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Between 2015 and 2017, Zika virus spread rapidly through populations in
the Americas with no prior exposure to the disease. Although climate is a
known determinant of many Aedes-transmitted diseases, it is currently
unclear whether climate was a major driver of the Zika epidemic and how
climate might have differentially impacted outbreak intensity across
locations within Latin America. Here, we estimated force of infection for
Zika over time and across provinces in Latin America using a time-varying
susceptible–infectious–recovered model. Climate factors explained less than
5% of the variation in weekly transmission intensity in a spatio-temporal
model of force of infection by province over time, suggesting that week to
week transmission within provinces may be too stochastic to predict. By con-
trast, climate and population factors were highly predictive of spatial
variation in the presence and intensity of Zika transmission among pro-
vinces, with pseudo-R2 values between 0.33 and 0.60. Temperature,
temperature range, rainfall and population size were the most important
predictors of where Zika transmission occurred, while rainfall, relative
humidity and a nonlinear effect of temperature were the best predictors of
Zika intensity and burden. Surprisingly, force of infection was greatest in
locations with temperatures near 24°C, much lower than previous estimates
from mechanistic models, potentially suggesting that existing vector control
programmes and/or prior exposure to other mosquito-borne diseases may
have limited transmission in locations most suitable for Aedes aegypti, the
main vector of Zika, dengue and chikungunya viruses in Latin America.
1. Introduction
The emergence and re-emergence of mosquito-borne diseases presents a global
public health concern, yet trends in mosquito-borne disease transmission are
hard to predict because they are influenced by the underlying immunity in
the population, which is usually unknown [1–3]. The emergence and spread
of Zika virus through Latin America in a population with no prior exposure
or immunity to the disease provides an opportunity to characterize relation-
ships among the environment, populations and disease transmission without
the confounding effects of pre-existing immunity (although cross-reactivity
between dengue antibodies and Zika virus may provide some protection) [4].
Between 2015 and 2017, Zika rapidly spread to 51 countries and territories in
the Americas, with over 800 000 cases reported [5]. Here, we quantified the
force of infection for Zika and studied factors that contributed to variation in
transmission across time and space as Zika emerged.

Force of infection, or the per capita rate at which susceptible individuals
contract an infection, can be used to compare disease transmission over the
course of an outbreak and across geographical regions [2,6]. Force of infection
estimates can account for variation in the number of immune individuals and
entomological factors that influence the time it takes for mosquito-borne dis-
eases to be transmitted [2,6]. It can take several weeks for mosquitoes to
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spread diseases because transmission requires a mosquito to
bite an infectious person, the pathogen to replicate and disse-
minate in the mosquito (during the extrinsic incubation
period), and the mosquito to bite and infect a susceptible
person [2,7–9]. Force of infection can be calculated over
time to study how transmission rate changes over the
course of an outbreak and to compare outbreaks of the
same disease in different places [2,6,10–12].

The progression of an epidemic can be characterized and
compared through measures of burden, intensity and trans-
mission rate [13,14]. We can quantitatively differentiate
between epidemics with sharp peaks in case incidence that
quickly burn through the susceptible population and more
sustained, low-level transmission [6,15,16]. Instances when
high case incidence coincides with a low force of infection
may indicate the presence of imported cases [17]. Each of
these epidemic metrics may be affected to a different extent
by climate and population factors, in addition to country-
and province-level features like existing transportation
infrastructure and vector control resources [4,9,18,19].
Additionally, conditions that enable the establishment of a
disease may differ from those that drive higher epidemic
intensity following establishment [20].

