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Abstract: Osteoarthritis is a degenerative condition affecting the whole joint with the underlying
bone, representing a major source of pain, disability, and socioeconomic cost worldwide. Age is con-
sidered the strongest risk factor, albeit abnormal biomechanics, morphology, congenital abnormality,
deformity, malalignment, limb-length discrepancy, lifestyle, and injury may further increase the risk
of the development and progression of osteoarthritis as well. Pain and loss of function are the main
clinical features that lead to treatment. Although early manifestations of osteoarthritis are amenable
to lifestyle modification, adequate pain management, and physical therapy, disease advancement
frequently requires surgical treatment. The symptomatic progression of osteoarthritis with radio-
graphical confirmation can be addressed either with arthroscopic interventions, (joint) preservation
techniques, or bone fusion procedures, whereas (joint) replacement is preferentially reserved for
severe and end-stage disease. The surgical treatment aims at alleviating pain and disability while
restoring native biomechanics. Miscellaneous surgical techniques for addressing osteoarthritis exist.
Advanced computer-integrated surgical concepts allow for patient personalization and optimiza-
tion of surgical treatment. The scope of this article is to present an overview of the fundamentals
of conventional surgical treatment options for osteoarthritis of the human skeleton, with empha-
sis on arthroscopy, preservation, arthrodesis, and replacement. Contemporary computer-assisted
orthopaedic surgery concepts are further elucidated.

Keywords: osteoarthritis; spine; hip; knee; ankle and foot; shoulder; elbow; wrist and hand;
computer-assisted orthopaedic surgery; CAOS

1. Background

Osteoarthritis is a degenerative condition affecting the whole joint with the underlying
bone, representing a major source of pain, disability, and socioeconomic cost worldwide [1].
It is thought to be the most prevalent chronic joint disease [2]. The epidemiology of the
disorder is complex and multifactorial, with genetic, biological, and biomechanical com-
ponents [1]. Age is considered the strongest risk factor for osteoarthritis, albeit abnormal
biomechanics, morphology, congenital abnormality, deformity, malalignment, limb-length
discrepancy, lifestyle, and injury may further increase the risk of the development and
progression of osteoarthritis as well [1–4].

Pain and loss of function are the main clinical features that lead to treatment, in-
cluding non-pharmacological, pharmacological, and surgical approaches [2]. Although
early manifestations of osteoarthritis are amenable to lifestyle modification, adequate pain
management, and physical therapy, disease advancement frequently requires surgical treat-
ment [1,4]. The symptomatic progression of osteoarthritis with radiographical confirmation
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can therefore be addressed either with arthroscopic interventions, joint preservation tech-
niques, or bone fusion procedures, whereas joint replacement is preferentially reserved for
severe and end-stage disease [1]. Surgical treatment aims at alleviating pain and disability
while restoring native biomechanics. Miscellaneous surgical techniques for addressing
osteoarthritis exist. Furthermore, advanced computer-integrated surgical concepts allow
for patient personalization and optimization of surgical treatment. Three-dimensional
printing has become more frequently used in surgical specialties in recent years, including
pre-operative planning, patient-specific instrumentation, and patient-specific implant pro-
duction [5]. The computer-assisted navigation system is another well-known orthopaedic
advancement that allows the surgeon to obtain real-time feedback during surgeries [6].
Robotic technologies mainly aim at supporting surgeons with precise and planned me-
chanical actions, while technologies such as augmented reality increase the ability of the
surgeon by intuitive augmentation of medical information [7].

The scope of this article is to present an overview of the fundamentals of conven-
tional surgical treatment options for osteoarthritis of the human skeleton, with emphasis
on arthroscopy interventions, (joint) preservation techniques, bone fusion (arthrodesis)
concepts, and (joint) replacement methods. Contemporary computer-assisted orthopaedic
surgery concepts are further elucidated.

2. Arthroscopy

The adoption of arthroscopy, using small cameras and instruments placed inside joints,
has transformed musculoskeletal care over the last several decades, allowing surgeons
to provide the same anatomic solutions with less tissue dissection, resulting in lower
requirements for inpatient care, reduced costs, and expedited recovery [8].

2.1. Spine

Despite numerous endoscopic methods that can be utilized in the treatment of cervical,
thoracic, and lumbar degenerative spine disorders, they are most commonly performed
through the posterolateral (or interlaminar) and the extraforaminal (or transforaminal)
approach [8]. The three most commonly utilized techniques include full endoscopy, mi-
croendoscopy, and biportal endoscopy, each with its characteristics [8].

