDW) and for 
patients who were still admitted at moment of data collection. In both 
cases, we assumed uninformative censoring. 

2.2. Predictors 

A reduced set of candidate predictors was selected a priori (Supple-
mentary Table 1) and we selected predictors for model fitting based on 
availability. To describe the availability of the different predictors in the 
EMR, we quantified the availability of each predictor per patient in 
terms of entry density, that is, the fraction of ICU days for a patient in 
which at least one value of this predictor is available. We judged a 
median entry density >0.33 (i.e., at least one measurement per patient 
every third day) as sufficient. Given the respiratory nature of COVID-19, 
we included an extra candidate predictor similar to the PaO2/FiO2 ratio, 
the SpO2/FiO2 ratio, by dividing SpO2 by FiO2 measurements with 
matching measurement times. To model the influence of the duration of 
ICU admission on mortality risk, we added the (current) length of ICU 
stay as a predictor. 

Each sample consists of the most recent predictors available (last 
observation carried forward). We used a K-Nearest-Neighbour (KNN) 
imputation algorithm to impute missing values occurring before the first 
actual measurement. This algorithm imputes missing predictors using 
values from the five nearest neighbours (i.e., the shortest Euclidean 
distance regarding the remaining predictors) that have a value for that 
predictor, averaging these uniformly. We fitted the KNN imputer using 
the development set and used it for imputation in both development and 
validation sets. After imputation, predictors were centered and scaled by 
the standard deviation, based on the distributions of the individual 
predictors in the development set. 
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2.3. Model development 

To model near-term mortality, we chose a prediction horizon of 24 
(Supplementary Fig. 1a). To achieve this, we fitted classification models 
using the collected daily samples (section 2.1). We labeled samples as 
‘event samples’ if death occurred within 24 h from the time of sampling 
and as ‘non-event samples’ otherwise (Supplementary Fig. 2a). To 
compare this with long-term mortality prediction, we also fitted models 
to predict in-ICU mortality (Supplementary Fig. 1b) following the same 
procedure, but labeling each sample as an ‘event sample’ if death 
occurred before ICU discharge (Supplementary Fig. 2b). 

To examine the added value of modeling non-linear dependencies in 
the data, we fitted both linear and non-linear models for both near-term 
mortality and in-ICU mortality. For linear modeling, we fitted logistic 
regression models using L2 regularization (LR) and for non-linear 
modeling, we fitted random forest (RF) models. Additionally, we 
benchmarked these results against other linear and non-linear models, i. 
e. a logistic regression models using L1 regularization (LASSO), a 
Gradient Boosting (XGBoost) model and a multilayer perceptron (MLP). 
A more detailed description of the MLP can be found in appendix C. 
Model hyperparameters were optimized using an exhaustive gridsearch 
in a stratified 5-fold cross-validation procedure optimizing the area 
under the receiver operating curve (AUROC). Supplementary Table 2 
shows the hyperparameter grids which were searched for the different 
models. 

2.4. Model re-calibration 

To improve the calibration of predictions, we re-calibrated the 
original model predictions using isotonic regression [12]. Here, model 
estimates are transformed by passing the predictions through a cali-
brator function (a monotonically increasing step-function), which re-
sults from fitting an isotonic regressor on a left-out set of samples. To fit 
the calibrator function based on samples disjoint from the samples used 
for fitting the classification model, we made an extra stratified split in 
the development set by randomly assigning one third of the samples to 
the calibration fold and two thirds to the training fold. First, we fitted the 
imputation algorithm, optimized the model hyperparameters (as 
described in section 2.3) and fitted the logistic regression or random 
forest classifier using the samples in the training fold. Then, we fitted the 
calibrators using the predictions by the fitted classifiers and the labels of 
the samples in the calibration fold. These calibrators re-map the pre-
dictions of the fitted models. 

2.5. Model performance 

To examine the model’s ability to generalize over different ICUs as 
efficient as possible, we evaluated the models in a leave-one-ICU-out 
(LOIO) cross-validation procedure. In this procedure, models are fitted 
and validated in 25 iterations. In each iteration, patient samples from 
one ICU formed the test set which we used to evaluate the models that 
were fitted (and re-calibrated with the fitted calibrators) using the pa-
tient samples from the 24 remaining ICUs (forming the development 

set). Thus, both for near-term mortality and in-ICU mortality, we fitted 
25 LR and 25 RF models and evaluated these on the unseen data from the 
left-out ICUs. This process is visualized in Supplementary Fig. 3. 

