
Method

P-value-based regulatory motif discovery using
positional weight matrices
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To analyze gene regulatory networks, the sequence-dependent DNA/RNA binding affinities of proteins and noncoding
RNAs are crucial. Often, these are deduced from sets of sequences enriched in factor binding sites. Two classes of
computational approaches exist. The first describe binding motifs by sequence patterns and search the patterns with
highest statistical significance for enrichment. The second class uses the more powerful position weight matrices (PWMs).
Instead of maximizing the statistical significance of enrichment, they maximize a likelihood. Here we present XXmotif
(eXhaustive evaluation of matriX motifs), the first PWM-based motif discovery method that can optimize PWMs by
directly minimizing their P-values of enrichment. Optimization requires computing millions of enrichment P-values for
thousands of PWMs. For a given PWM, the enrichment P-value is calculated efficiently from the match P-values of all
possible motif placements in the input sequences using order statistics. The approach can naturally combine P-values for
motif enrichment, conservation, and localization. On ChIP-chip/seq, miRNA knock-down, and coexpression data sets
from yeast and metazoans, XXmotif outperformed state-of-the-art tools, both in numbers of correctly identified motifs
and in the quality of PWMs. In segmentation modules of D. melanogaster, we detect the known key regulators and several new
motifs. In human core promoters, XXmotif reports most previously described and eight novel motifs sharply peaked
around the transcription start site, among them an Initiator motif similar to the fly and yeast versions. XXmotif’s sensi-
tivity, reliability, and usability will help to leverage the quickly accumulating wealth of functional genomics data.

[Supplemental material is available for this article.]

The rapid progress in high-throughput sequencing is transforming

the way in which we study genomes and their role in regulating

cellular and developmental processes. Increasingly, single-locus

and single-gene approaches are replaced by genome-wide mea-

surements. Whether it be ChIP-seq (Johnson et al. 2006), DamID

mapping (van Steensel et al. 2001), CLIP-seq/PAR-CLIP (Hafner

et al. 2010), ribosome profiling (Ingolia et al. 2011), DNase-seq

(Crawford et al. 2006), FAIRE-seq (Giresi et al. 2007), HiTS-FLIP

(Nutiu et al. 2011), RNA-seq (Garber et al. 2011), or chromosome

conformation capture and its variants (Lieberman-Aiden et al.

2009), most of these experiments need to be analyzed with respect

to protein and noncoding RNA (ncRNA) factors that bind to spe-

cific sequences in the genome or transcriptome. These binding

events are the key to understanding regulatory processes because,

unlike epigenetic marks, only the genomic sequence carries in-

formation at a density that is sufficient to target factors unam-

biguously to specific loci or transcripts.

Therefore, finding binding motifs for regulatory factors that

are expected to be enriched in certain sequences is of central im-

portance in the analysis of most of these types of experiments. This

has led to a growing interest in tools for de novo motif finding

(Tompa et al. 2005; Sandve et al. 2007). De novo motif discovery

methods search for motifs of binding sites that are enriched in

a positive sequence set in comparison to a negative sequence set or

to a statistical background model derived from such sequences.

Despite increases in experimental resolution, motif finding re-

mains challenging: Motifs are typically short (about 6 to 15 bp),

the binding sites are mostly only weakly conserved between re-

lated species (Borneman et al. 2007; Odom et al. 2007), and weak,

statistically insignificant sites contribute a considerable portion

to the overall factor occupancy (Segal et al. 2008; Kim et al. 2009).

Last, binding sites often occur in only a small subset of input

sequences.

Classical motif finding tools can be categorized as pattern

based or PWM based. Pattern-based methods describe binding-site

motifs by a consensus sequence, some methods allowing IUPAC

characters that represent degenerate positions (e.g., W for A/T, S for

C/G) (ERMIT) (Georgiev et al. 2010) and others allowing for a

maximum number of mismatches to the consensus sequence

(Weeder) (Pavesi and Pesole 2006). Pattern-based methods usually

exhaustively evaluate the P-value of enrichment for thousands of

seed nucleotide patterns of a given length. The enrichment P-value

is the probability to obtain at least as many motif matches in the

positive sequences by chance, that is, assuming that matches occur

with the same probability as in the negative set or in the back-

ground model. Enrichment P-values for patterns are simple and

fast to calculate using the hypergeometric or binomial distribu-

tions. The pattern methods then extend and refine the best seed

patterns with the goal of finding the pattern with the most sig-

nificant enrichment P-value. Most of the methods can report final

PWMs by simply calculating the frequencies of the four bases in

the matched subsequences.

PWM-based methods represent the motifs by PWMs. A PWM

of length l is a 4 3 l matrix that contains for each of the l motif

positions the probabilities of the four bases. This representation

gives a much more nuanced description of binding preferences

than patterns. First, candidate PWMs are generated, for instance,
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by using the PWMs from an upstream, pattern-based motif dis-

covery algorithm (AMADEUS) (Linhart et al. 2008), or using each

l-mer occurring in the positive sequence to initialize a PWM

(MEME) (Bailey and Elkan 1994). These PWMs are iteratively op-

timized using either Gibbs sampling (PRIORITY) (Narlikar et al.

2006) or the expectation maximization (EM) algorithm (MEME)

(Bailey and Elkan 1994). As a heuristic measure of enrichment,

these algorithms compute the statistical likelihood that a weighted

mixture of the PWM and the background model generated the set

of input sequences. Although optimizing the likelihood amounts

to optimizing the fit of the PWM to the predicted motif occur-

rences, it is unclear how suitable the likelihood is for ranking

motifs. Typically, PWM-based methods do calculate enrichment

P-values, but since this usually involves time-consuming random

sampling approaches (Knijnenburg et al. 2009) it is only done at

the very end to rank the PWMs. A few methods for the exact or

approximate computation of PWM P-values have been developed

(Touzet and Varre 2007; Zhang et al. 2007), but they are much too

slow for being used to iteratively optimize the PWMs (Supple-

mental Methods, section 3.4).

Here, we present XXmotif, an all-purpose de novo motif dis-

covery tool that can directly optimize the enrichment P-values of

motif PWMs. XXmotif combines a pattern-based enumerative

approach with an iterative PWM refinement during which the

PWM length and quality are improved by minimizing the en-

richment P-value. When motif occurrences are expected to be

positioned, XXmotif is able to calculate localization P-values and

to combine them with the enrichment P-value in an exact, non-

heuristic manner. We compared XXmotif with four state-of-the-

art general-purpose motif discovery tools and their variants,

each of which had recently been reported to be among the best-

performing motif discovery methods. We also included a tool spe-

cialized to motif discovery in ChIP-chip/seq data sets that needs

ChIP enrichment P-values as input (ERMIT) (Georgiev et al. 2010).

ERMIT is representative of a class of more specialized methods

that need sequence ranks or other information for each mea-

sured sequence (Foat et al. 2006; Eden et al. 2007; Georgiev et al.

2010). We then applied XXmotif to early embryo segmentation

modules from D. melanogaster and to a large set of human core

promoter sequences. We find most previously described and

several novel motifs in these data sets. Intriguingly, among the

eight newly discovered human core promoter elements is a mo-

tif that is sharply peaked around the transcription start sites,

which resembles the canonical Initiator elements from other

species.

Results

Overview of XXmotif

We now briefly describe how XXmotif works (Fig. 1). Please refer to

the Methods and Supplemental Methods sections for details.

