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Abstract
Biological	data	are	often	intrinsically	hierarchical	(e.g.,	species	from	different	genera,	
plants	within	different	mountain	regions),	which	made	mixed-	effects	models	a	com-
mon	analysis	 tool	 in	ecology	and	evolution	because	 they	can	account	 for	 the	non-	
independence.	Many	questions	around	their	practical	applications	are	solved	but	one	
is	still	debated:	Should	we	treat	a	grouping	variable	with	a	low	number	of	levels	as	a	
random	or	fixed	effect?	In	such	situations,	the	variance	estimate	of	the	random	effect	
can	be	imprecise,	but	it	 is	unknown	if	this	affects	statistical	power	and	type	I	error	
rates	of	the	fixed	effects	of	interest.	Here,	we	analyzed	the	consequences	of	treating	
a	grouping	variable	with	2–	8	levels	as	fixed	or	random	effect	in	correctly	specified	and	
alternative	models	 (under-		or	overparametrized	models).	We	calculated	type	I	error	
rates	and	statistical	power	for	all-	model	specifications	and	quantified	the	influences	
of	study	design	on	these	quantities.	We	found	no	influence	of	model	choice	on	type	I	
error	rate	and	power	on	the	population-	level	effect	(slope)	for	random	intercept-	only	
models.	However,	with	varying	intercepts	and	slopes	in	the	data-	generating	process,	
using	a	 random	slope	and	 intercept	model,	and	switching	to	a	 fixed-	effects	model,	
in	case	of	a	singular	fit,	avoids	overconfidence	in	the	results.	Additionally,	the	num-
ber	 and	difference	between	 levels	 strongly	 influences	power	 and	 type	 I	 error.	We	
conclude	that	inferring	the	correct	random-	effect	structure	is	of	great	importance	to	
obtain	correct	type	I	error	rates.	We	encourage	to	start	with	a	mixed-	effects	model	
independent	of	the	number	of	levels	in	the	grouping	variable	and	switch	to	a	fixed-	
effects	model	only	in	case	of	a	singular	fit.	With	these	recommendations,	we	allow	for	
more	informative	choices	about	study	design	and	data	analysis	and	make	ecological	
inference	with	mixed-	effects	models	more	robust	for	small	number	of	levels.
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1  |  INTRODUC TION

Many	 biological	 data	 from	 experimental	 or	 observational	 stud-
ies	 have	 hierarchical	 grouping	 (or	 blocking,	 or	 clustering)	 struc-
tures	 that	 introduce	 dependencies	 among	 observations	 (Bolker	
et al., 2009;	 Harrison	 et	 al.,	 2018;	McMahon	&	Diez,	2007; Zuur 
et al., 2009).	 A	 statistical	 analysis	must	 account	 for	 these	 depen-
dencies	 to	 ensure	 consistency	 of	 statistical	 properties	 (e.g.,	 type	
I	 error	 rate)	 (Arnqvist,	 2020), a task for which linear and gener-
alized	 mixed-	effects	 models	 (LMMs	 or	 GLMMs)	 were	 designed	
(Chen	&	Dunson,	2003;	 Laird	&	Ware,	1982).	Mixed-	effects	mod-
els	have	 replaced	ANOVAs	as	 the	common	 tool	 for	variance	anal-
ysis	 (Boisgontier	 &	 Cheval,	2016;	 Bolker	 et	 al.,	2009;	Wainwright	
et al., 2007)	because	 they	allow	simultaneous	analysis	of	variance	
at	different	hierarchical	levels	(Boisgontier	&	Cheval,	2016; Krueger 
&	Tian,	2004),	handle	unbalanced	study	designs	better	 (Lindstrom	
&	 Bates,	 1988; Littell, 2002;	 Pinheiro	 &	 Bates,	 1995;	 Swallow	 &	
Monahan,	1984),	and	have	better	statistical	properties	 for	missing	
data	(Baayen	et	al.,	2008).