Climate is a key determinant for whether mosquito-borne
disease transmission can occur and the intensity of outbreaks
because of its effects on vector dynamics. The primary vector
of Zika in Latin America is Aedes aegypti, which also spreads
chikungunya and dengue viruses [21]. Disease transmission
can only occur if climate conditions are suitable for pathogen
and vector survival and reproduction, while the intensity of
transmission may be affected by how close humidity, temp-
erature, and rainfall are to optimal climate conditions for
vector and pathogen performance [2,9,22–27]. Humidity is
positively associated with mosquito survival [23]. Tempera-
ture influences mosquito fecundity, development and
survival, as well as factors contributing directly to trans-
mission, including the extrinsic incubation period and
mosquito biting rate [9,24,27–29]. These thermal responses
are nonlinear, with optimal disease transmission expected
at 29°C for viruses transmitted by A. aegypti based on
mechanistic models parametrized from laboratory exper-
iments [20,25]. Mosquitoes require water to complete their
life cycle and breed, but the relationship between mosquito
abundance and rainfall is variable [30–36]. The most notable
reasons for this varying relationship are associated with
extreme conditions, such as heavy rainfall that can kill and
wash away larvae [37,38], and drought, which in certain
regions promotes humans storing water in open containers
that serve as breeding habitats [35,36]. Understanding how
climate drives the emergence and intensity of Zika will be
important for identifying regions where the disease is likely
to become endemic, and, more generally, for predicting the
potential trajectories of other mosquito-borne diseases that
could emerge and re-emerge in the future, such as o’nyong
nyong, Mayaro and yellow fever [1,19,39–41].

In this study, we estimate weekly force of infection for
Zika from human case reports across Latin America to exam-
ine the role of climate in driving the emergence and intensity
of the 2015–2017 outbreak. Specifically, we use the models to
ask how climate and population variation affect (i) when and
where epidemics occur, (ii) epidemic dynamics over time,
and (iii) geographical variation in the intensity of epidemics.
We use disease case reports and force of infection estimates in
two modelling frameworks. First, we examine variation in
force of infection over time within provinces to understand
how strongly climate predicts the probability of weekly
local transmission and the intensity of weekly force of infec-
tion. Then, we examine spatial variation in several epidemic
metrics, including total human cases and mean force of infec-
tion, to understand how climate and population factors shape
epidemics geographically.
2. Material and methods
(a) Epidemiological data
To investigate Zika transmission dynamics over time and space
in Latin America, we downloaded and preprocessed publicly
available human case data. We used weekly suspected and con-
firmed Zika cases between November 2015 and November
2017 for 156 provinces across six countries in Latin America
(Colombia = 32 provinces, Dominican Republic = 32 provinces,
Ecuador = 24 provinces, El Salvador = 14 provinces, Guatemala =
22 provinces and Mexico = 32 provinces) from the Centers for
Disease Control and Prevention (CDC) Zika Data Repository,
which includes epidemiological bulletins provided by each coun-
try’s ministry of health [42]. We excluded 14 provinces with
fewer than ten weeks of case reporting or irregular reporting
intervals, because those provinces provided insufficient data to
observe meaningful trends in transmission (excluded provinces:
Ecuador = eight provinces, Guatemala = two provinces and
Mexico = four provinces). For the remaining provinces, we tem-
porally interpolated case data for weeks with missing data and
reporting errors by averaging cases from the weeks immediately
preceding and following these intervals.
(b) Weather data
To investigate the effects of climate on Zika transmission, we
downloaded weather data and calculated climate metrics with
time lags relevant to diseases spread by the Aedes aegypti
vector. We downloaded daily mean relative humidity, total rain-
fall, and mean, minimum and maximum temperatures from
Weather Underground [43]. For each province, we used the
weather station nearest to the province’s centroid that had the
most complete climate record in the timespan corresponding to
the case data. We excluded from our analyses an additional 15
provinces that had no nearby weather station reporting in the
desired time period (excluded provinces: Colombia = six pro-
vinces, Dominican Republic = one province, Ecuador = two
provinces, El Salvador = two provinces, Guatemala = two pro-
vinces and Mexico = two provinces), and further excluded 277
weeks with mean temperatures outside of the range of 0–40°C
and rainfall values exceeding 250 mm, as these extreme values
are likely to be weather station errors. Our analyses included
the remaining 127 provinces with a total of 7109 weekly obser-
vations of epidemiological and weather data. We believe
weather station data provides more accurate measurements of
climate near populated areas (as weather stations are located at
airports or operated for personal use) compared with modelled
weather data such as the NOAA National Centers for Environ-
mental Prediction Reanalysis data (NCEP; see electronic
supplementary material, figure S1 for a comparison between
data from Weather Underground and NCEP, a gridded global
model based on satellite data), and therefore chose to conduct
our analyses with weather station data with a reduced sample
size due to missing weather stations in some provinces.