Masking stage

When the input sequences contain homologous segments, repeat

regions, or low complexity regions, parts of these may be reported

as false motifs. In this study, we therefore masked out these regions

using XXmotif’s ‘‘XXmasker’’ option (Methods).

Seed stage

XXmotif starts by enumerating all 5-mer seed sequences with at

most two degenerate IUPAC characters (S, W, R, Y, M, K). It also

enumerates palindromic and tandemic (3 + 3)-mer seeds with

central gaps up to size 11 and, at most, one degenerate IUPAC

character per half (Fig. 1, Seeds). For each of these seed patterns, an

enrichment P-value is calculated using a binomial distribution.

In order to compare patterns of differing lengths, we transform

P-values to expect values (E-values) using a length- and gap-

dependent Bonferroni correction factor (Methods). For each

nondegenerate seed (i.e., without IUPAC characters), the five most

significant matching IUPAC seed patterns are subjected to length

optimization (Fig. 1, Extension). This results in 5 3 45 = 5120 5-mer

seeds, 5 3 12 3 43 = 3840 palindromic and 3840 tandemic 6-mer

seeds. For each of the 12,800 seeds, the three patterns with the best

E-values are further extended. The extension proceeds for all seeds

and partially extended patterns, whether significant or not, until

their enrichment E-values cannot be improved any further. All 80

possible extensions by an additional IUPAC character on either

side of the pattern with a maximum gap size of three are assessed.

After the extension, IUPAC strings are converted to PWMs by

counting the nucleotides over all matched subsequences.

Merging stage

Similar PWMs are merged together if their Euclidean distance is

below a certain threshold and the two patterns have at least 40% of

their matches in common (Methods). The merging reduces the

Figure 1. Overview of XXmotif with its three main stages. After an optional step to mask confounding sequence regions (blue), enrichment P-values of
all 5-mers and gapped palindromic and tandemic 6-mer seed patterns are evaluated, and the best seeds are recursively extended by an optional gap and
a motif position (red). Patterns are converted to PWMs and fed to the PWM stage (green). Here, similar PWMs are merged and then iteratively refined by
optimizing the motif enrichment E-value. Finally, merging and refinement stages are iterated until convergence.
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redundancy in the reported list of motifs, decreases run time, and

may increase the sensitivity by aggregating information over

binding sites that are likely to belong to the same factor.

Refinement stage

The PWMs are then refined and their lengths optimized by opti-

mizing their statistical significance as measured by their en-

richment E-value (explained below). The iterative step in the

refinement consists of selecting the best motif occurrences in the

positive sequences from which the updated PWM is computed. For

this purpose, we first calculate match P-values for each possible

motif placement, i.e., for each position in each of the input se-

quences. The match P-values quantify how well the potential

binding site sequence matches the PWM. It is computed using

a very fast branch-and-bound algorithm (Methods). To decide

where to set the threshold between accepted motif occurrences

(corresponding to factor binding sites) and nonfunctional sites, we

sort the list of potential motif occurrences by their match P-values

and test each possible index K $ 2 to split the list. For each K, we

calculate the enrichment P-value, which is the probability for ob-

serving such a degree of enrichment by chance in a sequence set

distributed according to the background model. More precisely,

the enrichment P-value is the probability to observe by chance at

least K nonoverlapping motif occurrences with a match P-value

equal to or better than the K’th best (order statistic). The K that

optimizes this enrichment P-value is used to select the sites con-

tributing to the refined PWM. The same procedure of calculating

match P-values and selecting the best score cut-off is then repeated

using the updated PWM. To optimize the PWM length, PWMs are

extended or shortened by up to two positions at both ends and

their enrichment P-values are computed. As with patterns, the

PWMs’ enrichment P-values are transformed to E-values using

a Bonferroni correction factor (Methods), and the refinement and

extension steps are repeated as long as the E-value improves. Since

merging PWMs may only become possible after PWM refinement

and extension, the merging and refinement/extension steps are

repeated together until the E-value cannot be improved any fur-

ther. As an alternative to the ‘‘multiple occurrences per sequence’’

model just described, XXmotif can also be run with slightly dif-

ferent statistics to compute the enrichment P-values: a ‘‘zero or one

occurrence per sequence’’ model or a ‘‘one occurrence per se-

quence’’ model (Supplemental Methods), which may be more

sensitive to detect motifs that occur only once per sequence.

Negative sequence set

When a negative sequence set is given, the background distribu-

tion is modeled up to eighth-order using an interpolated Markov

model (Salzberg et al. 1998). Otherwise, a background model of

order 2 is learned from the positive sequence set. The choice of

a good negative set is critical, as choosing an unsuitable negative

set may result in seemingly significant false-positive motifs and

long runtimes. A set is unsuitable if it has a significantly differ-

ent trinucleotide composition from the positive set. Therefore,

XXmotif compares the trinucleotide frequencies in the positive

and negative sets and issues a warning when the root mean square

deviation is above a trusted threshold.

Localization and conservation P-values

Motifs whose occurrences cluster at a fixed distance from a speci-

fied anchor point can be detected particularly well with XXmotif

by combining the enrichment P-values of motif occurrences with

their localization P-values. The localization P-value of each motif

is on the order of d/L, where d is the distance from the cluster

center and L is the length of the sequences in the positive set

(exact calculation in Supplemental Methods, section 3.8). These

P-values are combined with the match P-values for each potential

motif occurrence before using the order statistic to compute en-

richment P-values. When multiple sequence alignments over

orthologous sequences from related species are given as positive

set, XXmotif can compute conservation P-values for each po-

tential motif occurrence (Supplemental Methods, section 3.6).

Briefly, we count the number of mutations between the motif

sequence in the main species and the aligned orthologous se-

quences and calculate the conservation P-value as the probability

of observing that many or fewer mutations by chance given the

frequency of each nucleotide within the motif sequence in the

main species.

Sensitivity of motif detection methods

Benchmarks based on artificially created test sequences containing

randomly placed occurrences of known motifs (Tompa et al. 2005;

Sandve et al. 2007) have the advantage of being easy to evaluate

since the true sites are known, but it has been questioned how

transferable the results are to real biological data. For our first two

benchmark tests we therefore use the most widely employed bi-

ological test set for motif discovery tools, which consists of lists of

S. cerevisiae intergenic regions that were significantly enriched in

352 ChIP-chip experiments using 203 tagged transcription factors,

82 of which where assayed under several conditions (Harbison

et al. 2004). For a subset of 80 transcription factors and 156 ex-

periments, Harbison and colleagues found a published motif as

a gold-standard reference. We gave the general-purpose motif dis-

covery tools the positive and negative sets of intergenic sequences,

as described in Harbison et al. (2004) (ChIP-chip P-values < 1 3

10�3 and > 0.5, respectively), while ERMIT (Georgiev et al. 2010)

was supplied with all intergenic sequences and with the set of

published ChIP-chip enrichment P-values for each sequence and

each experiment. As in Harbison et al. (2004), only experiments

having at least 10 sequences with a ChIP-chip P-value < 0.001 were

considered.

In addition to the gold standard set of literature motifs de-

scribed by Harbison et al. (2004) (‘‘Harbison set’’) we used two

more recent data sets of literature motifs obtained by protein-

binding microarray (PBM) experiments: the ‘‘Bulyk set,’’ 56 motifs

matching to 101 experiments (Zhu et al. 2009), and the ‘‘Hughes

set,’’ 72 motifs matching to 126 experiments (Badis et al. 2008). We

defined a correctly detected motif as having a normalized Euclid-

ean distance smaller than a given threshold, as in Harbison et al.

