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The application of machine learning has rapidly evolved in medicine over the past

decade. In stroke, commercially available machine learning algorithms have already been

incorporated into clinical application for rapid diagnosis. The creation and advancement

of deep learning techniques have greatly improved clinical utilization of machine learning

tools and new algorithms continue to emerge with improved accuracy in stroke diagnosis

and outcome prediction. Although imaging-based feature recognition and segmentation

have significantly facilitated rapid stroke diagnosis and triaging, stroke prognostication

is dependent on a multitude of patient specific as well as clinical factors and hence

accurate outcome prediction remains challenging. Despite its vital role in stroke diagnosis

and prognostication, it is important to recognize that machine learning output is only as

good as the input data and the appropriateness of algorithm applied to any specific

data set. Additionally, many studies on machine learning tend to be limited by small

sample size and hence concerted efforts to collate data could improve evaluation of

future machine learning tools in stroke. In the present state, machine learning technology

serves as a helpful and efficient tool for rapid clinical decision making while oversight

from clinical experts is still required to address specific aspects not accounted for in an

automated algorithm. This article provides an overview of machine learning technology

and a tabulated review of pertinent machine learning studies related to stroke diagnosis

and outcome prediction.

Keywords: machine learning, artificial intelligence, deep learning, stroke diagnosis, stroke prognosis, stroke

outcome prediction, machine learning in medical imaging, machine learning in medicine

INTRODUCTION

The term machine learning (ML) was coined by Arthur Samuel in 1959 (1). He investigated two
machine learning procedures using the game of checkers and concluded that computers can be
programmed quickly to play a better game of checkers than the person who wrote the program.
Simply put, machine learning can be defined as a subfield of artificial intelligence (AI) that uses
computerized algorithms to automatically improve performance through iterative learning process
or experience (i.e., data acquisition) (2). Of late, the field of ML has vastly evolved with the
development of various computerized algorithms for pattern recognition and data assimilation
to improve predictions, decisions, perceptions, and actions across various fields and serves as an
extension to the traditional statistical approaches. In our day-to-day life, a relatable example of
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ML is the application of spam filters to the 319 billion emails
sent and received daily worldwide, of which, nearly 50% can
be classified as spam (3). Use of ML technology has made
this process efficient and manageable. The ML technology
utilizes various methods for automated data analysis including
linear and logistic regression models as well as other methods
such as the support vector machines (SVM), random forests
(RF), classification trees and discriminant analysis that allow
combination of features (data points) in a non-linear manner
with flexible decision boundaries. The advent of neural networks
and deep learning (DL) technology has transformed the field
of ML with automatic and efficient feature identification and
processing within a covert analytic network, without the need for
a priori feature selection. Notably, performance of DL is known
to improve with access to larger datasets, whereas classic ML
methods tend to plateau at relatively lower performance levels.
Hence, in this era of big data where clinicians are constantly
inundated with plethora of clinical information, use of DL
technology has significnalty enhanced our ability to assimilate the
vast amount of clinical data to make expeditious clinical decision.

Stroke is a leading cause of death, disability, and cognitive
impairment in the United States (4). According to the 2013
policy statement from the American Heart Association, an
estimated 4% of US adults will suffer from a stroke by 2030,
accounting for total annual stroke-relatedmedical cost of $240.67
billion by 2030 (5). For ischemic stroke, acute management
is highly dependent on prompt diagnosis. According to the
current ischemic stroke guidelines, patients are eligible for
intravenous thrombolysis up to 4.5 h from symptom onset
and endovascular thrombectomy without advanced imaging
within 6 h of symptom onset (6–8). For patients presenting
between 6 and 24 h of symptom onset (or last known well
time), advanced imaging is recommended to assess salvageable
penumbra for decisions regarding endovascular therapy (9–
11). Similarly for hemorrhagic stroke, timely diagnosis utilizing
imaging technology to evaluate the type and etiology of
hemorrhage is important in guiding acute treatment decisions.
Prompt diagnosis with emergent treatment decision and
accurate prognostication is hence the cornerstone of acute
stroke management. Over the recent years, a multitude of
ML methodologies have been applied to stroke for various
purposes, including diagnosis of stroke (12, 13), prediction of
stroke symptom onset (14, 15), assessment of stroke severity
(16, 17), characterization of clot composition (18), analysis
of cerebral edema (19), prediction of hematoma expansion
(20), and outcome prediction (21–23). In particular, there has
been a rapid increase in the trend of ML application for
imaging-based stroke diagnosis and outcome prediction. The
Ischemic Stroke Lesion Segmentation Challenge (ISLES: http://
www.isles-challenge.org/) provides a global competing platform
encouraging teams across the world to develop advanced tools
for stroke lesion analysis using ML. In this platform, competitors
train their algorithms on a standardized dataset and eventually
generate benchmarks for algorithm performance.

Deciding which type of ML to use on a specific dataset
depends on factors such as the size of dataset, need for
supervision, ability to learn, and the generalizability of the

model (24). DL technology such as the deep neural networks
has significantly improved the ability for image segmentation,
automated featurization (e.g., conversion of raw signal into
clinically useful parameter), and multimodal prognostication in
stroke; and it is increasingly utilized in stroke-based applications
(25–27). For example, DL algorithms can be applied to
extract meaningful imaging features for image processing in an
increasing order of hierarchical complexity to make predictions,
such as the final infarct volume (27). Some commonly used ML
types with their respective algorithms and practical examples are
outlined in Figures 1–3. In the healthcare setting, supervised
and unsupervised algorithms are both commonly used. In this
review, we will specifically focus on ML strategies for stroke
diagnosis and outcome prediction. Table 1 provides an overview
of pertinent studies with use of ML in stroke diagnosis (Section
A) and outcome prediction (Section B). A glossary of machine
learning terms with brief description is separately provided in
Supplementary Table 1.