To investigate the spatio-temporal dynamics of transmission,
we calculated lagged climate metrics (see electronic supplemen-
tary material, figure S2 for heatmaps showing variation in



Table 1. Response variables for the spatio-temporal (ST) and spatial (S) models, with their corresponding thermal optima. R2 values were calculated for the
spatio-temporal models and pseudo-R2 values were calculated for the spatial models using Nakagawa’s pseudo-R2 for the mixed-effect local transmission model
(which produces a marginal and conditional pseudo-R2) and Nagelkerke’s pseudo-R2 for the other spatial models.

response variable description
model
type

thermal
optimum (°C) R2/pseudo-R2

sample
size

weekly local

transmission

the likelihood that bt exceeded

zero for a given week

ST n.a. 0.037 7109

intensity of weekly

force of infection

the magnitude of lnðbtÞ,
given that it exceeded one

ST n.a. 0.011 2031

local transmission the likelihood that bt

exceeded zero for any week

S n.a. marginal: 0.281

conditional: 0.599

127

maximum force of

infection

logged maximum value for bt

in provinces with local transmission

S 23.93 (95% CI:

22.02–26.90)

0.534 114

mean force of infection logged mean value for bt in provinces with local

transmission

S 23.63 (95% CI:

22.20–25.49)

0.596 114

cumulative cases total number of cases reported S 22.51 (95% CI:

20.57–30.68)

0.330 127

mean weekly cases mean number of cases in weeks with any cases

reported

S 23.69 (95% CI:

19.57–26.12)

0.348 127
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climate by province over time), as humidity, temperature and
rainfall influence transmission at a delay, which is commonly
assumed to be between one and two months [30–32,34,35,44].
Specifically, we calculated humidity, mean temperature and
temperature range (difference between the maximum and mini-
mum temperatures observed) over a three-week period, lagged
by six weeks from the week of case reporting (i.e. nine to seven
weeks prior, following previous work) [20,45,46]. Similarly, we
calculated the cumulative rainfall over a six-week period,
lagged by three weeks from the week of case reporting (i.e.
nine to four weeks prior), extending the window applied to
lagged temperature period by three weeks in order to better
capture the effects of water accumulation over time [47,48].
To compare differences in overall epidemic characteristics
(e.g. total number of cases, mean force of infection, table 1;
electronic supplementary material, figure S3) among pro-
vinces, we also calculated province-level mean humidity,
mean temperature, temperature range and cumulative rainfall
over the biologically relevant time lag described above.

(c) tSIR model
We estimated weekly force of infection by fitting time-varying
susceptible–infectious–recovered (tSIR) models to the human
case data [42]. We assumed a static population size because the
human population did not change significantly over the course
of the epidemic, and we assumed that Zika was introduced to
a fully susceptible population since it had never been documen-
ted before in this region. Therefore, we set the initial susceptible
population (S0) as the most recent estimate of population (N)
available from City Population as of June 2017, and modelled
the susceptible population following Zika introduction as
St ¼ St�1 � It where S indicates the susceptible population at
time (t) or (t� 1) and I indicates the infected population at
time (t) [49]. We defined effective infectious individuals based
on the modification of the tSIR model for vector-borne diseases
developed by Perkins et al. [2] for chikungunya transmission
because of similarities in the transmission ecology of their
shared vector [2,34]. Using the infectious periods derived for chi-
kungunya, we assumed that humans can transmit the parasite to
mosquitoes for five days after reporting symptoms and that
secondary human infections can arise from primary cases
reported one to five weeks prior [50]. We calculated the effective
number of infectious individuals (~It) as a weighted sum of infec-
tious individuals (It�n) within a five-week serial interval (k = 5).
We used the same methods as the Perkins et al. [2] model for chi-
kungunya transmission to solve for the weights (vn) and
substituted the appropriate serial interval distribution for Zika
(a Gaussian distribution with mean 20 days and standard
deviation 7.4 days) [2,51,52],