2.2. Shoulder

If osteoarthritis of grade II–III is present, arthroscopic debridement and microfrac-
tures are the treatments of choice in young adults [9]. A more advanced procedure is
comprehensive arthroscopic management (CAM) [10]. The arthroscopic debridement and
interposition of an acellular human dermal matrix for glenoid resurfacing can also be per-
formed in carefully selected patients [11]. In more advanced or extended unipolar/bipolar
osteoarthritis, arthroscopic-assisted partial shoulder resurfacing and arthroscopic biologic
total shoulder resurfacing remain options [12,13].

2.3. Elbow

For advanced osteoarthritis of the elbow, refractory to non-operative measures can be
addressed arthroscopically. It is considered when the joint surface is preserved, and the
main problem is a reduced range of movement caused by osteophytes, intra articular loose
bodies, and tight articular capsules [14].

2.4. Wrist and Hand

Wrist arthroscopy for OA includes the debridement of osteophytes, synovectomy,
distal radial styloidectomy, as well as proximal row carpectomy (PRC) or arthroscopically
assisted partial fusion for advanced disease [15–17]. At the level of the distal radioulnar
joint (DRUJ), the removal of loose bodies and capsulorrhaphy is an option in the early stages,
while arthroscopic resection of the ulnar head (Wafer procedure) or the arthroscopic Sauve–
Kapandji procedure are options for advanced disease [15,16]. The thumb carpometacarpal



Life 2022, 12, 982 3 of 21

joint osteoarthritis can be addressed arthroscopically with thermal stabilization of the joint
capsule, or arthroscopic (hemi-)trapeziectomy [18].

2.5. Hip

Hip arthroscopy allows detailed visualization of the acetabular labrum, femoral and
acetabular chondral surfaces, fovea, ligamentum teres, synovium, and the extra-articular
peri-trochanteric space [19]. Thus, any pathology of these structures that may consequen-
tially lead to osteoarthritis can be addressed via arthroscopy [19]. Debridement alone,
a microfracture of the exposed bone, foreign body removal, chondrogenic procedures,
cartilage repair, autologous chondrocyte implantation techniques, and autologous matrix-
induced chondrogenesis can be performed [19].

2.6. Knee

Osteochondral defects can predispose to early-onset osteoarthritis in young patients,
and given the right indication, an all-arthroscopic autologous chondrocyte implantation
(ACI) or arthroscopic mosaicplasty can be performed [20,21], as well as all-autologous
matrix-induced chondrogenesis (AMIC), or hyaluronan-based scaffold implantation on
chondral defects in dry arthroscopy [22]. Despite concerns regarding its efficacy, arthro-
scopic debridement remains a good option for short-term relief of symptoms in selected
patients with knee osteoarthritis [23]. Incisionless nanoscopy for partial meniscectomy has
also been reported recently [24].

2.7. Ankle and Foot

Arthroscopic debridement and microfractures of the ankle form a safe procedure with
good to excellent reported outcomes [25]. Cartilage defects can also be treated with the
transplantation of the hyaline cartilage (auto/allograft) or allograft cartilage matrix [26,27].
Arthroscopy of the first metatarsophalangeal (MTP) joint has reported a high satisfaction
rate for the treatment of the initial stages of first MTP joint osteoarthritis (hallux rigidus) [28]

3. Preservation

With increasing life expectancy, there is a growing demand for the preservation
of native articular cartilage to delay or prevent osteoarthritis onset or the progression
of symptomatic degeneration and the eventual need for joint arthroplasty, especially in
younger and active patients [29]. An alternative to endoscopic-assisted preservation surgery
and arthroplasty may therefore present periarticular or corrective, biomechanics restoring,
osteotomy, whereas miscellaneous implantable devices also exist as an alternative for
a fusion. Appropriate patient selection and careful preoperative planning are vital for
optimizing outcomes [30].

3.1. Spine

The primary goal of motion preservation surgery in the spine is to maintain normal or
near-normal motion in an attempt to prevent adverse outcomes commonly seen with con-
ventional spinal fusion, most notably the development of adjacent segment degeneration
and disease [31]. Several different surgical approaches have been developed to preserve
motion in the spine, including disc replacement, interspinous spacers (Figure 1), dynamic
stabilization devices, and total facet replacement devices [31].

3.2. Shoulder

Osteotomies around the shoulder may be used in selected cases as a way of preventing
or delaying the degeneration associated with morphologically and/or biomechanically
abnormal articulation [32–35].
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in young and active patients [36]. In radiocapitellar cartilage destruction, the resection of 
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Figure 1. Interspinous spacer. Postoperative X-ray after interspinous spacer implantation
(L4–L5 segment).