(2004). But when working with the ‘‘Bulyk set’’ it became obvious

that we also needed a condition of minimum entropy in the

overlapping part of both matrices, as was done by Gordân et al.

(2010). This precludes counting motifs as correct that look similar

only in noninformative regions (Methods).

We measured the sensitivity of the motif discovery tools in

the same way as was done previously (Harbison et al. 2004; Linhart

et al. 2008; Georgiev et al. 2010; Gordân et al. 2010). For each tool,

we counted the number of successfully identified motifs within

the top 1 and top 4 predictions (Fig. 2; Supplemental Table S1).

Tools that can include conservation information were tested in

both versions. When including conservation, the four yeast spe-

cies in the sensu strictu Saccharomyces clade were used for compar-

ison (Methods).

P -value-based motif discovery
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XXmotif without conservation information found 220 cor-

rect motifs cumulated over all three data sets, 41% more than

PRIORITY-D (Gordân et al. 2010) with 156, the next best general-

purpose tool, and 22% more than ERMIT (Georgiev et al. 2010),

which is specialized for ChIP-chip/seq data. With conservation,

XXmotif-C detected 223 correct motifs, 43% more than PRIORITY-

DC (Gordân et al. 2010). Interestingly, the background model is

important to avoid ranking false motifs as top candidates. The

standard version of MEME (Bailey and Elkan 1994) uses a zeroth-

order background model trained on the input set and scores only

72 correct motifs among its top predictions. Replacing its zeroth-

order background model with a fifth-order Markov model learned

from the negative set (MEME-M) raises this number to 141. This

can be further increased to 153 by using the discriminative prior

from the Hartemink lab (MEME-D) (Bailey et al. 2010). We ana-

lyzed the influence of the background model by running XXmotif

with interpolated Markov models of order 0 to 9 (Supplemental

Fig. S1). The sensitivity improved quite dramatically from order

0 (with 77 correctly detected motifs) to order 2 (190 correct motifs),

and further improvements were seen up to order 8 (220 correct

motifs).

When considering the best prediction out of the top 4

(Fig. 2B), MEME with a zeroth-order model achieved results

nearly as good as the tools using higher-order background models.

Hence, the higher-order background model and discriminative

prior mainly help to rank down false motifs, which are often re-

petitive or have a biased nucleotide composition. The sensitivity of

Weeder (Pavesi and Pesole 2006), AMADEUS (Linhart et al. 2008),

and PRIORITY on the top 4 motifs is lower than that of MEME, as

these tools often report different variants of the same motif.

In order to understand the origin of XXmotif’s high sensi-

tivity, we built a simplified version that omits the PWM-based

merging, refinement, and ranking stage (XXmotif-noref ). This

purely pattern-based version simply reports the PWMs calculated

from the matched sites in the positive sequence set. These are the

same PWMs that are merged and refined in the full XXmotif

method. The PWMs are ranked by the enrichment E-values of

the patterns. Figure 2A shows that, of the 43% improvement of

XXmotif over the best general motif discovery tool PRIORITY-D,

about half (34 motifs) are explained by

our effective, pattern-based search stage.

Three percent of this improvement (two

motifs) is due to using tandemic and

palindromic 6-mer seeds in addition to all

5-mers, as can be seen from the results of

running XXmotif-noref with the 5-mer

seeds-only option (XXmotif-5-noref ).

The other half (33 motifs) are owed to

the PWM stage with its PWM refinement

by E-value minimization and the E-value-

based ranking of PWMs. Within the top 4

ranked predictions, XXmotif-noref finds

240 correct motifs, while the full XXmotif

discovers 299, or 25% more (Fig. 2B). This

improvement is higher than for the top-

ranked predictions in Figure 2A, which

shows that the positive effect of the PWM

stage is not simply due to providing a bet-

ter ranking of motifs, but that it leads to

improved predictions at all ranks.

Surprisingly, none of the tested

tools—including our own—could gain

significantly on this data set by using conservation information.

MEME-D/DC improved from 153 to 155, PRIORITY-D/DC stayed

constant at 156, and ERMIT/cERMIT even decreased from 180 to

177. These sobering results might be due to only weak cross-species

conservation of functional binding sites (Borneman et al. 2007;

Odom et al. 2007), but they may also point to limitations of how

conservation is evaluated and integrated into the motif search (see

Discussion).

We investigated the impact of the masking stage by testing

the performance of the other tools on the masked sequence data.

We observed minor improvements between 0% and 7% (Supple-

mental Table S1). We also studied the influence of how greedily

PWMs are merged during the PWM refinement stage. The greedi-

ness of merging controls the redundancy in the list of predicted

motifs. Changing the merging threshold from its standard setting

‘‘high’’ to ‘‘medium’’ (Methods) resulted in insignificant changes

in sensitivity, both for the top motif and for the best four motifs,

whereas a ‘‘low’’ threshold resulted in slight losses in sensitivity.

Reference-free quality assessment of detected motifs

To assess the quality of the predicted motifs quantitatively, we

could simply evaluate the similarity of the predicted motif PWMs

to the reference motifs. However, since some of the reference

motifs themselves may be inaccurate, we used a reference-free

quality assessment similar to the one in Zhu et al. (2009). We an-

alyzed how well the ChIP-enriched regions of Harbison et al.

(2004) are predicted using the motif PWMs reported by the tools.

Of the 352 ChIP-chip data sets from Harbinson and colleagues

we selected the 247 data sets that have at least 10 significantly

ChIP-enriched regions (ChIP P-value < 0.001), as described by

Harbison et al. (2004). The negative sequence sets were gener-

ated as in the previous section. We selected the best from each

breed of tools, ran these six tools on the 247 sequence sets, and

analyzed the PWMs they reported. For this purpose, we ranked

all intergenic regions by the score of the best match to the

reported PWM. Regions that were significantly ChIP-enriched

(P-value < 0.001) were counted as correct predictions, all others

as false predictions. A receiver-operating characteristic (ROC)

Figure 2. Sensitivity of motif discovery tools on yeast ChIP-chip data. Shown is the number of cor-
rectly predicted transcription factor binding motifs within the top 1 (A) or top 4 predictions (B). Pre-
dictions are based on ChIP-enriched intergenic regions from 352 ChIP-chip experiments (Harbison et al.
2004). Three experimental reference sets are used to judge the correctness of motifs (red, green, blue).
The dashed line separates the general-purpose motif discovery tools from ERMIT, which needs ChIP
enrichment P-values. In the tool names, M indicates a fifth-order Markov model, C the use of conser-
vation, and D the discriminative prior from the Hartemink lab (Gordân et al. 2010). XXmotif-noref and
XXmotif-5-noref omit the PWM refinement and the latter version uses only 5-mer seeds.

Hartmann et al.
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curve plots the number of correct predictions over the number

of false predictions (Supplemental Fig. S2). Usually, only a small

fraction of all intergenic regions contain a binding site for

a transcription factor. We therefore calculated the partial area

under the ROC curve (pAUC) within the best-ranked 5% false

predictions. Here, pAUC = 1 corresponds to a perfect PWM that

scores all significantly ChIP-enriched regions above all other

regions. A PWM whose correct predictions are distributed uni-

formly among the 5% false predictions would achieve a pAUC »
0.5. To avoid rewarding methods that tended to report overly

specific motifs, we used fivefold cross-validation, ensuring that

PWMs are assessed on a part of the data that was not used to

predict these PWMs.

