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Infantile hemangioma is a common tumor of infancy.
Although most hemangiomas spontaneously regress,
treatment is indicated based on complications, risk to organ
development and function, and disfigurement. The
serendipitous discovery of propranolol, a non-selective
b-adrenergic receptor blocker, as an effective means to
regress hemangiomas has made this a first-line therapy for
hemangioma patients. Propranolol has shown remarkable
response rates. There are, however, some adverse effects,
which include changes in sleep, acrocyanosis, hypotension,
and hypoglycemia. Over the last few years, researchers have
focused on understanding the mechanisms by which
propranolol causes hemangioma regression. This has entailed
study of cultured vascular endothelial cells including
endothelial cells isolated from hemangioma patients. In this
article, we review recent studies offering potential
mechanisms of how various cell types found in hemangioma
may respond to propranolol.

Infantile Hemangioma

Infantile hemangioma (IH) is the most common vascular
tumor of infancy.1 For reasons unknown, IH affects more
females than males, and is also more prevalent in premature and
Caucasian babies, ultimately affecting up to 10% of infants.2,3

IH is often noticed soon after birth, when a bright red lesion
appears.4 Approximately 80% of these lesions are found in the
head and neck regions, but they can be located elsewhere in the

body.5,6 It has been well-established that IH follows 3 develop-
mental phases.7,8 The first phase entails expansion of undifferen-
tiated stem/progenitor cells.9,10 These stem/progenitor cells
differentiate into atypical vascular endothelial cells (ECs) charac-
teristic of IH. Uniquely, IH endothelium exhibits robust expres-
sion of glucose transporter-1 (Glut-1).11,12 This proliferating
stage is completed by 8 months of age in most cases.10 In the fol-
lowing involuting phase, the differentiation process continues as
hemangioma-initiating cells differentiate into ECs and peri-
cytes.13,14 This involuting phase, like the proliferating phase, is a
continuum of cellular and molecular changes with the end result
being appearance of adipocytes and fibrofatty residuum.7,8,14

Most IHs resolve spontaneously and do not require treatment.15

However, therapeutic intervention is necessary in cases where the
lesion grows in certain locations and to sizes that could result in
life-threatening complications. An example of such a situation is
the growth of IH in the airway to obstruct the respiratory
system.16

Current Treatment Options for IH

Although a number of attempts have been made, the treat-
ment guidelines for IH are not fully clear due to the differential
effects of various therapeutic options, the differences in the loca-
tion, stage and size of the tumors, and the age of patients.15

Treatment is typically initiated during the early proliferative stage
of the tumor at which point many treatment options are available
such as surgery, laser, and corticosteroids.17-20 Corticosteroids
represented a common treatment option for IH patients, how-
ever, there are severe side effects including severe growth retarda-
tion in children when used over an extended period of time at
high doses.21 Propranolol, a synthetic b-adrenergic receptor
(ADR) antagonist that is widely used to treat myocardial compli-
cations, was accidentally discovered to be a promising treatment
for IH.22 This non-selective b-blocker proved to be more effec-
tive with fewer adverse events when compared to corticosteroids,
such that it is now the first-line treatment option.23 Despite its
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effectiveness, a major challenge remains in understanding the
therapeutic mechanism of propranolol in regressing IH.

Propranolol usage has shown remarkable efficacy.23 There are
some adverse effects associated with propranolol use, which
include sleep disturbances, acrocyanosis, hypotension, and hypo-
glycemia.24,25 In addition, there are also reports of IH regrowth
following cessation of treatment in as many as 20% of the
cases.26,27 Therefore, greater understanding of the potential
mechanisms underlying the therapeutic effect is needed to
develop better and safer treatment options. Many mechanisms
have been proposed, though only tested in culture studies, to
explain the therapeutic mechanism of propranolol in treating IH.
Theories involving vasoconstriction,28 EC apoptosis via b-ADR
signaling29,30 and the caspase pathway,31,32 and inhibition of
angiogenesis via the modulation of vascular growth factors30,33,34

have been suggested. This review will emphasize the diverse
mechanisms implicated with the therapeutic action of proprano-
lol in the various cell types found in IH.