Mixed-	effects	models	have	the	ability	to	adapt	to	different	data	
structures,	but	the	flexibility	(see	Box 1;	Wainwright	et	al.,	2007) 
that	comes	with	 them	also	 leads	 to	discussions	about	 their	 chal-
lenging	application	 (Dixon,	2016;	Nakagawa	&	Schielzeth,	2013). 
This	includes	data-	related	properties	such	as	the	best	way	to	han-
dle	 overdispersion	 (Harrison,	 2014, 2015),	 small	 sample	 sizes	 in	
the	individual	blocks	(Gelman	&	Hill,	2007), technical aspects such 
as	robustness	to	wrong	distributional	assumptions	of	the	random	
effects	 (Schielzeth	 et	 al.,	2020),	 and	 to	 questions	 about	 how	 to	
compare	different	mixed-	effects	models	(e.g.,	using	R2,	Nakagawa	
&	 Schielzeth,	 2013).	 Additionally,	 there	 are	 application-	oriented	
issues	 (Harrison	 et	 al.,	 2018;	Meteyard	&	Davies,	2020) such as 
the	question	about	the	complexity	of	the	random-	effect	structure	
(Barr	 et	 al.,	2013;	 but	 see	Matuschek	 et	 al.,	2017), the interpre-
tation	of	 random	effects	 (e.g.,	Dixon,	2016), or when a grouping 
variable	 should	 be	 treated	 as	 random	 or	 fixed	 effect	 (Harrison	
et al., 2018).

A	priori,	modeling	a	grouping	variable	as	fixed	or	random	effect	
are	 for	 balanced	 study	 designs	 equally	 well	 suited	 for	 multilevel	
analysis	(Kadane,	2020; Townsend et al., 2013). There are no strict 
rules,	because	the	best	strategy	generally	depends	on	the	goal	of	the	
analysis	(Gelman	&	Hill,	2007, see Box 2),	however,	for	unbalanced	
designs	there	are	some	subtilities.	For	instance,	random-	effect	esti-
mates	incorporate	between	and	within	group	information,	whereas	
the	corresponding	 fixed-	effects	model	 (grouping	variable	 is	 speci-
fied	as	a	fixed	effect)	only	within	group	information	which	leads	to	
different	weighting	of	the	individual	level	estimates	(not	in	balanced	
study	designs)	(McLean	et	al.,	1991;	Dixon,	2016;	Shaver,	2019;	but	
see	Giesselmann	&	 Schmidt-	Catran,	2020).This is important when 
one	 is	 interested	 in	 the	 actual-	level	 effects	 themselves	 (narrow-	
sense	 inference	 analysis),	 but	 also	 when	 only	 interested	 in	 the	
population-	level	effect	(broad-	sense	inference	analysis),	 i.e.,	where	
the	individual	levels	of	the	grouping	variable	are	not	of	interest	and	
one	uses	a	non-	linear	model.	For	this	type	of	analysis,	 for	a	fixed-	
effect	model,	we	cannot	simply	build	the	weighted	average	over	the	

individual	 levels	to	obtain	the	population-	level	effect,	because	the	
non-	linearity	does	not	commute	with	the	expectation	value.

The	different	inferential	conclusions	that	result	from	fixed-		and	
random-	effect	modeling	 are	due	 to	 the	different	 assumptions	un-
derlying	 these	 two	options	 (Millar	&	Anderson,	2004).	Modeling	a	
grouping	variable	as	random	effect	implicitly	assumes	that	the	indi-
vidual	 levels	of	the	grouping	variable	are	realizations	of	a	common	
distribution,	 usually	 a	 normal	 distribution,	 for	 which	 the	 variance	
and	 the	 mean	 (the	 population-	level	 effect)	 need	 to	 be	 estimated	
(e.g.,	DerSimonian	&	Laird,	1986).	As	random	effects	are	commonly	
parametrized	 so	 that	 the	 random-	effect	 has	 a	 zero	mean,	 this	 as-
sumption	shrinks	the	estimates	of	each	random-	effect	level	to	zero.	
In	contrast,	treating	a	grouping	variable	as	a	fixed	effect	makes	no	
distributional	assumptions	about	the	individual	level	estimates	(i.e.,	
treating	the	levels	separately	of	each	other	and,	thus,	no	between-	
level	information	is	used	to	estimate	the	level	effects).	The	random-	
effect	model	has	fewer	effective	parameters	than	the	fixed-	effects	
model	because	of	 the	 shrinkage	 (e.g.,	Gelman	&	Hill,	2007) which 
can	 lead	 in	 balanced	designs	 to	 higher	 statistical	 power	 to	 detect	
significant	 population-	level	 effects	 at	 the	 cost	 of	 higher	 compu-
tational	 and	 numeric	 demand	 (Bolker	 et	 al.,	2009), discussions on 
how to correctly calculate p-	values	 in	 unbalanced	 designs	 (Bolker	
et al., 2009;	see	Nugent	&	Kleinman,	2021)	and	a	bias	towards	zero	
of	the	random-	effect	estimates	(Johnson	et	al.,	2015).