To evaluate model discrimination, we determined the overall 
AUROC (combining the predictions of all iterations in the LOIO pro-
cedure) and the AUROC yielded in each ICU individually. We estimated 
the uncertainty around this metric by calculating the bootstrap 
percentile-t 95% confidence intervals (CIs) [13]. Following the hierar-
chy formulated by Van Calster and colleagues [14], we evaluated overall 
model calibration in the ‘weak’ and ‘moderate’ sense. For calibration in 
the weak sense, we determined the calibration intercept and slope [15]. 
Here, an intercept of 0 and slope of 1 indicate perfect calibration. For 
calibration in the moderate sense, we plotted smoothed flexible cali-
bration curves [14], in which deviations of points from a diagonal line 
with unit slope indicate lack of calibration. 

2.6. Explainable predictions 

To gain insight in the influence of different predictors on the model 
predictions of near-term mortality and in-ICU mortality, we assessed the 
importance of the individual predictors by fitting an extra LR and RF 
model using the complete cohort (all 25 ICUs). We applied the Shapley 
additive explanations (SHAP) algorithm [16] to obtain SHAP values for 
each predictor and for each prediction, which serves as a surrogate for 
predictor importance. The SHAP value can be interpreted as the change 
in mortality risk in the expected model prediction when conditioning on 
that predictor (and in case of non-linear models, averaging these 
changes in risk across all possible predictor orderings). Global impor-
tance of the individual predictors was obtained by averaging the mag-
nitudes of all obtained SHAP values, i.e. the mean SHAP magnitude. 

2.7. Model performance in subgroups 

Previous studies have shown that the performance of medical pre-
diction models can vary widely depending patient characteristics such as 
sex, age, race, and socioeconomic status [17,18]. As the DDW does not 
contain information about race or socioeconomic status, we examined 
the model performance for near-term and in-ICU mortality prediction 
between the sexes and among different age groups. For the latter, we 
defined three age groups by splitting the full cohort in patients aged 50 
or younger, patients aged between 50 and 70, and patients aged 70 or 
older. 

3. Results 

3.1. Data characteristics 

We collected data from 3222 ICU admissions of patients with COVID- 
19, coming from 25 ICUs in the Netherlands. 667 patients died in the 
ICU (20.7%), and in-ICU mortality varied among the different ICUs 
between 7% and 41%. Table 1 shows the summary statistics of the 
included patient admissions. 

Table 1 
Summary statistics of the included patient admissions.   

In-ICU mortality (N = 667) Non In-ICU mortality (N = 2555) All (N = 3222) 

Age, years: mean (sd) 68.7 (9.2) 61.8 (11.8) 63.2 (11.6) 
Sex, male: N (%) 514 (77.1) 1817 (71.1) 2331 (72.3) 
Length-of-stay: N (%) 
0–24 h 37 (5.5) 154 (6.0) 191 (5.9) 
1–7 days 167 (25.0) 709 (27.7) 876 (27.2) 
7–14 days 179 (26.8) 334 (13.1) 513 (15.9) 
14–21 days 133 (19.9) 58 (2.3) 191 (5.9) 
>21 days 151 (22.6) 264 (10.3) 415 (12.9) 
Still admitted 0 (0.0) 171 (6.7) 171 (5.3)  
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3.2. Model performance 

Overall, i.e. by combining the predictions of all iterations in the LOIO 
procedure, the LR and RF models yielded 

an AUROC of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. 
The LASSO, XGBoost and MLP models yielded similar overall AUROCs 
(Supplementary Fig. 4). Point estimates of the AUROCs yielded in the 
individual ICUs are depicted in Fig. 1 and Table 2 shows the corre-
sponding 95% CIs. Whether the LR model yielded a slightly higher 
AUROC than the RF model or vice versa varied for the different ICUs. 
The LR and RF models yielded an AUROC >0.80 in respectively 21 and 
20 ICUs. We observed wide CIs for the models validated on ICUs with 
relatively small sample sizes Supplementary Fig. 5). 