METHODS

We searched PubMed, Google Scholar, Web of Science, and IEEE
Xplore R© for relevant articles using various combination of the
following key words: “machine learning,” “artificial intelligence,”
“stroke,” “ischemic stroke,” “hemorrhagic stroke,” “diagnosis,”
“prognosis,” “outcome,” “big data,” and “outcome prediction.”
Resulting abstracts were screened by all authors and articles
were hand-picked for full review based on relevance and
scientific integrity. Final article list was reviewed and approved
by all authors.

Machine Learning in Stroke Diagnosis
The time-sensitive nature of stroke care underpins the need
for accurate and rapid tools to assist in stroke diagnosis.
Over the recent years, the science of brain imaging has
vastly advanced with the availability of a myriad of AI
based diagnostic imaging algorithms (77). Machine learning is
particularly useful in diagnosis of acute stroke with large vessel
occlusion (LVO). Various automated methods for detection
of stroke core and penumbra size as well as mismatch
quantification and detection of vascular thrombi have recently
been developed (77). Over the past decade, 13 different
companies have developed automated and semi-automated
commercially available software for acute stroke diagnostics
(Aidoc R©, Apollo Medical Imaging Technology R©, Brainomix R©,
inferVISION R©, RAPID R©, JLK Inspection R©, Max-Q AI R©,
Nico.lab R©, Olea Medical R©, Qure.ai R©, Viz.ai R©, and Zebra
Medical Vision R©) (78). The RapidAI R© and Viz.ai R© technology
have been approved under the medical device category of
computer-assisted triage by the United States Food and Drug
Administration (FDA). The RAPID MRI R© (Rapid processing of
Perfusion and Diffusion) software allows for an unsupervised,
fully-automated processing of perfusion and diffusion data to
identify those who may benefit from thrombectomy based on
the mismatch ratio (79). Such commercial platforms available
for automatic detection of ischemic stroke and LVO have
facilitated rapid treatment decisions. When compared to manual
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FIGURE 1 | Supervised learning. In supervised learning, a model is built by labeling images [Subarachnoid Hemorrhage (SAH) and Not Subarachnoid Hemorrhage
(Not SAH)], a predictive model is created, and then tested for accuracy in reading unlabeled images (gray box). Source: WesternDigital BLOG.

FIGURE 2 | Unsupervised learning. In unsupervised learning, the machine learning algorithm discovers structures within given data. The initial data is not labeled and
a clustering algorithm groups unlabeled data together. Source: WesternDigital BLOG.

segmentation of lesion volume and mismatch identification
from patients enrolled in DEFUSE 2, the RAPID results
were found to be well-correlated (r2 = 0.99 and 0.96 for
diffusion and perfusion weighted imaging, respectively) with
100% sensitivity and 91% specificity for mismatch identification
(80). Since 2008, the RapidAI R© platform has expanded to
include other products (Rapid R© ICH, ASPECTS, CTA, LVO,
CTP, MRI, Angio, and Aneurysm) that assist across the entire
spectrum of stroke. Viz LVO R© was the first FDA-cleared

software to detect and alert clinicians of LVO via the “Viz
Platform” (81). In a recent single center study with 1,167 CTAs
analyzed, Viz LVO R© was found to have a sensitivity of 0.81
and a negative predictive value of 0.99 with an accuracy of
0.94 (82).

Other areas of stroke diagnostics that have
seen an increase in attention over the past decade
are the identification of intracerebral hemorrhage
(ICH) and patients at risk for delayed cerebral
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FIGURE 3 | Created from the following referenes: Dey (28) Zhou (29)
Geron (30).

ischemia in the setting of aneurysmal subarachnoid
hemorrhage (aSAH). While most studies tend to
have good accuracy in detecting an ICH there is
more variability in subclassification and measurements
of hematoma volume. A summary of recent

publications on ML in stroke diagnosis is presented in
Table 1 (Section A).

Machine Learning in Stroke Outcome
Prediction
Despite recent advances in stroke care, it remains the second
leading cause of death and disability world-wide (4, 83).
Although acute stroke diagnosis and determination of the time
of stroke onset are the initial steps of comprehensive stroke
management, clinicians are also often charged with the task
of determining stroke outcomes. These outcomes range from
discrete radiological outcomes (e.g., final infarct volume, the
likelihood of hemorrhagic transformation, etc.), the likelihood of
morbidity (e.g., stroke-associated pneumonia) andmortality, and
various measures of functional independence (e.g., mRS score,
Barthel Index score, cognitive, and language function, etc.).