b-adrenergic Receptor Signaling

b-adrenergic receptors (b-ADRs) are a family of G protein-
coupled receptors that mediate physiological responses to adrena-
line and noradrenaline. To date, 3 subtypes of b-ADRs have
been identified: b1-3 ADRs. Although a putative b4 subtype has
been suggested, the function and localization remains unknown.
There is limited information available on b1-3 ADR distribution
at the cellular as well as the tissue level. Highest levels of b1-
ADR are believed to be found in the heart and brain.35 b2-ADR
shows a wide spread distribution pattern.36 b3-ADR is believed

to be predominantly expressed in adipose tissue consistent with
its lipolytic function.37 In the blood vessels, studies have utilized
b-ADR antagonist binding and shown sites in all cellular layers
of vessels.38,39 Predominant ADR subtypes in vessels include b1
and b2 as confirmed by b-ADR subtype knockout studies.38

Using immunohistochemistry, b1 and b2 ADR protein has been
localized to IH endothelium (co-localized to CD31-positive cells)
as well as perivascular cells (co-localized to a-smooth muscle
actin-positive cells).40,41 In addition, b3 ADR has also been
reported in all phases of IH.34 Given that b-ADRs are present in
normal vessels and IH vessels, the question arises as to the role of
b-ADRs in vessel function and the effect of b-ADR blockade in
IH resolution.

b1 and b3 generally couple with Gs (stimulatory) proteins,
whereas b2 may couple with Gs or Gi (inhibitory) (Fig. 1). In
the unstimulated state, the trimeric G protein is bound to GDP.
Activation of ADRs promotes exchange of GDP for GTP. The
G protein’s a subunit with bound GTP then dissociates from the
b and g subunits to phosphorylate adenylate cycles (AC) and
increase intracellular cyclic adenosine monophosphate (cAMP)
levels. Gi may counteract this increase by inhibiting AC. Intracel-
lular cAMP activates cAMP-dependent protein kinase A (PKA)
which may have multiple cellular consequences.42 For example,
PKA has been shown to be involved in elaboration of angiogenic
factors through cAMP response element-binding protein
(CREB).43 In addition to PKA-mediated signaling, activated AC
may also activate mitogen activated protein kinase (MAPK) path-
way through exchange protein activated by adenylyl cyclase
(EPAC).44,45 Dissociated Gbg may also lead to activation of
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 kinase) and
Akt/protein kinase B. In addition, ADR signaling may entail a G
protein independent signaling pathway. A well-characterized
example is the b-arrestin-mediated activation of MAPK path-
ways.46,47 These pathways indicate that inhibiting b-ADR by
propranolol in IH may, indeed, have beneficial effects by reduc-
ing cell survival as well as inhibiting angiogenesis. In support,
Zhang et al have shown that propranolol does regulate MAPK
pathway and activity of CREB in pancreatic cancer cells.48

Cell-type Dependent Effect of Propranolol in
Infantile Hemangioma

Hemangioma-derived endothelial cells (HemECs)
Culture of hemangioma-derived ECs (HemECs) in the pres-

ence of propranolol causes apoptosis.49 This is evident upon
exposure to 100 mmol/L propranolol in the culture
media.32,49,50 Ji et al. also found significant increases in caspase-
3 and -9 cleavage products, but not caspase-8 cleavage following
propranolol exposure.49 These results are suggestive of an intrin-
sic apoptotic pathway mediated by propranolol. However, other
studies have found an increase in protein and mRNA levels of
caspase-832, indicative of both intrinsic and extrinsic involvement
of the apoptotic pathway. At the mRNA level, it was reported
that propranolol induces expression of apoptotic genes, such as
Bax, p53, caspase-8, and cytochrome c in hemECs that may be

Figure 1. Schematic illustrating -adrenergic receptor signaling. Ligand
binding to b-adrenergic receptors (b-ADRs) results in Gs-mediated acti-
vation of adenylyl cyclase (AC) and subsequent conversion of ATP into
cAMP. Intracellular cAMP activates PKA to phosphorylate multiple target
proteins. cAMP may also activate exchange protein activated by adenylyl
cyclase (EPAC) leading mitogen-activated protein kinase signaling path-
way and downstream effects on cellular processes. Another pathway
activated by b-ADRs is the PI3 kinase and protein kinase B (Akt) pathway
which may be initiated through dissociated Gbg complex. In addition to
G protein-mediated signaling, b-ADRs may also participate in G protein-
independent signaling through b-arrestin and MAPK.
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responsible for its apoptotic effect.32,49 It should be noted that
these studies have essentially examined the effect of propranolol
without the addition of b-ADR stimulation. This may suggest a
constitutively active b-ADR pathway. Stress hormones or growth
factors in serum may also play a role. Interestingly, propranolol’s
effect is not specific to hemECs, as it has been shown to cause
apoptosis in a similar manner with other EC types as well.29,50,51