Figure 3 shows the cumulated distribution of pAUC values,

for the 247 PWMs (Fig. 3A,B), and for each of 151 PWMs on

a collection of 151 high-quality ChIP-chip data sets (explained

below) (Fig. 3C,D). In A and C, the pAUC values of all top-ranked

PWMs are plotted (no matter whether these motifs were reported

as significant or not). The average pAUC values are listed in the

legend. For the best of the top 4 PWMs, XXmotif attains an average

pAUC value 26%–34% higher than MEME-DC and 45% higher

than PRIORITY-DC, the next best tools (Fig. 3B,D). Similar results

are obtained on the top-ranked PWMs (Fig. 3A,C).

The biggest differences between top 1 and top 4 predictions

are observed for Weeder, scoring 0.071 and 0.172, respectively,

although top 1 and top 4 predictions are comparable in the sen-

sitivity benchmark (Fig. 2). Weeder has the tendency to report

short motifs as the top 1 prediction. These PWMs are too unspecific

to achieve good pAUC values, although they are counted as correct

in the sensitivity benchmark. The improvement for the top 4

predictions mainly originates from longer versions of the same

motif at lower ranks. In contrast, PRIORITY and AMADEUS have

a predefined motif length (eight by default). Since many regulatory

elements have more than eight informative positions, their motifs

are often less specific than those of tools that optimize the motif

length. cERMIT incorporates conservation information into the

algorithm by filtering out all nonconserved binding sites. This

strategy leads to very specific PWMs that cannot generalize well to

weak, but functional sites, and, hence, to relatively low pAUC

scores (Fig. 2). ERMIT, the version without conservation scoring,

obtained significantly better average pAUC values (Supplemental

Fig. S3). XXmotif incorporates conservation information by com-

bining P-values for conservation and motif enrichment (Supple-

mental Methods). Therefore, conserved and nonconserved sites

can contribute to the resulting motif, leading to good motif qual-

ities for both the top 1 and top 4 predictions.

No tool achieved a pAUC value of larger than 0.7 on any of

the data sets, although ;50% of the PWMs are expected to be

correct according to Figure 2. This low correlation of binding sites

predicted using PWMs and in vivo binding sites as measured by

ChIP-chip/seq and related techniques is well known, and various

causes have been implicated, such as chromatin accessibility (Li

et al. 2011), binding competition with

nucleosomes (Segal and Widom 2009)

and with other transcription factors (Zhou

and O’Shea 2011), and indirect binding

to DNA.

We observed that quite often, long

CA- and TG-repeats were predicted irre-

spective of the immunoprecipitated tran-

scription factor. These unspecific motifs

are over-represented in the ChIP-enriched

regions of the Harbison data set, and

therefore obtained high pAUC scores

(Eden et al. 2007). To reduce these and

other potential sources of discrepancies

between ChIP-enrichment and binding

sites, we defined a collection of 151 high-

quality data sets that have at least five

significantly ChIP-enriched sequences

(P-value < 0.001) with matches to one of

the reference motifs in the ‘‘Harbison

set,’’ the ‘‘Bulyk set,’’ or the ‘‘Hughes set.’’

Here, we defined a match to a reference

motif by a log-odds score of at least 70%

of the maximum attainable log-odds

score for the PWM. For the ROC analysis,

we also ignored ChIP-enriched regions

without a match to one of the transcrip-

tion factor’s reference motifs. Figure 3, C

and D show the resulting pAUC distri-

butions. Around 50% of all top-ranked

PWMs reported by XXmotif achieved

pAUC values of at least 0.2, compared

with 30% in Figure 3A. XXmotif im-

proved most on this stricter set since its

masking stage tended to suppress the low-

complexity CA- and TG-repeats.

Figure 3. Reference-free PWM quality assessment on yeast ChIP-chip data. The curves quantify how
well the scores of the reported PWMs can predict the ChIP enrichment of the sequences. Intergenic
regions are ranked by their maximum PWM score. For each predicted PWM, a ROC curve with the
number of correct predictions over the number of false predictions is computed, and the partial area
under the 5% best-ranked false predictions of the ROC curve (pAUC) is calculated. The plots show the
cumulative distributions of pAUC values (A,B) for all 247 ChIP-chip data sets that had at least 10 sig-
nificantly enriched regions (P-value < 0.001). Regions with a ChIP enrichment P-value of <0.001 are
defined as correct predictions, all other regions as false predictions. (C,D) Same as A and B but using
a subset of 151 high-quality data sets. For ‘‘TOP 4,’’ the best of the top 4 reported motifs is evaluated.
The average pAUC scores are listed in the figure legends.

P -value-based motif discovery

Genome Research 185
www.genome.org



Sensitivity of motif discovery in metazoan and mammalian
sequences

The great majority of motif discovery tools have been tested on

artificial data sets or on the yeast ChIP-chip data sets of Harbison

et al. (2004). Shamir and coworkers therefore assembled a bench-

mark set (‘‘metazoan target set compendium’’) with sequences

mainly from human and mouse (Linhart et al. 2008): 32 target sets

contain enriched transcription factor binding sites from human,

mouse, fly (Drosophila melanogaster), and worm (Caenorhabditis

elegans), which are based on ChIP-chip experiments, coexpressed

genes, and other data sources. Ten target sets from human and

mouse contain genes that are coregulated under microRNA

(miRNA) knock-downs.

The 8-mer miRNA seeds were imported from miRBase 16.0

(Griffiths-Jones et al. 2006). While Linhart et al. (2008) used ex-

perimentally validated transcription factor PWMs from release 8.0

of the TRANSFAC database (Wingender et al. 1996), we could only

access the latest public release (7.0) and therefore had to remove

eight transcription factors from the analysis. We used the bench-

mark set-up and motif divergence metric as described in Linhart

et al. (2008). We evaluated the sensitivity of XXmotif and the best

versions of the previously tested tools without sequence conser-

vation scoring. ERMIT could not be evaluated, since for many

target sets no P-values existed. We used the same metric as before

to calculate the distance of a predicted motif from a literature

motif. If multiple validated motifs were listed in TRANSFAC or

miRBase, we took the motif that had the lowest distance to the

predicted motif.

Figure 4 displays the results of the top 4 predictions in the

same way as in Linhart et al. (2008). On the transcription factor

target sets, PRIORITY-D finds only two correct motifs, Weeder,

MEME-D, AMADEUS, and XXmotif find 6, 14, 17, and 19, re-

spectively (light-gray boxes). When counting only predictions

with a Euclidean distance #0.15 (black boxes), PRIORITY-D

achieves 0, Weeder 3, MEME-D 8, AMADEUS 10, and XXmotif 14

correct predictions. On the miRNA target sets, PRIORITY-D and

AMADEUS, whose fixed motif length of eight coincides with the

length of the miRNA seeds, are able to detect six and nine miRNA

seeds, respectively. Weeder and MEME-D find six and five, re-

spectively, whereas XXmotif finds eight correct miRNA seeds. The

results for the top 1 predictions show the same trend (Supple-

mental Fig. S4).