So,	if	we	are	not	interested	in	each	individual-	level	effect	(broad-	
sense	 inference),	 random-	effect	 modeling	 seems	 preferable	 over	
fixed-	effects	modeling.	 It	 is,	however,	unclear	 if	 these	advantages	
remain	when	the	number	of	levels	in	the	grouping	variable	is	small	
(cf.	also	Harrison	et	al.,	2018),	because	this	might	cause	an	imprecise	
and	biased	random-	effects	variance	estimate	(Harrison	et	al.,	2018), 
which	then	could	 influence	the	population-	level	effect	estimate	of	
the	mixed-	effects	model	(Hox	et	al.,	2017).

The	ecological	literature	suggests,	as	a	rule	of	thumb,	that	an	ap-
proximately	precise	estimate	of	the	random-	effect	variance	requires	
at	least	five,	sometimes	eight,	levels	(Bolker,	2015;	Harrison,	2015; 
Harrison	 et	 al.,	 2018).	 With	 four	 or	 fewer	 levels	 in	 the	 grouping	
variable,	 the	preferred	alternative	 is	 to	 include	 it	 as	a	 fixed-	effect	
(Bolker,	2015;	 Bolker	 et	 al.,	2009;	 Gelman	 &	Hill,	2007).	 But	 this	
threshold	 seems	 to	be	 arbitrarily	 chosen	 as	 it	 varies	 by	discipline,	
e.g.,	10–	20	in	psychology	(McNeish	&	Stapleton,	2016),	or	30–	50	in	
sociology	(Maas	&	Hox,	2005). To our knowledge, however, none of 
these	values	were	based	on	a	systematic	analysis	of	how	the	model-
ing	choice	of	the	grouping	variable	affects	statistical	properties	such	
as	the	type	I	error	rate	and	power	of	the	estimated	population-	level	
effects	(i.e.,	the	weighted	average	slope	or	intercept	over	a	grouping	
variable).

Here,	we	analyze	a	situation	where	an	analyst	wants	to	infer	the	
population-	level	 effect	 and	decided	 to	 use	 a	mixed-	effects	model	
but	is	confronted	with	a	low	number	of	levels	in	the	grouping	vari-
able.	For	this	scenario,	we	simulated	an	unbalanced	study	design	on	
the height of a plant on a temperature gradient to compare empir-
ical	power	and	type	I	error	with	a	varying	number	of	levels	(two	to	
eight mountains). To represent the challenge of correctly specifying 
the	model	 structure	 and	 the	 consequences	 if	 the	 structure	 is	 not	
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correctly	 specified,	 we	 additionally	 tested	 mis-	specified	 models	
(overparametrized	or	underparametrized	versions	of	 the	 fixed	and	
mixed-	effects	 models).	 To	 quantify	 the	 effect	 of	 these	 modeling	
choices	on	 the	population-	level	 effect,	we	 compared:	 type	 I	 error	
rates	and	statistical	power.	Based	on	our	results	and	in	the	context	of	
broad-	sense	inference,	we	give	practical	recommendations	on	when	
to	include	grouping	variables	as	random	effect	or	as	fixed	effect.