3.3. Elbow

For elbow osteoarthritis, distraction interposition arthroplasty uses grafts like fascia,
tendon, or skin to create a new joint surface without the need for the resection of the
destroyed joint. Osteo-capsular arthroplasty consisting of capsular releases and osteophyte
removal, either performed openly or arthroscopically, is another feasible surgical option in
young and active patients [36]. In radiocapitellar cartilage destruction, the resection of the
radial head can be combined with the interposition of anconeus (Figures 2 and 3) or with
radiocapitellar implant arthroplasty [37,38].
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3.4. Wrist and Hand

Total wrist denervation is a symptomatic treatment for selected patients with mid-
carpal osteoarthritis. Radial styloidectomy, excision of proximal or distal pole of the
scaphoid, and proximal row carpectomy (PRC) are all options for carpal OA of different
etiologies [15]. Corrective osteotomy of the distal radius, which aims at the management
of radiocarpal OA after malunion can be supported with patient-specific 3D planning
and implants [39]. For end-stage DRUJ osteoarthritis, many resectional procedures are
described, albeit none of them without associated complications. These are partial distal
ulnar resection (Wafer procedure), hemiresection interposition arthroplasty (Bowman’s
procedure), distal ulnar resection (Darrach procedure), and the Sauve–Kapandji procedure,
which is the arthrodesis of DRUJ with resection osteotomy of the distal ulna shaft [40].
Most common joint preserving procedures in thumb carpometacarpal joint osteoarthritis
are denervation and metacarpal extension osteotomy [18].

3.5. Hip

Typical indications for hip-preserving surgery are: femoroacetabular impingement
(intra- and extra-articular) (FAI), hip dysplasia, slipped capital femoral epiphysis (SCFE),
residual deformities after Perthes disease, and avascular necrosis (AVN) of the femoral
head [41]. If left unaddressed, these pathologies may lead to osteoarthritis. An unaddressed
leg-length discrepancy may lead to osteoarthritis of the hip as well [42]. FAI and labral
damage can be treated either with arthroscopy, surgical hip dislocation, and/or acetabular
or femoral osteotomy [41]. Nowadays, severe or unstable SCFE can be treated open
using surgical hip dislocation with the development of a retinacular soft tissue flap to
perform a subcapital realignment of the slipped epiphysis, the so-called ‘modified Dunn’
procedure [41]. Residual deformities after Perthes disease can be treated with a semi-
circumferential femoral osteochondroplasty, whereas a femoral head reduction osteotomy
can be considered in selective cases if the containment of the femoral head cannot be
achieved with femoral osteochondroplasty alone [41]. Depending on the localization,
extension, and stage of the AVN, multiple therapeutic options are available (rotational
osteotomies, bone grafting, core decompression, and varus/flexion femoral osteotomy
(Figure 4)) [41]. Despite various acetabular osteotomies that have been described for
the correction of hip dysplasia, the Bernese periacetabular osteotomy (PAO) (Figure 5),
which enables corrections in a tri-dimensional fashion, produces inherent stability of the
acetabular fragment due to the polygonal cuts and furthermore the preservation of the
posterior column, presents the standard of care nowadays [41].
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postoperative X-ray after PAO according to the preoperative patient-specific 3D plan.

3.6. Knee

Indicated for the symptomatic single-compartment osteoarthritis and/or ligamentous
instability of the knee, osteotomies around the knee are well-established surgical proce-
dures which aim to decrease the load on the affected knee compartment by correcting the
mechanical axis of the leg into a more optimal biomechanical position and more evenly dis-
tribute the forces across the joint surface [30,43,44]. Further advancement of osteoarthritis
may thus be prevented. The two most common types of knee osteotomies are high tibial
osteotomy (HTO) and distal femoral osteotomy (DFO) (Figure 6). In cases of severe knee
malalignment, a combination of both can be performed with the aim of maintaining neutral
joint-line obliquity and preserving the limb length [45].
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3.7. Ankle and Foot