Prognostication after an acute brain injury is notoriously
challenging, particularly within the first 24–48 h (84). However,
a clinician may be called upon to provide estimates of a
patient’s short-term and long-term mortality and degree of
functional dependence to assist with decision-making regarding
the intensity of care (e.g., use of thrombolytics or endovascular
treatment, intubation, code status, etc.) (60, 64, 66, 67, 69, 70, 72–
76). Like all medical emergencies, it is incumbent upon the stroke
clinician to ensure that all care provided is concordant with an
individual patient’s goals (85). For example, a surrogate decision-
maker may decline to reverse a patient’s longstanding “do not
intubate” order to facilitate mechanical thrombectomy if the
clinician predicts the patient has a high likelihood of functional
dependence or short-termmortality. Hence, accuracy in outcome
prediction is critical in guiding management of our patients.

Determining a patient’s likelihood of developing symptomatic
intracranial hemorrhage (sICH) is of obvious, immediate value
in acute stroke management in determining candidacy for
thrombolytic therapy or endovascular treatment. Historically,
clinician-based prognostication tools to predict the risk of
symptomatic intracranial hemorrhage after IV thrombolysis,
such as the SEDAN (Sugar, Early Infarct signs, Dense cerebral
artery sign, Age, and NIHSS) and HAT (Hemorrhage After
Thrombolysis) scores have been used to predict the risk of
symptomatic intracranial hemorrhage after IV thrombolysis (23).
Advances in ML and DL have allowed for the development of
more accurate models which outperform the traditional SEDAN
and HAT scores (23, 54, 55). Similarly, the ability to predict
final infarct volume and the likelihood of the development of
malignant cerebral edema have important treatment implications
and remain a significant focus of ML in stroke (26, 51–53).

In patients with intracerebral hemorrhage (ICH), the ICH-
score is one of the most widely used clinical prediction scores
(85–88). Although ML technology for outcome prediction
has rapidly advanced for ischemic stroke, recent ML studies
predicting functional outcomes after ICHhave also demonstrated
high-discriminating power (63, 89). A recent study by Sennfält
et al. tracked long-term functional dependence and mortality
after an acute ischemic stroke of more than 20,000 Swedish
patients (90). The 30-day mortality rate was 11.1%. At 5 years,
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TABLE 1 | Studies utilizing machine learning for stroke diagnosis and prediction.

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Section A: stroke diagnosis

Ischemic stroke

Garca-Terriza et al.
(31)

Stroke type diagnosis
and mortality

RF 10-fold cross
validation
resampling

• 119
• (AIS

105,
ICH 14)

• Type of stroke
• Mortality
• Non-invasive

variables (cardiac
and pulmonary)

• Accuracy

• Subtype - 92%
• Mortality - 96%

- May predict the
type of stroke a
patient is at risk for
and outcomes

Data obtained after event to
for prediction models but do
not include usual risk factors
for consideration

Sung et al. (32) Ischemic stroke
phenotype*

Various models (C4.5,
CART, KNN, RF, SVM,
LR, with aggregation
algorithms

10-fold cross
validation

4,640 Clinical notes with
preprocessing and
MetaMap to identify
medical entities +/-
NIHSS

• Accuracy; kappa

• NIHSS + text
• (0.489–0.583;

0.272–0.399)
• NIHSS
• (0.465–0.533;

0.254–0.344)
• Text
• (0.465–

0.533; 0.170–0.328)

- Clinical text plus
validated scoring
tools might aid in
phenotyping of
stroke

• Phenotype based on
OCSP definitions,*

• Difficult delineating certain
phenotypes,

• Unclear who were the
authors of the clinic notes

Giri et al. (33) Ischemic stroke
diagnosis by EEG

1D CNN vs. various
models (NB,
Classification Tree,
ANN, RF, kNN, LR)

Leave-one-out
cross-validation

• 32 – AIS
• 30 –

Controls

15-min EEG with 24
chosen features

• Accuracy - 0.86
• F-Score 0.861

Leave-one-out
scenario of 1D CNN

In areas with
limited access to
CT imaging may
help diagnosis AIS

Time to apply EEG
electrodes may result in
delays of care

Lee et al. (14) Identify patients within
4.5-h thrombolysis
window

LR, RF, SVM • 85% training
• 15% test

355 MRI features • Sensitivity 75.8%
• Specificity 82.6%
• AUC 85.1%

RF Improved
sensitivity than
human readings in
identifying stroke
patients within
thrombolysis
window

Assessed only
dichotomized visibility of
signals in the lesion territory

Ho et al. (15) Classifying onset time
from imaging

LR, RF, GBRT, SVM,
SMR

10-fold cross
validation on
training data with
optimal
hyperparameters

104 MRI • Sensitivity 78.8%
• AUC 76.5%

LR with deep
autoencoder features

Improved stroke
onset detection
compared to
DWI-FLAIR

Trained on MRI only

Takahashi et al.
(34)

Detection for MCA dot
sign in unenhanced CT

SVM Not described 297
images

Unenhanced CT Sensitivity 97.5% SVM Accurately detect
hyperdense MCA
dot sign

Data from 7 patients

Chen et al. (35) Automatically segment
stroke lesions in DWI

CNN Train / Test 741
subjects

DWI Dice score 0.67 CNN Segment stroke
lesions
automatically

Improved Dice scores on
larger lesions

Bouts et al. (36) Depict ischemic tissue
that can recover after
reperfusion

GLM, GAM, SVM,
Adaptive boosting, RF

Generalized cross
validation with
unbiased risk
estimator scoring

19 rats MRI Dice Score 0.79 GLM MRI-based
algorithms could
estimate extent of
salvageable tissue

Varying efficacy in
differentiating between
areas irreversibly damaged
vs. salvaged after
reperfusion