Many studies have gone in-depth with analyzing the expres-
sion levels of the different b-ADR subtypes. It has been shown
that hemECs and other EC types express both b1- and b2-ADRs
at very similar levels, but not b3.52,53 We have shown that nor-
mal ECs express all 3 b-ADRs, with b1-ADR expression being
significantly higher when compared to the other subtypes.50

Despite the various b-ADRs expressed, it is believed that the
main mechanism of action of propranolol in hemECs may
involve b1 and/or 2-ADR pathway. A recent report by Ji et al.
have shown that ICI-118551 (a selective b2-ADR antagonist)
was more effective than metaprolol (selective b1-antagonist) in
inhibiting hemECs proliferation.54

In addition to caspase-mediated apoptosis, propranolol may
block phosphorylation of vascular endothelial growth factor
receptor 2 (VEGFR-2).52 It was found that when hemECs were
challenged with higher concentrations of propranolol (50 and
100 mmol/L), the expression of VEGF at the protein level was
reduced in a dose-dependent manner.49,55 This reduction in the
level of activated VEGFR-2 receptors and VEGF protein upon
propranolol exposure was a critical element that affected the sur-
vivability of these hemECs.52,56 In addition, decrease in key
cyclin levels and an increase in cell cycle inhibitor levels were
observed.52 This suggested that cell cycle regulation is also
another mechanism involved in mediating propranolol’s thera-
peutic effect. HemECs show a greater proportion of cells in the
G1 phase than the S/G2 phase when treated with proprano-
lol.29,52 This was further confirmed with decreased expression of
cyclin proteins such as cyclins A1, A2, B2, D1, D2, D3,29,50,52

while cell cycle inhibitor proteins p15, p21, p27,52 were up-
regulated.

Hemangioma-derived stem cells (HemSCs)
We have shown that IHs are derived from multipotential stem

cells termed hemangioma stem cells (hemSCs).9 Clonally
expanded hemSCs produce Glut-1 positive microvessels in
immunodeficient mice. Boscolo and colleagues have shown that
binding of VEGF-A and VEGF-B to VEGFR-1 expressed on the
surface of hemSCs is required for the induction of hemSC to EC
differentiation, and for blood vessel formation.57 Interestingly,
immunostaining of IH specimens shows co-labeling of EC
markers and stem cell markers indicative of an immature EC
phenotype in IH.14,50 Since IHs regrow in a significant propor-
tion of patients that discontinue propranolol treatment,26 it is
possible that hemSCs, unlike hemECs and normal vascular ECs,
are not susceptible to propranolol-induced apoptosis. This may
explain why recurrence of these tumors often occurs following
cessation of treatment. We have recently shown that propranolol
causes significantly reduced cell number.50 To determine whether
the decrease in hemSCs was due to changes in the cell viability as

expected from studies utilizing ECs, caspase-3 was measured.
Unlike ECs, the levels of activated caspase-3 were significantly
reduced in hemSCs.50 This indicates that hemSCs do not
undergo apoptosis upon propranolol exposure. However, pro-
pranolol exposure significantly decreased cyclin-D1 levels in
hemSCs, similar to its effect in ECs,50 suggesting that the
decrease in hemSCs cell number upon propranolol exposure is
not due to apoptosis, but rather the inhibition of cell cycle pro-
gression. Furthermore, Zhang and colleagues have shown that
propranolol reduces VEGF expression in hemSCs, that later sup-
presses angiogenesis.58 At the protein level, the quantity of
VEGF produced by hemSCs decreased in a dose-dependent
manner, showing a significant reduction even at a very low con-
centration (0.02 mmol/L) of propranolol.58 This decrease in
VEGF levels from hemSCs may also contribute to their quiescent
state, rather than apoptosis, upon propranolol treatment.