2  |  METHODS

2.1  |  Simulated example and scenarios of data and 
model complexity

To	compare	random-		and	fixed-	effects	modeling	of	a	grouping	vari-
able	with	 small	number	of	 levels,	we	simulated	data	based	on	our	
hypothetical	 example	 from	 Box 1.	 We	 hypothesized,	 that	 higher	

temperatures	 increase	 the	average	height	of	plants.	We	simulated	
an	 unbalanced	 study	 design	 –		 a	 common	 scenario	 in	 ecology	 and	
evolution	(Schielzeth	et	al.,	2020)	–		with	two	to	eight	mountains	and	
a	varying	number	of	plants	for	each	mountain	(expected	range	be-
tween	40–	360	plants	per	mountain)	while	keeping	the	overall	num-
ber	of	plants	constant	(on	average	200	plants	per	mountain)	along	
altitudinal	transects.	For	each	case,	we	simulated	5000	datasets.

2.1.1  |  Scenario	A	-		random	intercepts	per	mountain

In	scenario	A,	we	assumed	mountains	only	differ	in	their	intercepts	
(mean	height),	and	the	effect	of	temperature	(slope)	is	the	same	for	
each	mountain	(constant	slope	over	the	levels	of	the	grouping	vari-
able,	Table 1,	Equation	M1).	We	tested	two	different	mixed-	effects	
model structures: a correctly specified model which corresponds 
to	 the	 data-	generating	 process	 (Table 1,	 Equation	 M4)	 and	 an	

BOX 1 Scenario of an ecological study design with grouping/blocking variables

Sampling design. Suppose we want to understand the 
population-level effect of temperature on the height of a 
plant species that grows in different mountains. We 
hypothesize that higher temperature (lower altitude) 
increases the height of flowering plants. To do so, we 
establish altitudinal transects in many mountains and 
collect information from a certain number of plants. In 
this idealized scenario, we assume that the temperature 
predictor variable is colinear with altitude and not 
confounded with any other predictors like soil type, 
moisture, or ph.  

Sampling design 

Problem. The transects are not in the same 
geographical alignment, the type of soil varies in each 
mountain, and the plants are genetically very distinct 
among populations. All these factors introduce 
differences among populations that are not exactly of our 
interest (given our hypotheses), but statistically, plants of 
the same mountain are non-independent observations. 
The mountains can be considered as grouping, blocking 
or control variable. 

Modeling options. We may use a mixed-effects model 
with a random intercept and slope (Box 2) for mountain 
to account for the differences among populations (grey 
lines in Fig. I while still modeling the relationship of 
interest as fixed-effects (blueline). An alternative may be 
to use a fixed-effects model, i.e., to include mountain as 
a categorical predictor (Box 2). 

Hypothesis - The height of flowering plants 
increases with temperature: 

Figure I: Individual realizations of the height 
dependence on temperature (grey lines) and the 
overall realization (blue line). 
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overparametrized	model	 (Table 1,	Equation	M5)	with	an	additional	
random	slope	for	each	mountain.	Since	in	real	studies	the	true	under-
lying	data-	generating	process	is	unknown,	it	is	useful	to	understand	
if	 an	overparametrized	model	correctly	estimates	 the	variances	of	
the	random	effects	to	zero	and	predicts	all	random	slope	levels	to	
zero	(or	nearly	zero)	and,	thus,	approximate	the	data-	generating	pro-
cess	(Table 1,	Equation	M1).

As	 fixed-	effect	 alternatives,	 we	 tested	 the	 correctly	 specified	
model	with	mountain	as	fixed	intercept	together	with	temperature	
as	 slope	 (Table1,	 Equation	M3),	 and	 an	 underparametrized	model	
omitting	 mountain	 at	 all	 (Table 1,	 Equation	 M2).	 This	 last	 model	

corresponds	to	a	mixed-	effects	model	that	estimates	the	variances	
of	 the	 random	effect	 to	be	zero	and	thus	predicts	 the	 random	ef-
fects	to	be	zero.