Both LR and RF models validated on ICUs O, P, R and X yielded an 
AUROC <0.80 (Fig. 1). In terms of patient demographics (age and sex) 
and length-of-stay in the ICU, we did not observe notable differences in 
these ICUs compared to the other ICUs (Supplementary Fig. 6). To check 
for notable deviations for any predictors in patients from these ICUs 

compared to the remaining ICUs, we examined the cumulative distri-
butions for all predictors based on the samples taken within 24 h before 
death (‘event samples’) of patients from ICU O, P, R and X (see Sup-
plementary Fig. 7). The FiO2 distributions in these ICUs appear notably 
low (Fig. 2). In each of these four ICUs, we found the FiO2 distribution to 
be significantly (P < 0.05) different from the complete distribution of 
event samples, based on a two-sided Kolmogorov-Smirnov (KS) test. 

Fig. 3 shows the flexible calibration curves for both models with and 
without re-calibration, including the corresponding calibration in-
tercepts and slopes. Without re-calibration, both models slightly over-
estimated the mortality risk (calibration intercept<0) and the RF model 
yielded too moderate predictions calibration slope>1). After re- 
calibration, the LR model shows good calibration in the large, while 

Fig. 1. Areas under the receiver operating characteristic curve (AUROCs) 
yielded by the logistic regression (LR) and random forest (RF) models in the 
different ICUs. 

Table 2 
AUROCs with 95% CI yielded by the logistic regression (LR) and random forest (RF) models in the different left-out ICUs (sorted by sample size). Prevalence is the 
fraction of patients who experience in-ICU mortality per ICU.  

ICU N patients Prevalence in-ICU mortality LR AUROC [95% CI] RF AUROC [95% CI] 

V 21 0.33 0.92 [0.87,0.97] 0.90 [0.79,0.98] 
X 39 0.41 0.71 [0.55,0.85] 0.63 [0.49,0.77] 
L 44 0.20 0.93 [0.87,0.98] 0.95 [0.90,0.99] 
R 51 0.31 0.76 [0.59,0.89] 0.77 [0.66,0.87] 
Y 53 0.13 0.88 [0.75,0.99] 0.90 [0.84,0.94] 
P 53 0.25 0.75 [0.61,0.88] 0.71 [0.55,0.86] 
W 54 0.07 0.85 [0.57,1.00] 0.92 [0.85,0.98] 
H 71 0.14 0.91 [0.85,0.96] 0.84 [0.73,0.94] 
B 79 0.30 0.85 [0.74,0.94] 0.88 [0.79,0.95] 
S 81 0.35 0.87 [0.80,0.93] 0.86 [0.78,0.92] 
K 107 0.11 0.90 [0.83,0.95] 0.76 [0.59,0.89] 
N 109 0.18 0.91 [0.82,0.98] 0.91 [0.84,0.97] 
E 110 0.19 0.90 [0.83,0.96] 0.85 [0.74,0.94] 
U 113 0.18 0.85 [0.79,0.90] 0.89 [0.83,0.94] 
D 114 0.23 0.94 [0.90,0.98] 0.97 [0.94,0.99] 
J 134 0.14 0.87 [0.82,0.92] 0.90 [0.81,0.96] 
T 153 0.29 0.88 [0.81,0.92] 0.90 [0.84,0.95] 
O 177 0.18 0.77 [0.68,0.86] 0.74 [0.66,0.81] 
I 193 0.33 0.89 [0.84,0.93] 0.89 [0.85,0.93] 
M 230 0.10 0.85 [0.79,0.90] 0.84 [0.76,0.90] 
Q 234 0.14 0.92 [0.88,0.97] 0.89 [0.83,0.94] 
F 240 0.30 0.85 [0.81,0.90] 0.87 [0.83,0.91] 
G 242 0.18 0.87 [0.82,0.92] 0.87 [0.82,0.93] 
A 248 0.25 0.91 [0.87,0.95] 0.91 [0.86,0.95] 
C 272 0.16 0.86 [0.79,0.91] 0.87 [0.81,0.92]  

Fig. 2. Cumulative distributions for F iO2 of the samples taken within 24 h 
before death (i.e. ‘event samples’) of patients from ICU O(N = 31), P(N = 13), R 
(N = 16) and X(N = 16). The cumulative distribution of event samples of pa-
tients from all ICUs (N = 667) is plotted as references. Distributions were found 
significantly different (P < 0.05) from the reference based on a two-sided 
Kolmogorov-Smirnov (KS) test in ICU O (KS-statistic = 0.32, P = 0.011), P 
(KS-statistic = 0.43, P = 0.012), R (KS-statistic = 0.46, P = 0.002) and X (KS- 
statistic = 0.33, P = 0.046). 
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the RF model still shows slight overestimation (calibration intercept<0). 
Both models show slightly too extreme predictions (calibration 
slope<1). Calibration curves for the LASSO, XGBoost and MLP models 
are depicted in Supplementary Fig. 8. 