We compared the run times of the five tools on the metazoan

target set compendium for a single core Xeon 2.9 GHz CPU (Sup-

plemental Fig. S5). AMADEUS is the fastest tool, with an average

run time per target set of 1m57s. XXmotif comes in second with an

average run time of 5m48s, whereas PRIORITY-D needs, on aver-

age, 13m23s. Neither AMADEUS nor PRIORITY-D optimizes the

motif length, which is the most time-consuming step within

XXmotif. Weeder and MEME do optimize the motif length and are,

on average, 15 and 536 times slower than XXmotif, respectively.

Accuracy of E-values

We conducted extensive tests to validate the accuracy of the

E-values reported by XXmotif for different input set sizes (N = 10,

100, and 1000 sequences), sequence lengths (L = 100, 300, and

1000), background model orders (2 and 8), and motif model (‘‘zero

or one occurrence’’ and ‘‘multiple occurrences per sequence’’). For

each combination, we generated 100 sets of random sequences

with the corresponding background model. We then started

XXmotif with default parameters on each of these input sets,

learning the background model from the input sequences. For each

combination, we recorded the cumulative distribution of motif

E-values reported by XXmotif (Supplemental Figures S6A–D). The

results show that XXmotif’s E-values vary between being precise to

being too conservative by a factor up to 100, depending on N, L,

and the background model order.

Regulatory motifs for early embryo segmentation in flies

One of the most studied model systems of transcription regulatory

networks is the network that lays down the segmentation pattern

along the anterior-posterior axis in the early Drosophila embryo

(Jaeger et al. 2004; Zinzen et al. 2009; Li and Arnosti 2011; Perry

et al. 2011). Various transcription factors are known to participate

in this network, but also other as yet unidentified factors are be-

lieved to be involved (Segal et al. 2008; He et al. 2010). The iden-

tification of these ‘‘missing nodes’’ in the network would set the

stage for more accurate, quantitative models for this network

paradigm.

We obtained the sequences of 54 hand-curated cis-regulatory

modules for segmentation in the early D. melanogaster embryo

(Methods) that are all primarily targeted by maternal and gap genes

(Schroeder et al. 2004, 2011). Since we expect functional binding

sites to be more conserved than background, we used the 13 most

related species of the UCSC 15-way multiple sequence alignments

Figure 4. Top 4 benchmark results on 24 target sets for transcription
factors from human, mouse, worm, and fly, as well as 10 target sets for
microRNAs from human, and mouse from the metazoan target set
compendium (Linhart et al. 2008). The plot is adapted from Linhart et al.
(2008): The ‘‘Source’’ column indicates the experimental procedure or
database from which the target set was derived: Gene-expression micro-
arrays (Expr), ChIP-chip (CC), ChIP-DSL (C-DSL), DamID (van Steensel
et al. 2001), or Gene Ontology (GO) database (Ashburner et al. 2000). The
black and gray boxes indicate the similarity of the predicted PWM to the
reference motif in TRANSFAC or miRBase. Darker shades indicate closer
similarity. ‘‘Set Size’’: number of sequences within the input set.
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(Blanchette et al. 2004) consisting of the Drosophila group and

Anopheles gambiae as outgroup. We did not supply a negative se-

quence set, and XXmotif automatically constructed a second-order

background model from the sequences in the positive set.

Figure 5 lists all motifs reported by XXmotif up to an E-value

of 0.5. In the previous section, we showed that XXmotif’s E-values

are rather conservative, and therefore most of the listed motifs are

likely to represent real binding motifs. To keep the results list

as short and nonredundant as possible, we changed XXmotif’s

threshold for merging similar PWMs from ‘‘high’’ to ‘‘medium’’

(Methods). Of the 28 predicted motifs, 18 were similar to motifs

known to organize segmentation in the early embryo according to

assignments to literature motifs by TOMTOM (Gupta et al. 2007),

or if the motif could not be assigned by TOMTOM, by our own

assignment. Nicely, the list of motifs includes representatives of

most classes of the transcription factors that are known to be in-

volved in the segmentation. Factors missing are Forkhead, which is

under-represented in the considered sequences, and Hunchback,

for which an unusual motif with consensus ‘‘TTTTTT’’ was re-

ported in the literature (Gallo et al. 2011). As Hunchback has

many binding sites in the segmentation modules, we surmise that

P(T|TT) received a high probabilities with our second-order back-

ground model, rendering matches to poly-Ts insignificant.

Ten of the predicted motifs cannot be matched to known

factors. Their E-values are of comparable significance as the known

motifs. We therefore speculate that many of these novel motifs

belong to transcription factors that represent missing nodes in the

network. It will be interesting to determine experimentally what

factors bind to these motifs; for example, using one-hybrid screens

(Deplancke et al. 2006; Hens et al. 2011) or mass spectrometry

techniques (Mittler et al. 2009).

Human core promoter motifs

Core promoters are the regions around transcription start sites

(TSS) to which the general transcription machinery consisting of

RNA polymerase and general transcription factors bind. In recent

years it has become clear that the motif architecture of core pro-

moters can influence the regulatory behavior of the promoter

( Juven-Gershon and Kadonaga 2010). Around 15 motifs have been

discovered that are enriched around human TSSs (Gershenzon

and Ioshikhes 2005; FitzGerald et al. 2006; Gershenzon et al. 2006;

Xi et al. 2007), the most frequently occurring ones being the TATA

box (;10% occurrence) and the SP1 motif (;11%). Most of the

elements are rare and not generally conserved within Animalia. For

example, the human Initiator motif reported by Xi et al. (2007)

with consensus GCCATTTTG occurs in only ;1% of the core

promoters analyzed here (see below), and bears little resemblance

to the Initiator found in D. melanogaster (consensus TCAGT) (Ohler

et al. 2002).

We extracted the sequences of the 1871 core promoters con-

tained in the eukaryotic genome database (Schmid et al. 2006)

from �300 bp to +100 bp around human transcription start sites,

and ran XXmotif using the ‘‘zero or one occurrence per sequence’’

option. As we expect core promoter elements to have a defined

distance to the TSS, we used the ‘‘localization’’ option of XXmotif,

which combines P-values for positioning of motif occurrences

with match P-values. A second-order background model was

learned from the core promoter sequences. The similarity score

for merging PWMs was set to ‘‘medium.’’

Figure 6A shows all enriched PWMs with an E-value up to 0.1.

Of the 39 motifs, 20 are similar to previously described motifs (last

column), assigned either by TOMTOM or, if this did not yield

a significant match, by visually matching the obtained PWM logos

with literature PWM logos. These 20 motifs are indeed enriched

within the core promoter region, as shown by their positional

distribution in a region from�1000 bp to +500 bp around the TSS.

Ten mostly repetitive, rather uniformly distributed motifs of

low-compositional complexity are not shown (see Supplemental

Fig. S7A for a complete list). We believe that they do not represent

functional promoter motifs. Possibly these low complexity regions

serve to modulate the physical properties of the DNA double helix

near the core promoter; for example, in order to attract or repel

nucleosomes. When preprocessing the input sequences with

RepeatMasker (www.repeatmasker.org) (Supplemental Fig. S7B),

some of these low-complexity motifs disappeared from the re-

sults list and the rest received less significant E-values, indicating

that they most probably do not constitute factor-binding motifs.

Motif 29 in Figure 6A is a false motif that XXmasker failed to re-

press. It represents the first 17 nucleotides of the coding regions

of five recently duplicated Metallothioneine genes (MT-IA, MT-IB,

MT-IF, MT-IL, MT-IIA).