The most commonly performed ankle preservation procedures are supra-malleolar
osteotomies (SMO) (Figure 7), indicated for patients with varus or valgus hindfoot defor-
mity. The main cause of such deformities and concomitant asymmetric joint degeneration
is post-traumatic instability of the joint [46]. Depending on the level of deformity, type of
fixation, soft tissue covering, and joint presentation (congruent/incongruent), different
types of osteotomies can be used [47]. Alternatively, technically more demanding multipla-
nar dome-shaped osteotomy (Figure 7) may preserve the congruity of the joint better than
wedge osteotomies [48]. In some cases, complementary soft tissue balancing procedures
or length correction of the fibula is suggested [49]. In patients with mild first MTP joint
osteoarthritis, operative preservation procedures focus on removing excess osteophytes
(cheilectomy) to prevent dorsal impingement with or without a concomitant osteotomy
(Moberg) to improve or shift the range of motion into a less painful arc [50].
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4. Arthrodesis

The induction of heterotopic osteosynthesis requires a complex balance of biological
factors and operative technique with careful preparation of the fusion site and the appro-
priate selection of graft materials to achieve successful fusion, respecting the anatomical
considerations including blood supply, osteology, and biomechanics which predispose a
fusion site to robust or insufficient bone formation [51].

4.1. Spine

Modern techniques of graft site preparation and instrumentation have evolved for
every segment of the spine, with the aim of instrumentation to share loads with the host
and graft tissues for the duration of the healing and remodeling phases [51]. Each construct
is designed to avert the failure load of the implant or the bone-implant interface and
resist applied forces with appropriate stiffness [51]. Fixation can be performed through
percutaneous and minimally invasive approaches in selected cases. Although current
technology in anterior cervical plating utilizes newer dynamic plate designs that maintain
inter-segmental fixation and force distribution with the controlled collapse of a bone graft
or strut in anterior cervical discectomy and fusion (ACDF) (Figure 8), the procedures
have made placement easier and interbody fusion more successful; multilevel procedures
without plating may remain subject to graft failure that can cause axial or angular collapse
and nonunion [51]. Furthermore, lateral mass and pedicular screw fixation are possible
methods for cervical arthrodesis, and the transarticular screws used alone or in combination
with a rod can be used in occipito-cervical and C1-C2 constructs [51]. Instrumentation with
posterior pedicle screw-rod fixation nowadays represents the standard of care combined
with miscellaneous types of lumbar interbody fusion techniques and implants available,
especially in unstable segments where interbody implants increase the chance of bone
integration [51,52]. Polyetheretherketone (PEEK) and titanium (Ti) are commonly selected
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for interbody spacer construction [52]. The surface modification of Ti by creating rougher
surfaces, modifying its surface topography (macro and nano), physical and chemical
treatment, and creating a porous material with high interconnectivity, can improve its
osseointegrative potential and bioactivity [52].
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Figure 8. Anterior cervical discectomy and fusion (ACDF). (a) preoperative X-ray; (b) postoperative
X-ray of the ACDF (C5–C6 segment).

4.2. Shoulder

Open or arthroscopic-assisted shoulder arthrodesis (Figure 9) is an end-stage proce-
dure in selected cases of paralytic disorders, brachial plexus palsy, axillary nerve injuries,
irreparable massive rotator cuff deficiency with arthropathy, after failed arthroplasty, prox-
imal humerus tumor resection, inflammatory arthritis with rotator cuff pathology, and
severe refractory instability, which involves fusion of the humeral head to the glenoid or to
the acromion [53–55].
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Figure 9. Shoulder arthrodesis. (a) preoperative X-ray after failed shoulder arthroplasty; (b) postop-
erative X-ray after shoulder arthrodesis.

4.3. Elbow

Elbow arthrodesis (Figure 10) is a rare salvage procedure with a highly functional
deficit. The procedure is reserved for patients with highly unstable joints. Conversion to
arthroplasty can be performed [56].
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Figure 10. Elbow arthrodesis. (a) preoperative X-ray; (b) postoperative X-ray after elbow arthrodesis;
(c) intraoperative image.

4.4. Wrist and Hand

In patients with localized wrist osteoarthritis, limited carpal fusion can be considered.
For SLAC and SNAC wrists 4-corner arthrodesis is a well-established option, while scapho-
trapezio-trapezoid (STT) fusion is indicated for isolated STT osteoarthritis. Less commonly
performed is radio-scapho-lunate fusion. Total carpal fusion represents the ultimate salvage
procedure in pancarpal arthrosis [15,57]. In a Sauve–Kapandji procedure, arthrodesis of the
DRUJ is combined with ulnar shaft osteotomy [58]. CMC fusion of the thumb is an option
for younger high-demand patients with advanced OA [18].