Table 3 shows the 20 most important predictors ranked based on the 
mean SHAP magnitude. The corresponding summary plots for the SHAP 
values for the LR and RF models are depicted in Fig. 4. 

3.3. Predictors 

To give an overview of the role of different predictors during the 24 h 
preceding patient death, the cumulative distributions for the different 
predictors of samples taken within 24 h before death (‘event samples’) 
compared to all other (‘non-event’) samples are depicted in Supple-
mentary Fig. 9. The daily data availability is visualized by boxplots 
showing the distributions of daily entry densities (i.e. fractions of non- 
empty daily measurements) across all patient samples for the candi-
date predictors (Supplementary Fig. 10). All candidate predictors 
showed a median entry density >0.33, except for lactate (arterial), 
which was excluded for model fitting. We plotted the correlations be-
tween the included predictors (before imputation) in a clustered heat-
map (Supplementary Fig. 11). 

3.4. In-ICU mortality prediction 

The LR and RF models both yielded an overall AUROC of 0.79 [0.78; 
0.79]. Validation of the LR models yielded an AUROC >0.80 in 13 out of 
the 25 ICUs and in 15 out of 25 ICUs for validation of the RF models. 
Again, we observed notably wide confidence intervals for the models 
validated on ICUs with relatively small sample sizes. Without recali-
bration, the LR models overestimated the mortality risk (intercept<0) 
and the RF models yielded slightly too moderate predictions (slope>1). 
After re-calibration, both models show good calibration in the large, 
with a calibration intercept of 0.00 [− 0.03; 0.02] and 0.00 [− 0.03; 
0.03], but slightly too extreme predictions, with a calibration slope of 
0.87 [0.84; 0.89] and 0.55 [0.54; 0.57], for the LR and RF model 
respectively. 

In comparison with near-term mortality modeling, the patient’s age 
acted as a relatively more important predictor (in terms of mean SHAP 
magnitude) in both the LR and RF model. We report on the results for in- 
ICU mortality modeling in more detail in appendix D. 

Table 3 
Global importance of the top 20 most important predictors for the logistic Regression (LR) and random forest (RF) model, ranked based on mean SHAP magnitude.  

Predictor Predictor importance LR model (mean |SHAP|,  
log-odds scale) 

Predictor Predictor importance RF model (mean |SHAP|,  
probability scale) 

Age [y] 0.453 pH (arterial) 0.0044 
pH (arterial) 0.333 SpO2/FiO2 0.0037 
FiO2 [%] 0.332 FiO2 [%] 0.0034 
Sodium [mmol/L] 0.257 PaO2/FiO2 [mmHg] 0.0026 
Haemoglobin [mmol/L] 0.211 SpO2 [%] 0.0017 
SpO2 [%] 0.207 Potassium [mmol/L] 0.0016 
Heart rate [bpm] 0.181 Age [y] 0.0014 
Chloride [mmol/L] 0.175 SBP [mmHg] 0.0013 
Potassium [mmol/L] 0.160 Base excess [mmol/L] 0.0011 
PaO2 (arterial) [mmHg] 0.131 PaCO2 (arterial) [mmHg] 0.0010 
SBP [mmHg] 0.130 White cell count [109/L] 0.0008 
PaCO2 (arterial) [mmHg] 0.116 ICU length of stay [hours] 0.0008 
Platelet Count [109/L] 0.116 Creatinine [μmol/L] 0.0006 
White cell count [109/L] 0.114 Heart rate [bpm] 0.0006 
ICU length of stay [hours] 0.112 PaO2 (arterial) [mmHg] 0.0006 
SpO2/FiO2 0.111 ASAT [U/L] 0.0006 
Urea Creatinine ratio 0.092 Urea [mmol/L] 0.0006 
Ionised calcium [mmol/L] 0.078 Haemoglobin [mmol/L] 0.0005 
Haematocrit 0.069 Ionised calcium [mmol/L] 0.0005 
Respiratory rate [/min] 0.068 Respiratory rate [/min] 0.0005  

(a)