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Chen et al. (37) Quantify cerebral
edema following
infarction via CSF
quantification

RF with geodesic active
contour segmentation

• 10-fold cross
validation

• Train / Test

38
subjects

CT Imaging • Baseline Dice Score
0.76

• 6-h Dice score 0.73

RF with geodesic active
contour segmentation

Efficiently and
accurately
measure evolution
of cerebral edema

Colak et al. (38) Stroke Prediction MLP ANN and SVM
with radial basis
function kernel

Train / Test 297
subjects
(130 sick
and 167
healthy)

9 predictors (CAD, DM,
HTN, CVA history, AF,
smoking, carotid
Doppler findings,
cholesterol, CRP

• Accuracy 85.9%
• AUC 0.93

ANN Ability to screen
patients at risk for
stroke based on
comorbidities

Factors used to predict
model are known to be risk
factors for stroke

Maier et al. (39) Classify lesion
segmentation

KNN, GNB, GLM, RF,
CNN

Leave-one-out
cross-validation

37
subjects

MRI • RF:
• Precision 82%
• Recall 62%
• CNN:
• Precision 77%
• Recall 64%

• RF
• CNN

Future work may
be able to
segment lesions

No methods achieved
results in the range of the
human observer agreement

Öman et al. (40) Detection of ischemic
stroke

3D CNN Train / Test 60
subjects

CT Angiography • Sensitivity 93%
• Specificity 82%
• AUC 0.93
• Dice 0.61

3D CNN Lesion can be
detected with
CNN

Contralateral hemisphere
data may reduce false
positive findings

Chen et al. (41) Prehospital detection of
large vessel occlusion

ANN 10-fold cross
validation

600
subjects

Baseline
demographics, medical
history, NIHSS, risk
factors

• Youden index 0.640
• Sensitivity 0.807
• Specificity 0.833
• Accuracy 0.822

ANN Known patient risk
factors may help in
predicting large
vessel occlusion

Cohort included stroke
patients and not those with
mimics or hemorrhagic
stroke

Hemorrhagic stroke

Dhar et al. (42) Hemorrhage and
perihematomal edema
(PHE) quantification

CNN • 10-fold cross
validation

• Train / Test

124 24-h CT head scans • Dice score
• 0.9 – hemorrhage
• 0.54 - PHE

- Rapid and
consistent
measurements of
supratentorial ICH

-IVH not delineated from
ICH

Arab et al. (43) Hematoma
segmentation and
volume quantification

CNN with deep
supervision based on
reader labeling

Train / Test 55 64 axial slices of 128 ×

128 voxels
• Dice score
• 0.84 ± 0.06
• Precision
• 0.85 ± 0.07
• Recall
• 0.83 ± 0.07
• F-Score 0.84

CNN with deep
supervision

Fast and reliable
quantification of
hematoma volume

• False positives observed
with calcifications

• False negatives observed
with blood close to bone

Ko et al. (44) ICH detection CNN and long-short
term memory

Train / Test 5,244,234 Pre-processed CTH to
balance subtypes and
window settings

• Classification
accuracy

• 92 – 93%

- Identification of
ICH and subtypes

-Preprocessing of data
required to attain accuracy

Irene et al. (45) ICH segmentation and
volume approximation

Dynamic Graph CNN • 4-fold cross
validation

• Train / Test

27 CTH • Accuracy 96.4%
• Precision 0.93
• Recall 0.98
• F-Score 0.96

SVM method with radial
basis function kernel

Identification of
ICH and blood
volume prediction

Small dataset

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Arbabshinrani et
al. (13)

Diagnose ICH and
prioritize radiology
worklists

Deep CNN • Training (75%)
• Cross validation

(5%)
• Testing (20%)

46,573
studies

Preprocessing of CTH
images

• ROC 0.846
• Specificity 0.8
• Sensitivity 0.73

- Assist in
upgrading image
reads to “stat”
from “routine”

Did not identify location of
ICH

Sage et al. (46) ICH subtype detection Double-branch CNN of
SVM, RF

Concatenation of
double-branch
features and
classification

9,997
subjects

372,556 images
(11,454 CT scans)

• Accuracy range
• SVM
• 76.9 – 96%
• RF
• 74.3 – 96.7%

- Identify and
classify ICH

EDH performed the worst in
SVM and RF possibly due to
under representation in data

Ye et al. (47) ICH subtype detection 3D joint CNN –
recurrent NN

• Training (80%)
• Validation (10%)
• Testing (10%)

2,836
subjects

76,621 slices from
non-contrast head CT
scans

• AUC for +/- ICH

• 0.98
• AUC range for

subtypes
• 0.89 – 0.96

- Identify and
classify ICH

SAH classification may have
been more difficult due to
blended ICH examples

Chang et al. (48) ICH detection and
volume measurements

Hybrid 3D/2D CNN 5-fold cross
validation

10,841
Scans

Non-contrast CTH • ICH detection

• Accuracy 0.97
• Sensitivity 0.951
• Specificity 0.073
• Volume
• Dice

score 0.772–0.931

- Identification of
ICH and blood
volume prediction

Generalization needs to be
confirmed in other
institutions

Subarachnoid hemorrhage

Capoglu et al. (49) Vasospasm prediction Sparse dictionary
learning and
covariance-based
features