XXmotif further detected eight sharply peaked motifs with

E-values comparable to those of previously described motifs

(XX1 to XX6, XX1(rev), XX3(rev)). The bipartite motifs XX1 and

XX3 share a 39 TTCC G/T submotif. XX1 further contains the

AYTTCC(G/T) motif characteristic for the ETS transcription factor

family (SPI1, GABPA, ETS1, and others), and looks like a signifi-

cantly extended version of these. Both X1 and X3 are well posi-

tioned within 50 nt upstream of the TSS. XX2 is similar to the

classical Kozak sequence (consensus: RCCATGG) (Kozak 1999;

Nakagawa et al. 2008), but has an atypical, conserved T after this

core motif and five other partly conserved positions downstream.

XX4 is relatively frequent (5.7%) and has a distribution peaked

within the first 150 bp after the TSS. XX5 is sharply peaked around

60 bp downstream from the TSS. Since XX4 and XX5 occur

downstream from the TSS, it is possible that these motifs are in fact

motifs bound on the RNA that are involved in efficient mRNA

export or translation, as is likely for XX2, or that they have dual

roles as DNA and RNA motifs. Motifs XX1(rev) and XX3(rev) are

almost exact reverse complements of XX1 and XX3. Since this is

extremely unlikely to happen by chance, we conclude that these

motifs belong to transcription factors that bind in two opposing

orientations.

We performed a Gene Ontology (GO) analysis (Huang et al.

2009) on genes carrying the novel motifs (Supplemental Table S2).

Motifs XX1 to XX5 all have significant correlations (Bonferroni-

corrected P-value < 0.05) with GO categories ‘‘translational elon-

gation’’ or ‘‘structural constituent of ribosome.’’ Genes with an

Initiator motif (XX6) are overrepresented in the ‘‘RNA-splicing’’

category (Bonferroni-corrected P-value = 7 3 10�5). The reverse

complements of XX1 and XX3 have no significant GO-enrichments.

Not surprisingly, genes with motifs having the highest overlap

with ‘‘translation elongation,’’ XX2, XX3, and XX5, show the

strongest expression in RNA-seq measurements in three human

cell lines (Lundberg et al. 2010): Their 90% quantiles of expression

levels are between two- and threefold higher than for all genes in

the EPD (Supplemental Table S3). In contrast, genes possessing

XX1 or the Initiator (XX6) have approximately normal expression

levels. Interestingly, genes with XX1(rev) and XX3(rev) motifs

have a much lower expression than their reverse complements.

This indicates that the binding orientation of the associated, un-

known factors is important for an efficient assembly of the tran-

scription initiation complex.

P -value-based motif discovery
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Figure 5. Motifs discovered in cis-regulatory modules for fly segmentation. The table lists all motifs that XXmotif reports up to an E-value of 0.5 on 54
segmentation modules responsible for patterning the anterior-posterior (AP) axis during early embryogenesis. To score conservation, multiple sequence
alignments of D. melanogaster, 11 other Drosophila species, and Anopheles gambiae were supplied as input. For 18 of the 28 predicted motifs, similar
literature motifs of transcription factors known to be involved in AP axis segmentation were assigned by TOMTOM (Gupta et al. 2007) or by visual
inspection. Nine of the predicted motifs may describe transcription factors representing missing nodes in the transcriptional network.



Figure 6. (Legend on next page)
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YY1 (rev) was called Initiator element in Xi et al. (2007) due

to its precise localization at the TSS. But, in contrast to the very

specific YY1 (rev) motif, which we find in only 1.2% of EPD core

promoter sequences, motif XX6 occurs in 6.6% and is equally well

positioned at the TSS. This Initiator element is also similar to the

much less informative Initiator motif YYANWYY that was defined

based on in-vitro transcription assays (Corden et al. 1980; Lo and

Smale 1996; Smale and Kadonaga 2003) and the motif CAN(T/C/A)

detected by computational analysis (Bucher 1990). We therefore

suggest that XX6 is the canonical human Initiator motif.

To further analyze the ribosomal system of transcription ini-

tiation, we searched for motifs in the subset of 65 promoter regions

of genes annotated to code for ribosomal proteins (Fig. 6B). We

found eight motifs, six of which we had already identified on the

large set of core promoters, and their PWMs look almost identical.

All eight are strongly enriched at ribosomal protein core pro-

moters. In 55% of the ribosomal genes we find a second Initiator

element, called the ‘‘TCT element,’’ which was discovered in fly

promoters of ribosomal protein genes and was shown to also be

enriched around human TSSs (Parry et al. 2010). Motif XX2

(Kozak-like) is present in 13 (20%) and XX5 in 14 (21.5%) of these

65 promoters in comparison to 26 (1.4%) and 12 (0.64%) in the

entire set of EPD promoters, respectively. Hence, approximately

half of the XX2 motifs and all of the XX5 motifs in the full EPD

data set occur in genes annotated as ribosomal protein genes.

In summary, in addition to finding almost all motifs known

to be enriched in human core promoters, we discovered eight new

motifs that are strongly peaked around TSSs, and three of which are

associated with strong expression. Whereas six of these motifs are

rather rare (frequency <2%) and probably represent binding motifs

for sequence-specific transcription factors, we also identified a

motif similar to the canonical initiator motif known in other

species and a motif (XX4) that occurs with similar frequency (6%)

as the canonical initiator. The quest is now to identify the tran-

scription factors that bind these motifs, and to investigate the

association of these motifs with regulatory properties of core

promoters, such as stress inducibility, degree of tissue- and time-

dependent regulation, maximum and basal transcription rates

(Valen and Sandelin 2011).

Discussion
We compared XXmotif’s sensitivity and the quality of its re-

ported PWMs with five other state-of-the-art motif discovery

tools and found it to perform strongly in this comparison. What

are the methodological improvments that can explain XXmotif’s

success?

Optimization of PWM by statistical significance of enrichment

XXmotif’s PWM stage refines motif PWMs by optimizing their

enrichment E-values. It thus combines the solid statistical esti-

mates of pattern-based algorithms with the more powerful repre-

sentation of motifs by PWMs. In contrast to patterns, PWMs can

describe weak and strong binding. In a thermodynamic treatment

of factor binding, PWMs emerge naturally, representing the in-

dependent energetic contributions of the binding-site nucleotides

to the binding energy.

To analyze the causes of XXmotif’s good performance, we

benchmarked a version of XXmotif in which the PWM-based re-

finement stage was omitted. About one-half of the improvement

in the sensitivity of motif discovery of ;43% over the best com-

peting general motif discovery methods was owed to XXmotif’s

pattern stage, whereas the other half was contributed by the

E-value-based PWM refinement (Fig. 2). Similarly, both stages

contributed roughly equally to the improvements in the quality

of PWMs, as measured by how well the reported PWMs could

predict the ChIP enrichment on hold-out sequence data not used

for discovering the motif (Fig. 3). Thus, the PWM-refinement stage

could substantially improve the quality of the PWMs. Better PWMs

also improved the sensitivity of motif discovery by bringing the

top-ranked motif nearer to the ‘‘true’’ PWM and by better ranking

of the motif PWMs.