~It ¼
Xk

n¼1

vnIt�n : ð2:1Þ

Individuals entered the recovered class after the five-week
serial interval. We fitted tSIR models to case data for each
province to calculate time-varying force of infection (bt),

It ¼ bt

~I
a

t

N
St�1: ð2:2Þ

Here, the mixing parameter a indicates homogeneous fre-
quency-dependent contact rate between cases in each province.
We fixed the mixing parameter due to the trade-off between cap-
turing heterogeneity in transmission or mixing, a method
commonly used in tSIR studies focused on transmission
dynamics [10,53–56]. Given the similar transmission dynamics
of chikungunya and Zika, we set the mixing parameter equal
to 0.74, the value for chikungunya calculated in the Perkins
et al. study [2,51]. By rearranging equation (2.2), we solved for
lnðbtÞ using the equation

lnðbtÞ ¼ ln(It)þ ln(N)� ln(St�1)� a ln(~It): ð2:3Þ

(d) Spatio-temporal model
We investigated how strongly climate predicts the probability of
weekly local transmission and the intensity of weekly force
of infection by regressing force of infection against biologically
relevant lagged and normalized climate factors. Since the trans-
mission parameters (bt) were zero-inflated, we fitted a two-step
hurdle model that first predicts the probability that the force of



ln(weekly bt)ln(weekly case incidence) (b)(a)

DOM
Fe

b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p

O
ct

N
ov Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p

O
ct

N
ov

D
ec Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p

O
ct

N
ov Fe
b

M
ar

A
pr

M
ay

Ju
ne

Ju
ly

A
ug Se

p

O
ct

N
ov

D
ec Ja
n

Ja
n

SLV

COL

ECU

MEX

GTM

colour keycolour key

value
0 1 2 3 4 5 6 20–2 4

DOM

SLV

COL

ECU

MEX

GTM

Figure 1. Heatmaps of weekly case incidence and force of infection. Each row corresponds to a single province over time, with lines separating the following
countries: DOM = Dominican Republic, SLV = El Salvador, COL = Colombia, ECU = Ecuador, MEX = Mexico, GTM = Guatemala. Grey shading indicates no available
data. The colour represents (a) weekly logged cases for each province and (b) logged force of infection. Red indicates high values and blue indicates low values.
White indicates (a) no cases reported or (b) no presence of local transmission (βt = 0) in a given week.
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infection, bit, will exceed zero in a given province (i) and week (t)
(i.e. presence of local transmission), and then predicts the magni-
tude of logged force of infection, lnðbitÞ (i.e. intensity), given that
bt exceeds zero. To capture nonlinear relationships between
transmission and temperature, we included a squared term for
temperature [2,9,20].

We performed stepwise model selection using backward
elimination, selecting the best-fit models for both steps of the
hurdle model as those with the highest adjusted R2, and further
constrained the selection process to prohibit models that include
a nonlinear temperature term without a linear temperature term.
To account for autocorrelation between observations within each
province over time, we fitted panel models with a two-way
random effect:

step 1—presence=absence: pðbit . 0Þ � cxit þ mi þ ht þ 1it

ð2:4Þ
and

step 2—intensity given presence: ln(bit) � cxit þ mi þ ht þ 1it:

ð2:5Þ

The hurdle models include climate covariates (x), their corre-
sponding coefficients (c), time-independent province random
effect (µ), province-independent random effect of week (η), and
an observation-specific error term (ε) accounting for time (t)
and province (i). Regressions were conducted in R statistical soft-
ware v. 3.4.3 using the plm function in the plm package [57]. We
also fitted alternative fixed effect spatio-temporal models with
month or month nested in province fixed effects.