2.1.2  |  Scenario	B	-		random	intercepts	and	random	
slopes per mountain

In	scenario	B,	we	assumed	the	data-	generating	process	contained	a	
random	intercept	and	a	random	slope	(without	correlation	among	the	
random	slopes	and	intercepts)	for	each	mountain	(Table 1,	Equation	

BOX 2 Modeling a grouping variable as random or fixed- effect

Fixed or random effect? The question of whether to 
include a grouping (blocking) variable as random or fixed-
effect in the analysis depends on several factors. Fixed-
effects are usually used when the analysts are interested 
in the individual level estimates of a grouping variable 
(Bolker et al., 2009) and these are independent, mutually 
exclusive, and completely observed (e.g. control and 
treatment in experiments, male and female when 
analyzing differences between sex) (e.g. Hedges & 
Vevea 1998; Gunasekara et al., 2014). Random-effects 
are modeling choices when the variance between the 
different levels (Bolker et al., 2009) and not the exact 
estimates of the different levels are of interest (e.g. 
DerSimonian & Laird 1986). Additionally, random-effects 
can be used when not every realization of the underlying 
mechanism can be observed (e.g. species across a 
number of observational sites in different geographic 
areas) but the analysts want to control for its influence 
(i.e. pseudo-replication, see Arnqvist 2020). The two 
options differ in their interpretation, mixed-effects models 
use between- and within-group information whereas 
fixed-effects models use only within-group information. 
This subtle difference is important when for instance 
treatment or group differences are the goal of the 
analysis. Another important difference is that when 
modeling the categorical variable as fixed-effect 
conclusions apply to the levels used in the study, while 
when modeling as random-effect conclusions apply to the 
population of levels from where the studied levels were 
randomly sampled. However, in our example (Box 1), we 
are mainly interested in the population-level effect and 
not in the group differences which makes the inferential 
distinction negligible. See Gelman (2005) or Gelman & 
Hill (2007) for more decision criteria for whether an effect 
is random or fixed. 

Technical differences between random and fixed-
effects. When specifying a grouping variable as fixed-
effect, the model with a default contrast in R estimates 
the effect of one reference level (see Schielzeth 2010) 
differences between the reference level and possible 
linear combinations of other levels (Fig. B1a,c). Thus, it is 
not possible for fixed-effects models to estimate mean 
effect over groups (i.e., the population-level effect), but it 
can be calculated using e.g. bootstrapping (see 

Supporting Information S1), with sum-to-zero contrasts, or 
follow-on packages such as emmeans (Lenth 2021). 
Mixed-effects models estimate the population-level effect 
and its variance and from a Bayesian perspective each 
individual level effect or from a frequentist perspective 
predict future realizations of the individual random-effect 
levels – Best Unbiased Linear Predictor (Fig. IIb, d). 
Blocking variables may not only imply different intercepts 
(Fig II a, b), but also different slopes (Fig II c, d - the 
temperature “ecological” effect). In fixed-effects models, 
this is done by introducing an interaction between the 
population level effect and the grouping variable. With 
mixed-effects models the choice of modeling different 
slopes and their correlation to intercepts for each group is 
related to the study design and may have impact on 
modeling structure and inference. Such correlations 
between random slopes and random intercepts are fitted by 
default but can be disabled.  

Figure II: Fixed- and mixed-effects models fit to simulated data 
with random intercept (a,b) and random intercept and slope (c,d) 
for each mountain in the example from H2  Box 1. Lines 
represent the individual estimates for each mountain. The blue 
line is the estimated population-level effect of mixed-effects 
models.
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M6).	Here,	the	population-	level	effect	(temperature)	differs	among	
levels	of	the	grouping	variable	(mountain).	We	tested	three	different	
mixed-	effects	model	structures:	a	correctly	specified	model	corre-
sponding	to	the	data-	generating	process	 (Table 1,	Equation	M	10),	
an	overparametrized	model	containing	an	extra	term	for	the	correla-
tion	of	the	random	intercept	and	random	slope	(Table 1,	Equation	M	
11),	and	an	underparametrized	model	with	only	a	random	intercept	
for	each	mountain	(Table 1,	Equation	M	9).	We	used	the	underpara-
metrized	model	 to	 test	 the	effect	of	not	accounting	 for	 important	
contributions	to	the	data-	generating	process.	Note,	however,	only	in	
case	of	balanced	designs	and	linear	models	the	population-	level	ef-
fect	estimate	from	the	underparametrized	model	is	consistent	with	
the	full	model,	because	of	different	weighting	schemes	(for	unbal-
anced	designs),	and	the	fact	that	the	expected	value	of	a	non-	linear	
transformation	of	estimates	is	not	the	same	as	the	non-	linear	trans-
formation	of	the	expected	value	of	these	estimates.