In order to optimize the enrichment P-values of PWMs, we

need to compute P-values for all relevant score thresholds ex-

tremely fast, as millions of enrichment P-values for thousands of

alternative PWMs need to be computed during the extension,

PWM merging, and refinement stage. Most motif discovery pro-

grams calculate enrichment P-values for a PMW using a time-

consuming sampling approach, generating a large number of

random input sets and scoring these with the PWMs. While a few

methods have been described that can calculate P-values for PWMs

directly without sampling (Touzet and Varre 2007; Zhang et al.

2007; Bailey et al. 2010), they are still much too slow for our pur-

poses (Supplemental Methods, section 3.4).

We solved the speed challenge with three ideas: First, we de-

veloped a fast branch-and-bound algorithm to compute match

P-values for every possible site in the input sequences. This is done

in a time proportional to the number of l-mers having a log-odds

score of at least zero bits. Second, as this number grows exponen-

tially with the PWM length l, we sped this calculation up for l > 8

with an approximation in which we split the l-mers into an 8-mer

and an l�8-mer part. Third, we apply order statistics to combine

the match P-values for all sites to yield a motif enrichment

P-value. We optimize the score threshold above which the po-

tential sites are counted as matches. This procedure can be inter-

preted from a thermodynamic viewpoint. It is equivalent to the

zero-temperature approximation of factor binding, in which sites

are either not bound or fully occupied (Homsi et al. 2009). The

optimization of K (and hence of the match P-value threshold)

corresponds to finding the factor concentration at which the total

occupancy on the positive sequences differs most significantly

from that on the background sequences.

Nongreedy pattern search

Almost half of XXmotif’s improvement over the best alternative

method is due to our strategy to follow up not only a subset of seed

Figure 6. Human core promoter motifs discovered by XXmotif. (A) List of motifs up to an E-value of 0.1 in a set of 1871 human core promoter regions
(�300 bp to +100 bp around TSS) from the eukaryotic promoter database (EPD) (Schmid et al. 2006). For 20 of the 39 predicted motifs, similar literature
motifs were assigned by TOMTOM (Gupta et al. 2007) or us (last two columns). The motif at position 18, which was originally named Initiator (Xi et al.
2007), is actually the reverse complement of YY1. Eight novel, highly significant motifs, designated XX1 to XX6, XX1(rev), and XX3(rev), show positional
distribution peaks near the TSS. XX6 is the canonical Initiator motif similar to elements found in D. melanogaster and S. cerevisiae. Ten motifs with a broad
positional distribution are not shown. The positional distributions of the PWMs were obtained by scanning the PWMs over a larger region (�1000 bp to
+500 bp) around the TSS. (B) Top eight motifs obtained with the core promoter sequences of the 65 genes annotated as coding for ribosomal proteins in
EPD (Xi et al. 2007; FitzGerald et al. 2006; Parry et al. 2010).
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patterns with the highest significance, but to extend a large and

representative set of 5120 IUPAC 5-mer seeds, irrespective of how

insignificant their initial E-values may be. A similar strategy is used

in ERMIT, which extends all 512 5-mers (Georgiev et al. 2010).

In this way, XXmotif can discover enriched motifs that do not

contain even a single marginally significantly enriched 5-mer.

During the extension stage, we follow up to three different ex-

tensions per seed pattern as long as the E-value is improved by the

extension. Using the best three instead of only the best extension

reduces the risk of getting trapped in local optima that often plague

greedy searches. By allowing up to three gap positions when

extending patterns by an additional position, XXmotif can jump

across regions in the motif with low selective constraints. A further

strength of the pattern-based stage is that it extends thousands of

palindromic and tandemic 6-mer seed patterns containing gap

positions in the middle. Thus, even motifs with widely spaced re-

gions of conservation, such as Gal4’s CGG-N(11)-CCG motif, for

example, are found without difficulty as long as they are either

palindromic or tandemic. The palindromic and tandemic seeds

contribute ;6% to the performance gain of the pattern stage

(Fig. 2, XXmotif-5-noref).

Background model

Many methods use a second-order background model to describe

the properties of reference sequences. We obtained improvements

of around 16% by using an order 8 instead of an order 2 back-

ground model (Supplemental Fig. S1). To train such high orders

with limited data, we made use of an interpolated Markov model

(Salzberg et al. 1998). Higher-order models help to distinguish

true motifs, which appear enriched only in the positive set, from

sequences with relatively low complexity, such as (imperfect) tri-

nucleotide repeats that are over-represented in the entire genome,

and that will look enriched in comparison to a first-order back-

ground model in any subset of genomic sequences. Some tools,

such as AMADEUS, do not train a statistical background model, but

instead use the negative set directly to determine the enrichment

P-values of patterns. Therefore, no patterns of any length that are

enriched uniformly in the entire genome can become significant.

However, this approach has the disadvantage of limiting the sig-

nificance of enrichment P-values that can be calculated. If a pat-

tern does not have a single match in the negative set, it is not

possible to decide whether it can be improved by extending it. This

limits the pattern length for these tools to around eight positions

in practice.

Sequence masking

A further improvement has been realized by masking homologous

sequence segments using the XXmasker procedure. Supplemental

Table S1 shows that other tools can also slightly improve their

performance when running on sequence sets that were pre-

processed using XXmasker. The goal of XXmasker is somewhat

different from standard RepeatMaskers such as RepeatMasker

(www.repeatmasker.org), which scan the input sequences against

a database of known repeats. XXmasker mainly serves to mask

duplicated, homologous sequence stretches. These would other-

wise be reported as false-positive motifs. This is important for

XXmotif, since its nongreedy motif extension strategy has proved

more sensitive than alternative tools to detect duplicated sequence

stretches as ‘‘motifs’’ even if they occur in only two sequences—if

the motif is long enough to become statistically significant. The

XXmotif filtering strategy is more general than using a standard

RepeatMasker, as it does not assume any knowledge about the type

of duplicated or repetitive elements. In fact, XXmasker can be used

in combination with a RepeatMasker, and comparing Figure 6 with

Supplemental Figure S7 demonstrates that this may indeed im-

prove results slightly.

Positional clustering of motifs

When the motif occurrences are spatially clustered relative to an-

chor points such as transcription start sites, splice sites, or other

motifs, the sensitivity can be improved considerably (Kim et al.

2008; Keilwagen et al. 2011). A few studies have shown that in-

cluding a positional prior probability distribution can increase the

sensitivity of motif discovery (MEME-D) (Bailey et al. 2010). For

example, transcription factors compete with nucleosomes for

DNA; hence, a positional prior that relies on predicted or actual

nucleosome positions can improve motif discovery (Narlikar et al.

2007). XXmotif has the option to calculate localization P-values

describing the positional clustering of motif occurrences. These

positional P-values quantify how unlikely it would be to observe

the actually observed positional clustering by chance. Although

we did not find a good data set to benchmark the impact of

scoring localization, XXmotif’s localization P-values have been

important for finding the weak and rare human core promoter

elements.

Negligible improvement through sequence conservation

Functional motifs are generally conserved above average, since

mutations that abrogate their function are negatively selected

(Kheradpour et al. 2007; Stark et al. 2007; Margulies and Birney

2008; Roy et al. 2010). We tried several versions of alignment-free

and alignment-based conservation scores in XXmotif. The align-

ment-based conservation P-values turned out to perform best on

our test cases (Sandve et al. 2007), but even with these we failed

to obtain clear improvements on the large yeast benchmark. Ac-

tually, none of the tested methods for scoring conservation could

improve the sensitivity significantly. This may seem surprising,

since it is well established that conservation information helps to

uncover functional genomic elements (Meireles-Filho and Stark

2009; Lindblad-Toh et al. 2011). However, these successful studies

looked at the most conserved genomic elements, which are prob-

ably almost always functional. The reverse is not necessarily true:

The majority of functional genomic elements seem to show only

a weak degree of conservation, too low to contribute positively

to their identification with present approaches. One of the reasons

for this failure might be that most methods score the number

of mutations instead of the conservation of binding affinity of a

site, as suggested by recent work (Mustonen and Lässig 2005; Kim

et al. 2009; Shultzaberger et al. 2010).