(b)
Fig. 3. Smoothed flexible calibration curves for (a) the logistic regression (LR) 
and (b) the random forest (RF) models, with and without re-calibration using 
isotonic regression. Shaded areas around the curves represent the 95%CIs. In 
the bottom plots, histograms of the predictions are shown. 
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3.5. Model performance in subgroups 

Supplementary Figs. 12 and 13 respectively show the model per-
formances for near-term and in-ICU mortality prediction for the LR and 
RF models. Both models show slightly better discrimination for both 
near-term and in-ICU mortality prediction in female patients and in 
patients within the lower age group (i.e. <50 years). Moreover, for the 
LR model, we observed mortality underestimation for both near-term 
and in-ICU mortality in the lower age group. However, there is rela-
tively large uncertainty due to the small number of patients aged 50 or 
younger and, therefore, care should be taken interpreting these results. 

4. Discussion 

We developed both a linear and non-linear model for to predict near- 
term mortality, based on a mixture of static information (e.g. age and 
sex) and dynamic information (e.g., vital signs and laboratory values). 
Overall, the discriminative performance of the LR model was similar the 
RF model and other non-linear models (i.e. XGBoost and MLP). These 
empirical results suggest that modeling non-linear predictor-outcome 
relations does not improve model performance for the task of dynamic 
mortality prediction. 

While we evaluated model discrimination both overall (i.e. by 
combining the predictions of all iterations in the LOIO procedure) and 
separately for each ICU, we did not evaluate model calibration in the 
individual ICUs as the sample sizes were too small to enable good 
judgement of model calibration. 

The low F iO2 distributions we observed in samples taken within 24 
h before death (‘event samples’) of patients from ICUs O, P, R and X 
compared to the event samples from the complete cohort may have 
influenced the predictive performance of the models validated on these 
ICUs. As the F iO2 is set by the physician, this observation may be 
explained by local differences in protocols concerning discontinuation of 
treatment. However, since we are dealing with relatively small numbers 
of (deceased) patients in these ICUs, care has to be taken in interpreting 
these findings. 

As expected for a respiratory illness like COVID-19, predictors 
related oxygenation such as F iO2, oxygen saturation (SpO2) and arterial 
pH appeared in the top 10 most important predictors for both the LR and 
RF model. 

The severity of missingness varies widely between the included 
predictors (Supplementary Table 1). The imputation algorithm we chose 
(i.e. the KNN imputation algorithm) could have been influenced by the 
pattern of missingness among the predictors and therefore, influencing 
the model performance. We performed an additional analysis to 
examine the data missingness pattern (appendix E) and observed clus-
ters of predictors with similar missingness patterns. The most important 
predictors (based on mean SHAP magnitude) are not strongly concen-
trated within these clusters, making it unlikely that the pattern in the 
predictor importance we observed are due to the missingness pattern. 
Whether different imputation techniques would lead to even better 
model performance was beyond the scope of the current analysis. 

Both traditional ‘static’ mortality models [1,2] and more recent 
works on dynamic mortality models [3,5] focus on the ICU population as 
a whole. In contrast, we presented a model specifically developed for 
COVID-19 patients. Given the heterogeneity among ICU patients, 
improved mortality prediction may be achieved by focusing on 
sub-populations. This study may serve as a proof of concept to move 
from ‘one-size-fits-all’ modeling towards modeling for subgroups in the 
ICU population. 

4.1. Clinical applications 

Meyer and colleagues [4] noted that the mortality predictions do not 
target a specific pathological entity but suggest that these may serve to 
draw attention of the care team, such that subtle changes that could 
develop into a critical state will not be missed. However, in most cases a 
COVID-19 patient dies within the ICU (especially later during an ICU 
course), this is the result of a well-considered shared clinical decision, 
rather than a sudden event that could have been avoided by drawing 
more attention. The model presented here may thus predict the physi-
cian’s decision to discontinue treatment rather than a patient’s deteri-
oration. Thorsen-Meyer and colleagues [3] question the clinical utility of 
their presented mortality model mainly because of its lack of causality, 
which is true for the model presented in this study as well. Based on the 
prediction of a model which lacks a causal structure, one cannot know if 
any action based on this will affect the outcome. Therefore, we doubt the 
clinical utility of mortality models when simply implemented as a ‘red 
flag model’, e.g. triggering an alarm for high mortality risk. Instead, 
non-causal mortality models like those presented here may serve as a 

(b)(a)

Fig. 4. Summary plots for the SHAP values constructed from both logistic regression (a) and random forest model (b). Each SHAP value is represented by a single dot 
on each predictor row. Color is used to display the corresponding value of the predictor. Predictors are ordered by the mean SHAP magnitude. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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guidance in the development of models with more causal structure, 
which could provide decision support for the clinician as these models 
could suggest which actions lead to a lower risk of patient death. 