As	 fixed-	effect	 alternatives,	 we	 tested	 the	 correctly	 specified	
model with the main effects of temperature, mountain, and their in-
teraction	(Table 1,	Equation	M	8),	and	the	underparametrized	model	
without	mountain	as	predictor	 (Table 1,	Equation	M	7).	We	tested	
the	 last	 model	 because	 mixed-	effects	 models	 that	 estimate	 zero	
variance	 for	 both	 random	 effects	 are	 virtually	 the	 same	 as	 fixed-	
effects	models	that	omit	the	grouping	variable.

2.2  |  Model fitting

We	 fitted	 linear	mixed-	effects	models	 to	 our	 simulated	 data	with	
the lme4	R	package	 (Bates	et	al.,	2015) together with the lmerTest 
(Kuznetsova	et	al.,	2017)	package,	which	uses	the	Kenward-	Rogers	
approximation	 to	 get	 the	p-	values	 of	 the	 fixed-	effects.	 For	 fixed-	
effects models, we used the lm() function of the R stats package 
(Version	4.1,	R	Core	Team,	2021).	For	fixed-	effects	models	 in	sce-
nario	A,	we	extracted	p-	values	from	the	summary() function and, for 
scenario	B,	we	used	the	fitted	variance–	covariance	matrix	and	the	
individual-	level	effects	to	bootstrap	the	population-	level	effect	and	
its	standard	error	(see	Supporting	Information	S1).

Obtaining	p-	values	 for	mixed-	effects	models	 is	 intensively	dis-
cussed	in	the	statistical	community	and	they	are	only	exact	for	sim-
ple	designs	and	balanced	data	(Kuznetsova	et	al.,	2017). One reason 
is that in order to calculate p-	values	 in	mixed-	effects	models,	 de-
nominator	degrees	of	freedom	must	be	calculated,	which	generally	
can	only	be	approximated	(Kuznetsova	et	al.,	2017).	For	best	prac-
tice	 in	 which	 situations	 one	 should	 use	 which	 approximation	 see	
(Bolker	et	al.,	2009;	see	also	Nugent	&	Kleinman,	2021). The lmerTest 
package	uses	the	Satterthwaite	method	to	approximate	the	degree	
of	freedoms	of	the	fixed	effects	in	the	linear	mixed-	effect	model.

We	 used	 the	 restricted	maximum	 likelihood	 estimator	 (REML)	
(for	a	comparison	of	REML	and	maximum	likelihood	estimator	[MLE]	
see Appendix and Supporting	Information	S1).	All	results	of	mixed-	
effects	models	presented	in	scenarios	A	and	B	are	for	the	datasets	
without	 singular	 fits	 (see	 Section	 on	 Variances of random- effects 
and singular fits). Technically, singular fits occur when at least one 
of	the	variances	(diagonal	elements)	in	the	Cholesky	decomposition	

of	the	variance–	covariance	matrix	are	exactly	zero,	or	correlations	
between	different	random	effects	are	estimated	close	to	−1	or	1.

We	repeated	the	analysis	for	the	glmmTMB	R-	package	because	
it	uses	a	different	implementation	to	estimate	mixed-	effect	models	
(see	Appendix for methods and results).

2.3  |  Statistical properties and simulation setup

We	used	type	 I	error	rate	and	statistical	power	of	the	population-	
level	effects	(average	height	and	temperature)	to	compare	the	mod-
eling	 options.	 For	 example,	 type	 I	 error	 rate	 for	 the	 temperature	
(slope)	is	the	probability	to	identify	a	temperature	effect	as	statisti-
cally	significant	although	the	effect	is	zero.	Statistical	power	in	this	
case	is	the	probability	to	detect	the	temperature	effect	as	significant	
if	the	effect	is	truly	greater	than	zero.	For	a	correctly	calibrated	sta-
tistical	test,	the	type	I	error	is	expected	to	be	equal	to	the	alpha-	level	
(in	our	case	5%).