Not described 20 3D brain angiograms ROC 0.93 - Proof of concept
to predict those
who might have
vasospasm

Small dataset

Ramos et al. (22) DCI Prediction LogReg, SVM, RF, MLPMonte-Carlo
cross-validation
with 100 random
splits (75% training
/ 25% test) and
5-fold
cross-validation

317 Non-contrast CT image
data and 48 clinical
variables

• ROC 0.74
• Specificity 0.67
• Sensitivity 0.75

RF with clinical
variables and image
features

ML improved
prediction of DCI
especially when
image features
included
(aneurysm height /
width)

Manual extraction of
features from medical
images is time-consuming

Tanioka et al. (50) DCI prediction RF Leave-one-out
cross-validation

95 Clinical variables and
matricellular proteins
(MCP) on days 1 – 3

• Accuracy
• 93.9% - clinical

variables
• 87.2% - MCP only
• 95.2% - clinical

variables + MCP

- MCP might play a
role in predicting
DCI but further
data needed

Other biomarkers not
assessed

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Miscellaneous

Ni et al. (12) Stroke Case Detection LR, SVM-P, SVM-R,
RF, ANN

Two iterations of
10-fold cross
validation

8,131 Medical record
information compared
to ICD codes

• Accuracy 88.6%
• Precision 93.8%
• Recall 92.8%
• F Score 93.3%
• AUC 89.8%
• AUC-PR 97.5%

RF Detection of stroke
diagnosis through
EHR data that was
miscoded

Accurate ICD codes limit
utility of the algorithm

Park et al. (16) Autonomously grade
NIHSS and MRC
scores through
wearable sensors

• SVM
• Ensemble

5-fold cross
validation
searched by
Bayes optimization
in 30 trials

240 Wearable sensors • NIHSS:
• Accuracy 83.3%
• AUC 0.912
• MRC:
• Accuracy 76.7%

AUC 0.87

SVM Automatic grading
in real time of
proximal
weakness

Requires sensors to be
applied

Section B: stroke outcome prediction

References Study objective ML-based approach Validation

method

Sample

size

Feature Optimal results Best predictors Clinical

implications

Limitations

Radiological outcomes

Nielsen et al. (26) Prediction of final
infarct volume

CNNdeep 85% training/15%
testing

222 MRI images AUC 0.88 ± 0.12 - Facilitates
treatment
selection

No external validation,
retrospective

Giacalone et al.
(51)

Prediction of final
infarct volume

SVM K-fold
cross-validation

4 MRI images 95% accuracy - “ ” Small sample size,
Retrospective

Grosser et al. (52) Prediction of final
infarct volume

XGBoost Leave-one-out
cross-validation

99 MRI images AUC 0.893 ± 0.085 Spatial lesion
probability

“ ” Retrospective, Limited
generalizability (patient data
is from 2006 to 2009)

Foroushani et al.
(53)

Prediction of malignant
cerebral edema

LR 10-fold
cross-validation

361 Serial, quantitative CT
images

AUC 0.96 Reduction in CSF
volume

“ ” No external validation

Bentley et al. (23) Prediction of sICH SVM K-fold
cross-validation

116 Unenhanced CT
images

AUC 0.744 Baseline NIHSS, CT
evidence of acute
ischemia

“ ” Image processing took
∼30min; Small number of
sICH cases

Yu et al. (54) Prediction of HT SR-KDA Leave-one-out
cross-validation

155 MRI images 83.7 ± 2.6% accuracy - “ ” Single-center, Retrospective

Scalzo et al. (55) Prediction of HT SR-KDA 10-fold
cross-validation

263 MRI images 88% accuracy - “ ” Retrospective, current
limitations in measuring
BBB permeability

van Os et al. (56) Prediction of
reperfusion after EVT
(mTICI <2b vs. ≥2b)

LR (using backward
elimination)

Nested
cross-validation,
consisting of an
outer and an inner
cross-validation
loop

1,383 EHR data, CT/CTA
images

AUC 0.57 - “ ” Retrospective; Only
moderate predictive value,
LR outperformed
machine-learning

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Hilbert et al. (57) Prediction of
reperfusion after EVT
(mTICI <2b vs. ≥2b)

RFNN-ResNet-AE
fine-tuned

4-fold
cross-validation

1301 CTA images Average AUC 0.65 - “ ” Retrospective; Only
moderate predictive value

Rondina et al. (58) Comparison of imaging
approaches (lesion load
per ROI vs. pattern of
voxel) to predict post
stroke motor
impairment

GPR 10-fold
cross-validation

50 Post stroke MRI Best prediction was
obtained using motor
ROI and CST (derived
from probabilistic
tractography) R =

0.83, RMSE = 0.68

Patterns of voxels
representing lesion
probability produced
better results

Informs
appropriate
methodology for
predicting long
term motor
outcomes from
early post-stroke
MRI.