4.5. Hip

Arthrodesis used to be a treatment option for young adults or adolescents with
unilateral hip disease, particularly in the presence of recent infection and especially in the
setting of failed pelvic or hip surgery for trauma [59]. Proper patient selection and the
optimal arthrodesis position were essential for a successful, long-term result; however,
back and ipsilateral knee pain were the most common complaints leading to secondary
conversion of a hip fusion to a total hip arthroplasty (Figure 11) [59].
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Figure 11. Secondary conversion of a hip arthrodesis to a total hip arthroplasty. (a) preopera-
tive X-ray after left hip arthrodesis; (b) postoperative X-ray after secondary conversion to a total
hip arthroplasty.

4.6. Knee

Knee arthrodesis (Figure 12) remains a limb salvage surgery for failed total knee
arthroplasty, severe trauma, post/persistent infection, or tumor resection [60]. There are
few studies describing techniques with limited indications without an extensive bone stock
loss [61]. Alternatively, arthroscopic-assisted knee arthrodesis with the Ilizarov technique
(Figure 13) is also reported [62].
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Figure 12. Knee arthrodesis. (a) preoperative X-ray in a splint; (b) postoperative X-ray after limb
salvage knee arthrodesis with a nail.
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4.7. Ankle and Foot

Ankle arthrodesis (Figure 14) presents a reliable treatment of end-stage ankle os-
teoarthritis with a reported 90% patients’ satisfaction, yielding better pain control after
the procedure, faster rehabilitation, and being cheaper with shorter hospital stays [63–66].
Mostly, fusion is anterior tibiotalar, but can also be performed posteriorly and also for
subtalar osteoarthritis [66,67]. Arthrodesis of the first MTP joint has demonstrated consis-
tently good results in the literature and is the current standard of care for the treatment of
advanced first MTP joint osteoarthritis, with numerous surgical techniques reported [50].
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5. Replacement

Joint replacement is one of the most effective healthcare measures in improving patient
quality-of-life outcomes, with a predicted future increase in the need for joint replacements
as the population ages [68]. Both partial and total joint arthroplasty are nowadays well-
established procedures in the scope of surgical osteoarthritis treatment. The primary
purpose of all replacements is to alleviate pain while restoring the native articular surface
and biomechanics. Miscellaneous combinations of component materials, designs, and
sizes exist.

5.1. Spine

Cervical total disc arthroplasty is a safe and effective surgical alternative to arthrodesis
in properly selected patients with cervical radiculopathy and myelopathy [69]. In carefully
selected patients, lumbar disc replacement surgery has similarly been adopted as an
alternative to fusion treatment for degenerative disc disease and may offer similar results
to anterior-posterior fusion [70].

5.2. Shoulder

Anatomic total shoulder arthroplasty (TSA) is considered a good long-term solution
for end-stage glenohumeral osteoarthritis with an intact rotator cuff [71]. Shoulder hemi-
arthroplasty (HA) involves only the replacement of the humeral articular surface and is
performed when glenoid resurfacing is contraindicated due to poor glenoid bone stock or
in other selected cases [72,73]. Resurfacing hemiarthroplasty (RHA) has alternatively been
proposed in an attempt to restore joint congruency while conserving proximal humeral
bone stock and native anatomy of glenohumeral articulation [74]. Cuff-tear arthropathy of
the shoulder has proved itself as a complex and difficult-to-treat form of shoulder degen-
eration associated with a massive chronic tear or other form of rotator cuff insufficiency
that manifests as proximal migration of the humerus and erosion of the superior part of
glenoid. The ensuing eccentric loading of the glenoid is also thought to be the main reason
for early glenoid component loosening and the overall poor performance of the anatomic
TSA used in this setting [75]. The treatment of cuff tear arthropathy with HA may provide
adequate pain relief, but may not improve the functionality of the joint, especially eleva-
tion [76]. Reverse total shoulder arthroplasty (Figure 15) (rTSA) was therefore developed
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to address the limitations of preexisting prostheses with more anatomical design and is
now considered an effective surgical treatment for end-stage osteoarthritis in rotator cuff
deficient shoulders, as well as many other challenging shoulder pathologies [77].
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Figure 15. Reverse total shoulder arthroplasty (rTSA). (a) preoperative X-ray; (b) postoperative X-ray
after reverse total shoulder arthroplasty.

5.3. Elbow

Total elbow arthroplasty (Figure 16) is surgical treatment for end-stage elbow os-
teoarthritis. Although was primarily indicated for rheumatoid arthritis of the elbow and
posttraumatic derangements, is today a considerable option for treatment of end-stage pri-
mary osteoarthritis in selected patients, as the designs have evolved in recent decades [78].
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Figure 16. Total elbow arthroplasty. (a) preoperative X-ray; (b) postoperative X-ray after total
elbow arthroplasty.