We foresee three other potential clinical utilities for non-causal 
mortality models in the ICU. First, a dynamic mortality model could 
improve resource allocation in the ICU, e.g. by assigning more nurses per 
patient for those with high risk of mortality. However, it remains to be 
determined whether (near-term or long-term) mortality risk is a good 
surrogate for clinical workload. Second, a dynamic mortality model can 
be used for benchmarking purposes throughout the whole ICU journey, 
contrasting to static mortality models like SAPS II [2] and APACHE II 
[1]. As static mortality models are based on measurements from the 
admission day, they represent disease severity before a patient receives 
any ICU care and may only serve as a good benchmark for patients when 
entering ICU. Predictions by the dynamic model enable benchmarking 
of patients at any moment during admission. Third, as suggested by 
Schmidt and colleagues [7], a dynamic mortality model could help 
informing family members of likely prognosis. This could be a prognosis 
of the patient’s survival in the coming 24 h (i.e. near-term mortality) or 
the likelihood of eventually being discharged alive (i.e. long-term 
mortality). 

4.2. Study limitations 

First, several potentially relevant predictors, such as comorbidities or 
medical history, were not available for modeling. Inclusion of these 
variables could have improved the predictive performance and enabled 
correction for potential confounding. Second, not all included predictors 
were daily available for all patients and missingness was especially high 
for certain laboratory test results. The degree of data missingness may be 
associated with the predicted outcome, as demonstrated in previous 
work on in-ICU sepsis prediction [19]. Thus, not including predictors 
derived from missingness may have introduced a bias to the predictions. 
Third, the number of admissions per month included in the Dutch Data 
Warehouse (DDW) varied widely between different ICUs Supplementary 
Fig. 14). Numbers peak during two time-periods coinciding with the first 
March–April 2020) and second (November 2020–January 2021) 
COVID-19 ‘waves’ in the Netherlands. All the ICU data sets contain 
admissions during the first wave, but roughly half of them contain none 
(or very few) admissions during the second wave. Advances in 
COVID-19 research have improved the patient care during the 
pandemic, for instance the start of widespread usage of dexamethasone 
[20] in July 2020. Therefore, models evaluated on ICUs that only 
contain patients admitted during the first wave may have under-
estimated mortality risks compared to models evaluated on ICUs that 
contain admissions during both waves. Fourth, clinical machine 
learning models can experience significantly degraded performance in 
datasets not seen during model fitting (i.e. a domain shift) [21]. 
Although our results suggest that the models generalize well over 
different ICUs, the model robustness for other domain shifts (e.g. pre-
dicting mortality in a later stage of the pandemic) remains unknown. 
Finally, we drew repeated observations (samples) on the same patient at 
different points in time, resulting in highly correlated sample clusters. 
The methods to estimate uncertainty of the performance we used falsely 
assume these samples to be independent of previous and next ones (IID 
assumption), which may have resulted in too optimistic uncertainty 
estimations. It would be an interesting topic for future research to 
examine the added value of modeling the dependency between samples, 
e.g. by using recurrent neural networks (RNNs), which are often used in 
dynamic mortality modeling studies [3–5]. On the other hand, we doubt 
the added value of more complex modeling, as more complex non-linear 
models did not improve discriminative performance compared to linear 
modeling using logistic regression. 

4.3. Conclusion 

In this study, we developed dynamic mortality models for COVID-19 
patients admitted to the ICU. Our contribution to traditional mortality 
models [1,2] and more recently published dynamic mortality models 
[3–5] is twofold. First, we focused on a sub-population of patients (i.e. 
COVID-19 patients) instead of the ICU population as a whole. Second, 
we introduced near-term mortality predictions instead long-term mor-
tality prediction. Further research is required to examine its possible 
applications, such as guidance in resource allocation and real-time 
benchmarking. Finally, interpretable mortality models may pave the 
way for the development ICU models with a more causal structure which 
may provide actionable advice on patient treatment in the future. 
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