Small sample size, no
external validation

Discrete morbidity and mortality clinical outcomes

Matsumoto et al.
(59)

Prediction of all-cause,
in-hospital mortality

LASSO 10-fold
cross-validation

4,232 EHR data AUC 0.88 - Facilitates GOC
decision making

Retrospective,
Single-center, Limited
generalizability (ETV used in
only 1.5% of patients), Low
rate (3.5%) of in-hospital
mortality

Scrutinio et al. (60) Prediction of 3-yr
mortality after severe
stroke

SMOTE RF 10-fold
cross-validation

1,207 EHR data AUC 0.928 Age Facilitates GOC
decision making

No external validation

Ge et al. (61) Prediction of SAP at 7
and 14 d

Attention-augmented
GRU

10-fold
cross-validation

13,930 EHR data • 7 d: AUC 0.928
• 14 d: AUC 0.905

PPI use Facilitates early
detection and
targeted
application of
prophylaxis
interventions

Single-center, No external
validation

Li et al. (62) Prediction of SAP at 7
d

XGBoost 5-fold
cross-validation

3,160 EHR data AUC 0.841 Age, Baseline NIHSS,
FBG, sex, Premorbid
mRS score, & History
of AF

“ “ Single-center, No external
validation

Wang et al. (63) Predicting functional
outcome (mRS) at 1st
and 6th months

RF 10-fold
cross-validation

333 Demographics, labs,
CT brain

• 1 month outcome:
AUC 0.899;

• 6 months outcome
AUC: 0.917

• 1 month outcome=
26 attributes;

• 6 months outcome:
22 attributes

Use of ML to
predict functional
outcome after ICH
is feasible, and RF
model provides
the best predictive
performance

Small sample size, excluded
large hematomas, did not
evaluate hematoma or
edema expansion, no
external validation

Functional outcomes

Heo et al. (64) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

Deep neural network 67% training/ 33%
testing

2,604 EHR data AUC 0.888 - Informs patient
expectations,
Facilitates GOC
decision making

Single-center, No external
validation

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Lin et al. (65) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

SVM 10-fold
cross-validation

35,798 Registry data f1-score 87.9 ± 0.2%
(92.9 ± 0.1%, with
follow-up data)

mRS score at 30 d,
toilet use degree of
dependence

“ “ More severe strokes
accounted for most
prediction errors

Brugnara et al. (66)Prediction of mRS
score (0–2 vs. 3–6) at
90 d

“Machine-learning
models with gradient
boosting classifiers”

Not specified 246 Clinical data,
radiological data (CT,
CTA, CTP, and
angiographic images)

AUC 0.856 NIHSS score at 24 h,
Premorbid mRS score,
Final infarct volume on
CT

“ “ Single center, No external
validation, Retrospective

Forkert et al. (67) Prediction of mRS
score at 90 d

SVM (specifically the
Extended Problem-
specific model)

Leave-one-out
cross-validation

68 Clinical data, MRI
images

• mRS score ± 1:
82.4% accuracy

• mRS score 0–2 vs.
3–6: 85.4% accuracy

• L-hemisphere
strokes: lesion-based
t-score sum

• Rt-hemisphere
strokes:
Lesion volume

“ “ No external validation,
Retrospective

Monteiro et al. (68) Prediction of mRS
score (0–2 vs. 3–6) at
90 d

RF 10-fold
cross-validation

425 Clinical data, CT or MRI
images

AUC 0.936 ± 0.34 Baseline NIHSS score,
Baseline NIHSS score
on subsection 2 (Best
gaze, horizontal EOMs)

“ “ Single center, No external
validation, Retrospective,
Performed worse than
non-imaging model

Jang et al. (69) Prediction of mRS
score (>1 vs. >2) at 90
d

XGBoost 3-fold
cross-validation
and a random
search strategy

6,731 Registry data • mRS >1: AUC 0.84
• mRS >2: AUC 0.87

“ “ Treatment-related factors
were not included, No
external validation

Hope et al. (70) Prediction of speech
production scores

GPR Leave-one-out
cross-validation

270 Clinical data,
Assessments, MRI
images

R2 0.59 Time post-stroke,
Lesion site

Informs patient
expectations

Post-stroke imaging
obtained over a wide range
of times (<1 month to +30
y), No external validation,
Retrospective

Lopes et al. (71) Prediction of cognitive
functions at 3 y after
minor stroke

Ridge Regression 3-step nested
leave-one-out
cross-validation,
consisting of inner,
middle, and outer
loops

72 Clinical data,
Assessments,
functional MRI images

R2 values for attention,
memory, visuospatial
functions, and
language functions:
0.73, 0.67, 0.55, 0.48

- “ “ Limited generalizability
(mean NIHSS on admission
was 1.5 ± 2.2),
Retrospective

Sale et al. (72) Prediction of change in
BI score and FIM score
during inpatient rehab

SVM Nested 5-fold
cross-validation

55 Clinical biomarker data,
Assessments

Discharge cognitive
FIM score: MADP
17.55%, RMSE 4.28

Cognitive FIM score
upon admission

Informs patient
expectations,
Facilitates GOC
decision making

Small sample size, included
hemorrhagic stroke patients

Iwamoto et al. (73) Prediction of ADL
dependence after
inpatient rehab

CART method Not specified 994 Clinical data,
Assessments

AUC 0.83 FIM transfer score (≤4
or >4)

“ “ Single center, Retrospective

Lin et al. (74) Prediction of BI score
(<60, 60–90, >90)
upon discharge from
inpatient rehab

LR, RF 5-fold
cross-validation

313 Clinical data,
Assessments

LR: AUC 0.796, RF:
AUC 0.792

BI, IADL, and BBT
scores on admission

“ “ Limited generalizability due
to aggressive rehab
strategy, No external
validation

(Continued)
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TABLE 1 | Continued