5.4. Wrist and Hand

Total wrist arthroplasty is reserved for specific patients with end-stage wrist arthri-
tis due to a lack of long-term survival, where the main concern remains periprosthetic
osteolysis. For partial wrist replacement, treatments with implants that replace proximal
carpal row are reported. Additionally, the pyrocarbon lunate resurfacing implants and
pyrocarbon interposition implants are well-tolerated options for narrow indications [15,57].
Partial or total DRUJ arthroplasty with an implant is an alternative option for a destroyed
joint [79]. For the OA of the fingers, numerous types of prosthetics are available. Current
implants are designed of silicone, metal surface, or pyrolytic carbon, which can be fixed,
semi-fixed or gliding [18].
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5.5. Hip

The cost-effectiveness of total hip arthroplasty (THA) (Figure 17) in treating advanced
osteoarthritis makes it one of the most successful of all surgical interventions [80]. It
has been described as “the operation of the 20th century” for the excellent results, the
high satisfaction of the patients, and the improvement of the quality of life [81,82]. The
reported hip prosthesis survival rate is as high as 51 years after implantation [83]. The
components in a hip replacement consist of an acetabular cup, a femoral stem, and a
head which articulates with the acetabular cup or a liner placed within the cup [84].
Larger heads confer stability and a greater arc of motion but create a greater volume
of wear than smaller head sizes. The head can be created from stainless steel, cobalt-
chrome or ceramic. The acetabular component may be composed of polyethylene or
metal, or be metal backed, using a polyethylene or ceramic liner [84]. The cemented
implants are placed into a bed of PMMA cement which secures the components into the
prepared acetabulum and femoral canal, whereas uncemented implants have either a
porous coating into which bone can grow or a roughened surface, produced by blasting
the surface of the implant with microscopic particles to increase surface area for bone
to grow onto [84]. Although different types of hip replacements composed of different
materials exist, and the combination of ceramic-on-ceramic bearing is typically reserved
for younger patients, metal and nowadays ceramic-on-polyethylene bearing continues to
be the workhorse for the majority of cases [80,84]. The reported survival rates of THA
are high even with mixed components [85]. Pelvic motion in spine-hip interaction can
affect functional acetabular orientation, and consequently functional cup positioning in
a THA may be recommended [86]. Proximal femoral morphology can also impact on
THA outcome [87]. As an alternative to THA, and because of the theoretical benefits of
femoral bone stock preservation, the hip resurfacing arthroplasty concept was developed
for the treatment of young and active patients with hip osteoarthritis [88]. Dual mobility
cup systems have gained increasing acceptance, especially in patients at high risk for
dislocation [89]. Great advances have been introduced in the last few years in terms of
less invasive surgical procedures, tissue preservation, improved wear resistance of the
materials, biocompatibility and bone ingrowth capability of the biomaterials, knowledge
and restoration of the hip anatomy, and function, peroperative management (pain control
and blood loss), and prevention of complications [81].
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5.6. Knee

Total knee arthroplasty (TKA) represents one of the most cost-effective and reliable
reconstructive surgical procedures in orthopaedics, used for the treatment of symptomatic
end-stage primary knee osteoarthritis [90]. The cruciate-retaining TKA prosthesis design
relies on the preserved posterior cruciate ligament (PCL) to provide stability in flexion.
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Beside retaining more natural knee kinematics, it also preserves more bone stock and native
PCL proprioception [91]. The posterior-stabilized TKA design includes femoral cam that
engages the tibial polyethylene post, which provides stability of the knee in flexion [92].
Mobile-bearing knee designs were developed as an alternative to fixed bearing implants to
allow rotation (“rotating platform”) or translation (“meniscal bearing”) of the polyethylene
insert on the tibial baseplate, in order to reduce wear of the bearing surfaces and improve
implant survivorship [93]. Individuals with symptomatic osteoarthritis limited to either
the medial or lateral compartment of the knee may benefit from unicompartmental (par-
tial) knee arthroplasty (UKA) (Figure 18). These implants replace the articular surface of
either the medial (more often) or lateral femoral condyle and the adjacent tibial plateau
surface. In recent years, enthusiasm for UKA has been revived with the growing tendency
toward minimally invasive surgery, although the literature suggests slightly worse sur-
vivorship in comparison to TKA [94]. For the sparing of the contralateral tibiofemoral
and patellofemoral compartment with cruciate ligaments, UKA grants more natural knee
kinematics, which also implies a faster postoperative rehabilitation time and better range of
motion compared with TKA [95]. Patellofemoral arthroplasty (Figure 19) is also an option
in isolated patellofemoral osteoarthritis.
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Figure 19. Patellofemoral arthroplasty. (a) preoperative X-ray of isolated patellofemoral osteoarthritis
caused by torsional limb deformity; (b) postoperative X-ray after patellofemoral arthroplasty with
concomitant distal femoral osteotomy (DFO) for limb deformity correction.