(e) Spatial models
We examined the factors that drove broad-scale geographical
differences in Zika transmission by using linear regressions to
compare epidemic metrics with normalized climate and popu-
lation factors. The response variables included epidemic
metrics based on incidence and force of infection (presence of
local transmission, logged maximum force of infection, logged
average force of infection, cumulative cases, and mean weekly
cases), where each response variable was aggregated to a
single value per province (table 1; electronic supplementary
material, figure S3). To account for additional variation among
countries beyond climate and population factors, we included
country as a fixed effect. Since some countries had local
transmission in all provinces, we included country as a random
effect in the spatial model for the probability of local trans-
mission in a given province. For the population factor, we used
the number of people living in the largest city in each province
based on census results and official estimates as of June 2017
downloaded from City Population [49]. The mean value of each
lagged climate covariate was taken for each province across the
time that cases were reported. For each spatial model, we per-
formed stepwise model selection using backwards elimination,
selecting the best-fit models as those with the lowest AIC, and
calculated pseudo-R2 with Nakagawa and Shielzeth’s method
for the model of the probability of local transmission and
Cragg, Uhler and Nagelkerke’s method for remaining spatial
models [58–61]. All regressions were conducted in R statistical
software v. 3.4.3 using the glm function in the base package.
3. Results
(a) Epidemiological data and tSIR model
The duration and burden of Zika transmission and timing
of epidemic peaks varied considerably both between and
within countries (figure 1). Within the countries included
in this study, Zika emerged earliest in El Salvador in
November of 2015, and latest in Colombia, which first
reported a Zika case almost one year later in January of
2016 (figure 1a). The weights for the serial interval were:
v1 ¼ 0:081,v2 ¼ 0:448; v3 ¼ 0:372; v4 ¼ 0:089; v5 ¼ 0:010:
Force of infection ranged from 0 to 15.409 cases per 100 000
people per week (model fit shown in electronic supplemen-
tary material, figure S4). In all countries there were weeks
with no weekly local transmission (bt ¼ 0), but high case
incidence resulting from imported cases. All countries
included in our analyses had at least one province with
local transmission (figure 1b).

(b) Spatio-temporal model
The spatio-temporal hurdle model indicated that different cli-
mate factors were associated with the presence of weekly
local transmission versus the intensity of weekly force of infec-
tion in a given province (electronic supplementary material,
tables S1–S3). The best-fit model for the presence of weekly
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local transmission included positive linear relationships with
mean temperature and humidity and explained 3.7% of the
variation in the likelihood of week to week transmission
within provinces. The best-fit model for the intensity of
weekly force of infection included negative linear effects of
mean temperature and humidity, as well as a positive linear
effect of rainfall. This model explained 1.1% of the variation
in the intensity of weekly force of infection. Alternative fixed
effects models with month or month nested in province fixed
effects produced similar results (electronic supplementary
material, tables S4–S6).

(c) Spatial models
The spatial models indicated that geographical variation in
epidemics was driven by climate and human population
sizes (figures 2 and 3; electronic supplementary material,
tables S7–S11). There was considerable geographical variation
in Zika presence and intensity within and among countries in
Latin America (e.g. figure 2). We found a positive linear
relationship between the presence of local transmission and
humidity and mean temperature (figure 3). For all other epi-
demic metrics, we found a unimodal relationship with mean
temperature (positive linear effect of mean temperature and
negative quadratic effect of mean temperature; figures 3
and 4), although this relationship is not statistically signifi-
cant in the models of cumulative cases and mean weekly
cases. In provinces that had local transmission, mean force
of infection peaked at 23.63°C (95% confidence interval:
22.20°C–25.49°C; figure 4b). The population of the largest
city had a positive relationship with all epidemic character-
istics aside from maximum force of infection (figure 3).
Mean humidity had a slight positive linear relationship
with cumulative cases, while rainfall had a slight positive
relationship with average weekly cases (figure 3). All
spatial models fitted well based on their pseudo-R2 values
(0.33–0.60) (table 1).
4. Discussion
Climate and population factors were strong drivers of geo-
graphical variation in Zika epidemics, with different factors
influencing where local transmission occurred compared
with the intensity of transmission. Relative humidity, temp-
erature, temperature range and the population of the largest
city were key determinants for whether local transmission
occurred, and these factors could be used to determine
regional likelihood for future Aedes aegypti transmitted dis-
eases. Both the spatio-temporal and spatial models for the
presence of local transmission included a positive linear
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effect of temperature, while the burden and intensity of epi-
demics (based on the other spatial models) included
nonlinear effects of temperature (electronic supplementary
material, S3; figure 3). The large variation in epidemic charac-
teristics across countries (figures 1–3) suggests that additional
factors beyond climate and population size may also be
important in driving Zika transmission. Understanding
how climate drives different epidemic metrics is valuable
for preparing for and responding to outbreaks. For example,
the infrastructure and resources needed to respond to a large
outbreak that spreads rapidly through the population (e.g.
Zika outbreaks in the Dominican Republic and El Salvador)
are very different from what is needed to respond to an out-
break that affects fewer people at one time but lasts many
months (e.g. Zika outbreaks in Colombia and Guatemala).