References Study objective ML-based

approaches

Validation

method

Sample

size

Feature Optimal results Optimal ML

approach

Clinical

implications

Limitations

Tozlu et al. (75) Prediction of
post-intervention UE
motor impairment in
chronic stroke

Elastic net Nested 10-fold
cross-validation
with outer and
inner loops

102 Clinical data,
Assessments

Median R2 0.91 Pre-intervention
UE-FMA, difference in
MT between the
affected and unaffected
hemispheres

Informs patient
expectations,
Increases
rehabilitation
efficiency

Retrospective, No external
validation

Stinear et al. (76) Predicts potential for
UE recovery

Cluster analyses Not applicable 40 Clinical assessments ±

neurophysiological
assessments and MRI
images

Partial η2 0.811 - “ “ Small sample size, Single
center, No external
validation

Section A and B

ADL, Activities of daily living; AE, Auto-encoders; AF, Atrial fibrillation; AIS, Acute ischemic stroke; ANN, Artificial neural network; AUC, area under the receiver operating characteristic curve; BBB, blood-brain barrier; BBT, Berg balance

test; BI, Barthel Index; CART, Classification and regression tree; CNN, convolutional neural network; CSF, cerebral spinal fluid; CST, Corticospinal tract; CT, computed tomography; CTA, Computerized tomography angiography; CTP,

Computerized tomography perfusion; CXR, Chest radiograph; D, days; DCI, delayed cerebral ischemia; DTI, Diffusion Tensor Imaging; DWI, diffusion weighted image; EDH, epidural hematoma; EEG, electroencephalogram; EHR,

electronic health record; EOMs, Extra-ocular movements; EVT, endovascular treatment; FBG, Fasting blood glucose; FIM, Functional independence measure; GAM, generalized additive model; GBRT, gradient boosted regression tree;

GLM, generalized linear model; GOC, Goals-of-care; GRU, gated recurrent unit; GPR, Gaussian Process model Regression; H, hours; HT, hemorrhagic transformation; IADL, Instrumental activities of daily living scale; ICH, Intracerebral

hemorrhage; IVH, intraventricular hemorrhage; KNN, K nearest neighbor; L, Left; LASSO, Least absolute shrinkage and selection operator regression; LR, logistic regression; MADP, Mean absolute percentage deviation; MCA, middle

cerebral artery; MCP, matricellular proteins; Min, minutes; MLP, multilayer perceptron; MRC, medical research council; MRI, magnetic resonance imaging; mRS, Modified Rankin Score; MT, motor threshold; NB, naïve bayes; NIHSS,

National Institutes of Health Stroke Scale; PHE, perihematomal edema; PPI, Proton pump inhibitor; RF, Random forest; RFNN, Structured Receptive Field Neural Networks; RMSE, Root mean square error; ROI, region of interest; Rt,

Right; SAP, Stroke-associated pneumonia; sICH, symptomatic intracranial hemorrhage; SMOTE, synthetic minority oversampling technique; SMR, stepwise multilinear regression; SR-KDA, Kernel Spectral Regression for Discriminant

Analysis; SVM, support vector model; SVM-P, support vector machine with polynomial; SVM-R, support vector machine with radial basis function; UE, Upper extremity; UE-FMA, Upper extremity Fugl-Meyer Assessment; XGBoost,

Extreme gradient boosting; Yr, year.

NB: List of ML terms with definitions is provided in Supplementary Table 1.

Section B

Many of the listed studies utilize a variety of machine learning (ML)-based approaches. The approach listed on the table is the approach with the optimal result from each individual study.
*Phenotype based on Oxfordshire Community Stroke Project (OCSP) (total anterior circulation infarcts, lacunar infarcts, partial anterior circulation infarcts, posterior circulation infarcts).
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70.6% of ischemic stroke patients were functionally dependent
(defined as mRS score of ≥3) or had died (5-year mortality
rate of 50.6%). These sobering outcomes partially account for
the development of many stroke prognostic models over the
years, which frequently serve as benchmarks in stroke research.
Recently, Matsumoto et al. compared the performance of six
existing stroke prognostic models for predicting poor functional
outcomes and in-hospital mortality with linear regression or
decision tree ensemble models (59). The novel prediction models
performed slightly better than the conventional models in
predicting poor functional outcomes (AUC 0.88–0.94 vs. AUC
0.70–0.92) but were equivalent or marginally worse in predicting
in-hospital death (AUC 0.84–0.88 vs. AUC 0.87–0.88). Many
such stroke prediction models have emerged over the recent
years. An overview of ML based automated algorithms for stroke
outcome prediction is provided in Table 1 (Section B).

DISCUSSION

In recent years, some DL algorithms have approached human
levels of performance in object recognition (91). One of the
greatest strengths of ML is its ability to endlessly process data
and tirelessly perform an iterative task. Further, creation of a
ML model can be performed much faster (i.e., in a matter
of 5–6 days compared with 5–6 months or even years) than
traditional computer-aided detection and diagnosis (CAD) (92).
which makes ML an attractive field for computer experts and
scientists. Several ML tools are currently in use including the
FDA-approved ML algorithms previously discussed for rapid
stroke diagnosis which have significantly enhanced the workflow
of acute ischemic stroke patients.