5.7. Ankle and Foot

With the improvements in implant design and survivorship in the last decade has
total ankle arthroplasty (TAA) (Figure 20) again become accepted as an alternative to ankle
arthrodesis, which was long considered the gold standard surgical treatment of end-stage
ankle osteoarthritis [96]. The procedure is indicated in physically undemanding patients
under 60 years of age with an intact joint axis and satisfactory mobility [97]. Multiple
arthroplasty techniques and implants have been described for the treatment of first MTP
joint osteoarthritis, ranging from Keller resection arthroplasty to interpositional, hemi,
and total arthroplasty [50]. MTP arthroplasty began historically with silastic implants and
progressed to all-metal implants, whereas recently synthetic cartilage implants have gained
popularity [50,98,99].
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6. Computer-Assisted Orthopaedic Surgery

Computer-assisted orthopaedic surgery (CAOS) includes all kinds of computerized
tools, devices, and instrumentations, such as robotic-assisted or clinical navigation technol-
ogy, but also patient-specific instrumentation and surgical tools that enable an individual,
patient-personalized approach, emphasizing safety, and precision in the treatment of mus-
culoskeletal diseases [100–102]. There are reports of successful CAOS implementation in
orthopaedic surgery from decades ago [103]. Today, this technology has emerged from the
laboratory and is being routinely used in operating theatres and might be about to become
state-of-the art for certain orthopaedic procedures [102].

CAOS systems use different registration technologies, such as pre-operative image
technology, intra-operative medical imaging, and image-free technology, or combinations
among them [100]. There are possibilities for using ultrasound computer-assisted or-
thopaedic surgery systems as an alternative to conventionally used CAOS systems [101].
The active systems may be autonomous, semi-active systems utilizing handheld or con-
trolled forced robotic assisted devices, whereas passive systems only provide guiding
information but no direct action [100]. Advances in preoperative imaging and computer
planning software pushed the evolution of new techniques such as computer-assisted navi-
gation (CAN), 3D-printed patient-specific instruments (PSI), and robot-assisted surgery,
which allow more accurate and reproducible component positioning, and the restoration of
joint biomechanics. The development of augmented reality (AR) navigation has focused
on improving the safety and efficacy of neurosurgical and orthopedic procedures [104].
With the currently available and expected increase in computational power, it can be ex-
pected that AR experiences a geometric increase in applicability in the field of orthopedic
surgery [7].

Currently, navigation in spine surgery is primarily used for the pedicle screw place-
ment and evaluation of deformity correction, with the goal of minimizing complications
such as infection, excessive blood loss and transfusion, and hardware failure, but this
may come at the cost of an increased operative time as registration is a rigorous and
time-consuming step in navigation, requiring meticulous soft tissue dissection and bony
landmark exposure necessary for accurate point and surface matching [105]. A computer-
assisted approach to preoperative pedicle screw placement planning may be another useful
tool in spine surgery that can be adapted according to the preferences of the surgeon while
integrating the anatomical and structural properties of pedicles and vertebral bodies [106].
Utilizing PSI can be helpful when performing sacroiliac fixation in complex circumstances
such as sacral agenesia or when performing an en-bloc surgical resection of sacral chordo-
mas [107,108]. The use of PSI and CAN is also well established in shoulder arthroplasty,
where glenoid component positioning continues to pose a challenge, especially for the inex-
perienced surgeons. Intraoperative navigation technologies have been proved beneficial for
optimizing glenoid component placement in both anatomic and reverse TSA [109]. AR, 3D
printing, and image-based navigation are modern techniques that may improve implant po-
sitioning also in elbow arthroplasty [110]. CT-based 3D preoperative planning can optimize
the alignment and may increase survival of total wrist arthroplasty [111]. There are benefits
of PSI and electromagnetic navigation use in hip preservation surgery in patients with
complex pathoanatomic circumstances, like injury-induced hip dysplasia [112]. PSI, CAN,
and robotic-assisted techniques have also proved helpful in knee arthroplasty, where correct
frontal, sagittal, and axial alignment of the prosthetic components is essential for the good
function and longevity of the implant. New technologies allow more accurate and repro-
ducible restoration of mechanical axis, component alignment, and soft tissue balance [113].
To shorten intraoperative radiation, the 3D-printed personalized guide in assisting the
accurate drilling of K-wire has been developed in arthroscopic ankle arthrodesis [114].