Motifs in human core promoters

We analyzed human core promoter sequences with XXmotif and

found most previously described motifs as well as eight novel

motifs that have sharply peaked positional distributions around

the TSS. One of the novel motifs is localized to within 610 bp of

the TSS and is similar to the Initiator motif in fly and yeast, which

identifies it as the canonical human Initiator motif. We did not

P -value-based motif discovery
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find the BRE, DPE, and MTE elements. However, these were never

found by a de novo search on human core promoter sequences.

The BRE element was deduced from crystal structures of TFIIB and

TBP bound to the DNA (Nikolov et al. 1995) and later shown to

be weakly positioned, but enriched around TSSs of several species

(Gershenzon et al. 2006; Sandelin et al. 2007). The MTE and DPE

elements were discovered in D. melanogaster (Ohler et al. 2002),

and by scanning their PWMs over human core promoter se-

quences the DPE element was then found to be slightly enriched

around human TSSs (FitzGerald et al. 2006). However, their posi-

tioning and signal over background is much weaker than what we

observed for the novel motifs reported here. Eight motifs, two of

them discovered in this study, are found to be strongly enriched

in human core promoters of ribosomal protein genes. It is an in-

triguing possibility to try to combine these motifs into a ‘super core

promoter’ that would support extremely high levels of transcrip-

tion for applications in basic research and biotechnology ( Juven-

Gershon et al. 2006)

In conclusion, XXmotif is a general-purpose method for the

discovery of enriched motifs in nucleotide sequences that is based

on optimizing the enrichment P-values of motif PWMs. In several

benchmarks on yeast and metazoan sequences, XXmotif com-

pared favorably with some of the best state-of-the-art motif dis-

covery tools. We hope that in this era of functional genomics and

high-throughput, data-driven biology, XXmotif will contribute

toward understanding the regulation of our genomes by the se-

quence-specific binding of protein and ncRNA factors.

Methods

Data sets
The 352 ChIP-chip S. cerevisiae data sets were taken from Harbison
et al. (2004). The positive and negative sets of intergenic sequences
are as described in Harbison et al. (2004) (ChIP-chip P-values < 1 3

10�3 and > 0.5, respectively). Sequence alignments to the four
yeast species in the sensu strictu Saccharomyces clade were extracted
from the UCSC 7-way yeast alignment (sacCer2). Sequences for the
metazoan benchmark set were taken from Linhart et al. (2008).
Eight transcription factors for which no literature motif was
available in the latest public version of the TRANSFAC (Release 7.0)
(Wingender et al. 1996) were removed. We used the same sequence
regions as suggested by Linhart et al. (2008). For transcription
factor target sets, the positive set consisted of promoter regions
between �1000 bp and +200 bp relative to the transcription start
site (TSS), and for the miRNA target sets it comprised the whole 39

UTR of each transcript. As negative sequence sets we used all other
promoter sequences or 39 UTRs, respectively, in the given organ-
ism. The hand-curated set of 54 cis-regulatory modules was pro-
vided by Mark Schroeder (Supplemental Material) and comprises
sequences that are primarily targeted by maternal and gap genes
and exclude some of the pair rule elements that are primarily tar-
geted by pair rule genes. Alignments for these sequences were
generated using the UCSC 14-way multiple sequence alignments
(dm3). The sequences of human core promoters were extracted
from the web interface of the eukaryotic promoter database (EPD,
Schmid et al. 2006). The subset of ribosomal proteins was filtered
by the term ‘‘Hs RP’’ within the identifier of each sequence.

Definition of correct motifs

A predicted motif is considered correct if two criteria are fulfilled:
(1) As in Georgiev et al. (2010) and Gordân et al. (2010), the nor-
malized Euclidian distance is <0.25 in an overlapping region of

length $ 6, and similar to Gordân et al. (2010), (2) the average
relative entropy per position over the six positions with highest
information content in the overlapping region is at least 0.5 for
both PWMs. This ensures that the overlap is within informative
parts of the PWMs, while not penalizing uninformative positions
that can occur within motifs.

Merging similar PWMs

Two PWMs are merged into one (Fig. 1, Merging) if in addition to
the two above criteria, a sufficient number of motif occurrences of
the two PWMs overlap. More precisely, at the default ‘‘high’’ set-
ting of the merging threshold, the binding sites of both motifs
have to overlap at least 40% of the binding sites of the other motif.
At medium merging threshold, the binding sites of the motif with
fewer sites have to overlap with at least 40% of the binding sites
of the other motif. At low threshold, this fraction must be at least
20%. The merged PWM is built from all binding sites of both
PWMs and 10% pseudocounts (Durbin et al. 2006). If the length of
both motifs is not the same, the length of the motif with the better
E-value is chosen. Afterward, an E-value is calculated for the
merged motif. If this E-value is better than the E-values of both
unmerged motifs, only the merged motif is kept. Otherwise, only
the better of the original motifs is kept.

Calculating match P-values

A match P-value for an l-mer x is the probability of obtaining the
same or better log-odds score S(x) with the PWM on a random se-
quence, i.e., on a sequence generated according to the background
model: P-value(x) = +z:S(z)$S(x) Pbg(z), where Pbg(z) denotes the
probability to observe z according to the background model. To
evaluate this sum, we enumerate all l-mers with a log-odds score
larger than 0 bits using a fast branch-and-bound algorithm (Sup-
plemental Methods), sort them according to their log-odds score,
and calculate the probabilities Pbg(z) for each. We then calculate
the P-value for each l-mer x in this list by cumulating the back-
ground probabilities down to x, since for all l-mers z with higher
rank than x we have S(z) $ S(x). To speed up the calculation for
PWMs with length l > 8, they are split into two parts of length 8
and l-8. Separate lists are created for the two parts and higher-
order dependencies between them are efficiently approximated
(Supplemental Methods, section 3.2).

Calculating E-values

We transform the motif enrichment P-values to E-values by mul-
tiplying the P-value by a Bonferroni factor of 6l for IUPAC pat-
terns of length l and by 10l for PWMs of length l. For gapped
IUPAC patterns, an additional Bonferroni factor of 2 per gap po-
sition is used. We scale down the log E-value by 2 to improve the
agreement between reported and empirical E-values (Supple-
mental Fig. S6).

XXmasker

A nucleotide is masked if one of three conditions is fulfilled: (1) The
nucleotide is within a homologous region detected by an all-
against-all BLAST search with E-value cut-off of 1 3 10�10 and soft
masking option. (2) The nucleotide is within a low complexity
region defined as a stretch of length 50, consisting of not more
than two different nucleotides. (3) The nucleotide is within a re-
peat, defined as a stretch of length 50, consisting only of perfect
repeats with a length of three to 10.
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Data access
The XXmotif web server, binaries, and the source code is available
at http://xxmotif.genzentrum.lmu.de.
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