Despite the prolific advent of new and improved ML
algorithms with increasing clinical applications, it is important
to recognize that computer-based algorithms are only as good
as the data used to train the models. For a reliable algorithm,
it is important to develop well-defined training, validation, and
testing sets. Testing should be done on a diverse set of data
points reflective of a real-world scenario. Overfitting can be an
issue in ML algorithms when the model is trained on a group
of highly-selected, specific features, which when tested on a
larger dataset with varied features, fails to perform adequately.
Similarly, underfitting can occur when a model is oversimplified
with generalized feature selection in the training set which then
becomes unable to capture the relevant features within a complex
pattern of a larger or more diverse testing set. The aphorism
“garbage in, garbage out” remains true as the use of inadequate
or unvalidated data points (e.g., unverified clinical reports from
electronic health record) in the training set can lead to poor
performance of the ML algorithm in the testing set. Hence, it is
important to note that the algorithmic decision-making tools do
not guarantee accurate and unbiased interpretation compared to
established logistic regression models (56, 59, 93). Comparisons
to well-established models should be standard when developing
new ML algorithms given the high cost associated with ML
(e.g., the time required to collect data, train the model, perform
internal and external validations, cost of reliable and secure data

storage, etc.) (94). Specifically, as it relates to diagnostics there
are a myriad of considerations that must be taken into account.
Not only should the algorithm provide accurate information
quickly, but it should have the ability to integrate into the
electornic health record (EHR) to improve end user experience
and efficiency in workflow. Programs such as RAPID R©, Viz.ai R©,
and Brainomix R© have started to successfully integrate into the
EHR, which has helped expedite acute stroke diagnosis and triage
process. One of the major technical challenges of ML include
the ability to develop an algorithm with a “reasonable” detection
rate of pathology without an excessive rate of false-positives.
For example, there are notable discrepancies among various ML
studies for ICH diagnosis, with varying accuracy depending on
the type of ICH (e.g., spontaneous ICH, SDH, aSAH, or IVH).
Overfitting and underfitting of the model could lead to poor
applicability and therefore, image preprocessing with meticulous
feature selection is necessary. Furthermore, the “black-box”
nature of ML precludes the clinicians from identifying and
addressing biases within the algorithms (95, 96). Hence, proper
external validation is necessary to ensure generalizability of the
algorithm in diverse clinical scenarios.

For stroke prediction, most existing ML algorithms utilize
dichotomized outcomes. Functional outcome is frequently
defined as “good” when mRS score is 0–2 and “poor” when
mRS score is 3–6 by convention and IS studies often measure
mRS score at 90 days after stroke (64–69, 97). However,
the medical community is increasingly embracing patient-
centered outcomes. People are starting to recognize the need
for longitudinal patient follow-up given potential for functional
improvement beyond conventional norms of 90 days (98). Once
patient-centered outcomes are clinically validated (e.g., MRS
cutoff of 0–2 vs. 3–6, 0–3 vs. 4–6, or 0–4 vs. 5–6), new ML
algorithms incorporating such outcomes would be increasingly
helpful to the clinicians. The use of high-yield, ML programs
using patient-centered outcomes could ease the commonplace
but challenging discussions of the anticipated quality of life
and the risk of long-term dependency or death before deciding
on a patient’s goals-of-care. It is however important to apply
caution while using ML algorithms for outcome prediction as
patient demographics and clinical practice continue to evolve
and updates to the ML algorithms would be necessary to
remain applicable to evolving patient populations and clinical
standards. Additionally, developers often retrieve data from
existing datasets (e.g., clinical trial data) with its inherent biases
including selection bias, observer bias and other confounders
(e.g., withdrawal of life supporting therapymay bemore common
in older patients with large hemispheric stroke compared to
younger patients, which could confound outcome prediction in
older patients compared to younger ones).

Overall, compared to other diseases such as Alzheimer’s
disease, there is a relative paucity of large, high-quality
datasets within stroke. Some limitations that have stymied the
development of large, open-access stroke registries include the
need for data-sharing agreements, patient privacy concerns, high
costs of data storage and security, arbitration of quality control of
the input data, etc. (95). Cohesive and collaborative efforts across
hospital systems, regions, and nations with data acquisition and
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harmonization is needed to improve future ML-based programs
in stroke. With adoption of EHR systems, healthcare data is
rapidly accumulating with an estimated over 35 zettabytes of
existing healthcare data! (99). Adoption of AI andML algorithms
allow us to efficiently process the plethora of information that
surround us every day. Nonetheless, as we continue to adapt to
this evolving landscape of medical practice surrounding big data,
clinicians need to remain aware of the limitations of this modern
day “black box” magic.

CONCLUSION

The emerging ML technology has rapidly integrated into
multiple fields of medicine including stroke. Deep learning has
significantly enhanced practical applications of ML and some
newer algorithms are known to have comparable accuracy to
humans. However, the diagnosis and prognosis of a disease,
including stroke, is highly intricate and depends on various
clinical and personal factors. The development of optimal
ML programs requires comprehensive data collection and
assimilation to improve diagnostic and prognostic accuracy.
Given the “black box” or cryptic nature of these algorithms,
it is extremely important for the end-user (i.e., clinicians)
to understand the intended use and limitations of any ML
algorithm to avoid inaccurate data interpretation. Although
ML algorithms have improved stroke systems of care, blind
dependence on such computerized technology may lead to
misdiagnosis or inaccurate prediction of prognostic trajectories.
At the current state, ML tools are best used as “aids”

for clinical decision making while still requiring oversight
to address relevant clinical aspects that are overlooked by
the algorithm.
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