These are just a few examples of CAOS concepts implemented in the clinical practice.
There is, however, ongoing research on this topic, and the technology keeps on evolving
constantly. Thus, CAOS already plays a significant role in the musculoskeletal surgery and
will probably even more in the future surgical practice.
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28. Levaj, I.; Knežević, I.; Dimnjaković, D.; Smoljanović, T.; Bojanić, I. First Metatarsophalangeal Joint Arthroscopy of 36 Consecutive
Cases. Acta Chir. Orthop. Traumatol. Cech. 2021, 88, 211–216.

29. York, P.J.; Wydra, F.B.; Belton, M.E.; Vidal, A.F. Joint Preservation Techniques in Orthopaedic Surgery. Sports Health Multidiscip.
Approach 2017, 9, 545–554. [CrossRef]

30. Kanakamedala, A.C.; Hurley, E.T.; Manjunath, A.K.; Jazrawi, L.M.; Alaia, M.J.; Strauss, E.J. High Tibial Osteotomies for the
Treatment of Osteoarthritis of the Knee. JBJS Rev. 2022, 10, e21.00127. [CrossRef]

31. Murtagh, R.; Castellvi, A.E. Motion Preservation Surgery in the Spine. Neuroimaging Clin. N. Am. 2014, 24, 287–294. [CrossRef]
32. Bae, D.S.; Waters, P.M. External Rotation Humeral Osteotomy for Brachial Plexus Birth Palsy. Tech. Hand Up. Extrem. Surg. 2007,

11, 8–14. [CrossRef] [PubMed]
33. Benjamin, A.; Hirschowitz, D.; Arden, G.P. The Treatment of Arthritis of the Shoulder Joint by Double Osteotomy. Int. Orthop.

1979, 3, 211–216. [CrossRef] [PubMed]
34. Brooks-Hill, A.L.; Forster, B.B.; van Wyngaarden, C.; Hawkins, R.; Regan, W.D. Weber Osteotomy for Large Hill-Sachs Defects:

Clinical and CT Assessments. Clin. Orthop. 2013, 471, 2548–2555. [CrossRef] [PubMed]
35. Waltenspül, M.; Häller, T.; Ernstbrunner, L.; Wyss, S.; Wieser, K.; Gerber, C. Long-Term Results after Posterior Open Glenoid

Wedge Osteotomy for Posterior Shoulder Instability Associated with Excessive Glenoid Retroversion. J. Shoulder Elb. Surg. 2022,
31, 81–89. [CrossRef] [PubMed]

36. Martinez-Catalan, N.; Sanchez-Sotelo, J. Primary Elbow Osteoarthritis: Evaluation and Management. J. Clin. Orthop. Trauma 2021,
19, 67–74. [CrossRef]

37. Kwak, J.-M.; Jeon, I.-H. Surgical Management for Primary Osteoarthritis of the Elbow. J. Orthop. Surg. Hong Kong 2021, 29,
2309499020988174. [CrossRef]

38. Baghdadi, Y.M.K.; Morrey, B.F.; Sanchez-Sotelo, J. Anconeus Interposition Arthroplasty: Mid- to Long-Term Results. Clin. Orthop.
2014, 472, 2151–2161. [CrossRef]

39. Kunz, M.; Ma, B.; Rudan, J.F.; Ellis, R.E.; Pichora, D.R. Image-Guided Distal Radius Osteotomy Using Patient-Specific Instrument
Guides. J. Hand Surg. 2013, 38, 1618–1624. [CrossRef]

40. Nacke, E.; Paksima, N. The Evaluation and Treatment of the Arthritic Distal Radioulnar Joint. Bull. Hosp. Jt. Dis. 2015, 73,
141–147.

41. Hanke, M.S.; Schmaranzer, F.; Steppacher, S.D.; Lerch, T.D.; Siebenrock, K.A. Hip Preservation. EFORT Open Rev. 2020, 5, 630–640.
[CrossRef]
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97. Wąsik, J.; Stołtny, T.; Leksowska-Pawliczek, M.; Pasek, J.; Szcześniak, M.; Ostałowska, A.; Kasperczyk, S.; Koczy, B. Ankle
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