Although climate strongly influenced spatial variation in
Zika epidemic metrics, climate was not a strong predictor
of Zika epidemic dynamics through time [22,29,37]. We
hypothesize that week to week variation in transmission
within provinces may be too stochastic to predict based on cli-
mate alone. For many of the provinces included in this study,
climate rarely fell outside the suitable range for disease trans-
mission, potentially indicating that given suitable climate
conditions, non-climate factors such as reporting protocols,
underlying immunity, transportation and infrastructure may
generate stochasticity that drives local temporal trends in
Zika transmission. Another possible limitation in our ability
to predict week to week variation in transmission could be
due to errors in the epidemiological data, as suspected case
numbers may differ considerably from laboratory-confirmed
cases, and case reporting may change over time (e.g. as Zika
awareness increases, people may become more likely to go
to the doctor for a fever and doctors may be more likely to
diagnose symptoms as Zika rather than another disease with
similar symptoms such as dengue).

A surprising result of this study was the mismatch
between the theoretically and empirically derived optimal
temperature for Zika transmission and the temperatures we
found to correspond with the greatest force of infection
values during the 2015 to 2017 epidemic [25,62]. In previous
studies, mechanistic R0 models parametrized with data from
laboratory experiments indicated that 29°C is optimal for
Zika transmission [20,25]. However, our study demonstrated
that the highest average force of infection values were found
in provinces with mean temperatures between 20 and 26°C
(table 1), and laboratory studies confirm that Zika virus can
be transmitted within this temperature range [63]. There are
several possible hypotheses that could explain this discre-
pancy: (i) provinces with mean temperatures around 29°C
already implement vector control; (ii) people may have
acquired cross-immunity from exposure to other arboviruses
[25,64,65]; and/or (iii) given suitable temperature for trans-
mission, other factors that can covary with temperature
such as land use, urbanization and socioeconomics may be
more important drivers of large epidemics [20]. These
hypotheses raise important questions about how to ground
truth theoretical and empirical studies with field data.

The 2015 to 2017 Zika outbreak provided an opportunity
to investigate how population size and climate affect
epidemic dynamics over time and space in a previously unex-
posed population. The results provide valuable insight into
where Zika is likely to become endemic and how future out-
breaks transmitted by Aedes aegypti could spread. Specifically,
given that provinces with greater populations in their largest
cities had longer and more intense outbreaks, regions with
larger urban population sizes that also have suitable climate
conditions for most of the year are most likely to sustain
endemic Zika transmission. However, it is important to care-
fully consider how these results could apply to other regions,
especially in places where Zika may be transmitted by other
mosquito species, such as Aedes africanus, which exhibit
different responses to climate [66]. Zika epidemics in Latin
America were characteristically different across countries:
some regions experienced large epidemics that spread
quickly while others experienced low levels of sustained
transmission (figure 1). We would expect similar epidemic
metrics to characterize other mosquito-transmitted diseases
that could emerge and re-emerge in the future, such as
o’nyong nyong, Mayaro and yellow fever [1,19,39–41].
Given this climate-driven geographical variation in
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epidemics, we would expect climate change to alter patterns
in transmission for emerging and re-remerging mosquito-borne
diseases in the future.
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