The difference in propranolol response between hemECs and
hemSCs may be related to b-ADR subtype expression. Studies
have shown that b1-ADR and b2-ADR have opposing effects on
regulating apoptosis.59-61 HemSCs express b2 and b3-ADRs,
whereas ECs predominantly express b1-ADR.50 This suggests
that propranolol may mediate its apoptotic effect in ECs through
b1-ADR, and cell cycle arrest in hemSCs through b2-ADR. A
novel mechanism we have observed in hemSCs is a significant
induction of anti-apoptotic genes following exposure to propran-
olol.50 Although these inductions were significantly higher in
hemSCs, anti-apoptotic genes were also evident, but to a lesser
degree, in normal bone marrow-derived mesenchymal progenitor
cells (bm-MPCs).50 This indicated that upon propranolol expo-
sure, these stem/progenitor cells trigger a mechanism that induces
anti-apoptotic genes to provide these cell types with an apoptotic
escape route, unlike ECs.

IH ends its continuous developmental phase when adipocytes
replace majority of the tumor lesion. Yu and colleagues first
reported presence of cells with adipogenic differentiation poten-
tial in proliferating phase IH.62 More recently, we have shown
that clonally derived hemSCs produce human adipocytes when
implanted in immunodeficient mice.9 Culturing hemSCs in the
presence of propranolol enhances adipogenesis and this may offer
another possible mechanism of the beneficial effects of proprano-
lol in IH resolution. Continuous culture of hemSCs in adipo-
genic differentiation media supplemented with propranolol
causes cell death.31 These results suggested that propranolol treat-
ment accelerated the dysregulated differentiation process in
hemSCs that ultimately resulted in increased apoptosis of adipo-
cytes derived from hemSCs.31 It is possible that differentiation of
hemSCs causes a shift in b-ADR expression profile and an
increase in b1-ADR which may induce apoptosis. We have
found that upon adipogenic differentiation in hemSCs, all 3
b-ADR subtypes are significantly increased. Therefore, changing
b-ADR profile may increase cell’s susceptibility to apoptosis, in a
manner similar to that of propranolol-treated ECs.

Hemangioma-derived pericytes (HemPericytes)
Pericytes are cells that control EC proliferation and survival by

stabilizing the vasculature wall and releasing pro-survival
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signals.63 In IH, pericytes are also believed to be derived from
hemSCs.64 When hemSCs are in direct cell contact with ECs,
hemSCs can also differentiate into pericytes through the JAG-
GED1 signaling.64 It is known that addition of b-ADR agonists
and cAMP analogs can induce relaxation of pericytes.65 When
hemPericytes were exposed to propranolol, epinephrine-induced
relaxation in hemPericytes was prevented.66 Furthermore, the
proliferative capacity of hemPericytes was also reduced. These
pericytes also expressed b2-ADRs on their cell surface.66 With
knockdown of b2-ADR, hemPericytes lost epinephrine-induced
relaxation and propranolol had no effect.66 This suggested that
b2-ADR is involved with relaxation and contractility of hemPeri-
cytes in response to propranolol.66 In addition, when hemPeri-
cytes co-implanted with hemECs were exposed to propranolol,
propranolol decreased the vascular volume indicative of increased
vasoconstriction.66 This may be suggestive of a possible mecha-
nism by which propranolol causes increased constriction of the
vasculature in IH to reduce the blood flow to the tumor, limiting
its growth.

Effect of Propranolol in Other Human Neoplasms

The progression of various cancers has been associated with
alteration of b-ADR signaling pathways. Hence, b-blockers have
been proposed as therapeutic agents for various cancers. Pediatric
melanoma is a rare disease but its incidence has increased in the
young population. Melanoma is accountable for up to 3% of all
pediatric malignancies.67 Similarly to IH, melanoma cases are
more commonly diagnosed in Caucasian and female patients,68

and almost 20% of malignant melanoma occurs in the head and
neck region.69 Melanocyte stem cells (MSCs) generate melano-
cytes that produce melanin-pigment throughout adult life. When
MSCs undergo mutation and transform, it can result in mela-
noma.70,71 The pathogenesis of melanoma is still subject to
debate, but many have suggested mutations involving the cell
cycle and apoptosis pathways, such as tumor protein p53 path-
ways, and stressors that increase catecholamines are involved in
tumor progression.72,73

The increase in norepinephrine and epinephrine primarily
modulates the b-ADR pathways, through PKA and MAPK sig-
naling mechanisms, ultimately affecting the growth and progres-
sion of melanoma.74 Additionally, increases in the expression of
VEGF, interleukin (IL) -6 and IL-8 after catecholamine stimu-
lation correlates with the aggressiveness of the tumor.74,75 Simi-
lar to IH, melanoma cells express b1 and b2-receptors with b1-
ADR expression being weaker relative to b2-ADR.72,74

Recently, b3-ADRs have been proposed to be involved with
melanoma growth and vascularization.76 The use of b-blockers
in malignant melanoma decreased the risk of progression.77

Although the exact mechanism underlying the effectiveness of
these medications in reducing tumor progression is unknown, it
has been suggested that b-blockers reduce angiogenic factors
and metastatic progression.77 It is thought that b-blockers
inhibit angiogenesis by reducing VEGF activity via MAPK sig-
naling. In addition, b-blockers also modulate matrix

metalloproteinases (MMPs) that can alter the tumor microenvi-
ronment involved with angiogenesis to further inhibit the for-
mation of new blood vessels.78 Recently, specific inhibition of
b3-ADRs in melanoma cells was found to impair cell growth
and induce apoptosis.76

b-ADR has also been implicated in breast cancer. Breast
cancer cells express both b1- and b2- ADRs,79,80 and the
polymorphisms of b-ADR subtypes may be associated with
breast cancer susceptibility.81 Breast cancer patients who
received propranolol for hypertension displayed reduced
metastasis and cancer recurrence.82 This may be due b-ADR
signaling involvement that alters gene expression within the
primary tumor.83 Further investigation of b-ADR signaling
provided evidence that the b-ADR pathway controls the
stimulation of the arachidonic acid cascade.84 In breast cancer
development, arachidonic acid is a critical molecule that has
been shown to activate mTOR and increase the activity of
VEGF.85 mTOR and VEGF seem to be a common pathway
in breast cancer and in hemECs, involving enhanced
angiogenesis.

Direct and Indirect Effects of Propranolol

Although propranolol treatment and b-ADR antagonism
seems promising for IH as well as a number of other human
cancers, there is quite a bit of knowledge gap. This essentially
involves understanding whether propranolol mediates the
effects through blocking b-ADR or another indirect mecha-
nism. There are possibilities that need to be explored: 1)
involvement of receptor dimerization and a-ADR signaling,
and 2) involvement of serotonin (5HT) signaling. Although
data is limited, propranolol does stereoselectively bind and
inhibit a-ADR in the heart.86 Immunoprecipitation studies
also show that b1-ADR and a2-ADR heterodimerize when
co-expressed.87 This interaction changes the pharmacological
properties of b1-ADR as shown by ligand binding assays.
b1- and b2- ADR have also been shown to heterodimer-
ize.88,89 These findings suggest that the profile of ADR may
have functional cellular consequence and represents an area
of significant future research interest. In addition to ADRs,
propranolol may also mediate its effects through serotonin
(5HT) receptors.90,91 The interaction between propranolol
and 5HT occurs with high affinity as well as low affinity
5HT receptors.90 There is also experimental evidence that
propranolol acts as a 5HT1A antagonist and a 5HT1B ago-
nist in the rat cortex.92 Treatment with propranolol also
inhibited basal cAMP and steroidogenesis in rat leydig cells,
with effects evident at 0.1 mmol/L.91

Concluding Remarks

Propranolol has shown promising effects in IH resolution
and many studies have sought to understand the mechanism
of propranolol as an effective treatment. Recent clinical
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studies have also suggested that the use of b-blockers is
effective in treating several tumors and cancers. b-ADR sub-
types are associated with cancer growth and progression by
increasing angiogenic, migratory, and invasive factors in
tumor cells. In culture studies, propranolol causes apoptosis
in ECs, as well as reduces VEGF to decrease angiogenesis.
However, different responses are seen in perivascular cells
and hemangioma derived stem cells. b-ADR-associated pro-
teins may exhibit distinct tissue localization and underlie
the differential activity of propranolol. Identification of
cytoplasmic regulatory proteins in IH-derived cells that
interact with b-ADRs may represent an attractive future
research area for the development of cell-type specific
therapies.
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