To investigate type I error rates of the models on the intercept 
(average	height)	 and	average	 slope	 (temperature	effect),	we	 simu-
lated data with no effects, i.e., the effects of temperature and moun-
tain	on	height	 is	zero.	To	additionally	 investigate	statistical	power,	
we	simulated	an	example	with	a	weak	effect	which	corresponds	to	
an	average	 increase	 in	 size	per	unit	 step	of	 the	standardized	 tem-
perature	(linear	scale)	of	0.4	cm.

For	scenarios	A	and	B,	the	individual	effects	for	each	mountain	
were	 drawn	 from	 a	 normal	 distribution	with	 variance	 of	 0.01	 and	
0.25	around	the	average	effects:	0.4	cm	average	height	(intercept),	
and	0.4	 cm	 average	 increase	 in	 size	with	 temperature	 (slope).	We	
chose to run and compare simulations with these two values for the 
variance	of	the	random	effects	to	understand	better	how	a	larger	or	
smaller variance may interfere in type I and power.

2.4  |  Variances of random effects and singular fits

To	understand	how	the	number	of	 levels	affected	 random-	effects	
variance estimates, we compared the variance estimates for random 
intercepts	 and	 slopes	 from	 the	 correctly	 specified	 mixed-	effects	
model	 in	 scenario	 B	 (Table 1,	 Equation	M10).	We	 also	 compared	
optimization	routines	 (REML	and	MLE)	 in	terms	of	estimating	zero	
variances	(singular	fits,	see	below)	(see	Supporting	Information	S1). 
For	 bounded	 optimizations,	which	most	 R	 packages	 apply	 for	 the	
variance,	 it	has	been	shown	that	 the	null	distribution	of	a	 random	
effect's	variance	is	a	combination	of	a	point	mass	at	zero	and	a	chi-	
squared	distribution	(Stram	&	Lee,	1994).	For	the	sampling	distribu-
tion	with	a	true	variance	unequal	to	zero	there	are	no	proofs,	but	one	
would	expect	a	similar	distribution.

While	singular	fits	do	not	signal	a	convergence	issue,	the	con-
sensus	is	that	the	results	of	such	models	are	not	reliable.	However,	
we	decided	to	use	non-	singular	fits	and	additionally	non-	singular	
and	singular	fits	combined	for	calculating	power	and	type	I	error	
for	 the	mixed-	effects	models,	 and	 to	 infer	 the	effect	of	 singular	
fits	on	the	averaged	statistical	properties.	We	classified	a	dataset	
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as	singular	or	non-	singular	if	the	mixed-	effects	model	ran	in	lme4 
reported	 a	 singular	 fit	warning	message.	 For	 fixed-	effects	mod-
els,	 we	 used	 estimates	 from	 non-	singular	 and	 singular	 datasets	
combined.

Using	only	 non-	singular	 fits	 for	 calculating	power	 and	 type	 I	
error	 impacts	 these	 statistical	 properties	 (e.g.,	 type	 I	 error)	 be-
cause they are conditional on this selection and thus likely not to 
be	at	the	nominal	level	(e.g.,	5%	for	type	I	error	rate).	However,	as	
our main intention is to report the type I error rates from the point 
of the analyst who may adjust the model structure to dispose of 
the singular fit, our reported rates represent empirical type I error 
rates.

2.5  |  Quantifying the influences of study design on 
power and type I error

Power	and	type	 I	error	of	 the	population-	level	effect	may	depend	
not	only	on	the	number	of	levels	(mountains)	but	also	on	the	random-	
effect	variance,	the	overall	number	of	observations	and	the	balance	
of	 observations	 among	 levels.	 To	 further	 quantify	 the	 impact	 of	
these study design factors on statistical power and type I error rate 
of	the	population-	level	effect,	we	additionally	ran	1,000	iterations	
(each	with	1,000	non-	singular	model	fits)	with	the	data-	generating	
process	 from	 scenario	 B	 for	 our	 ecological	 example.	 Thereby,	 we	
sampled	the	number	of	mountains	from	2	to	20	with	equal	probabil-
ity	for	each	number,	the	random-	effects	variances	from	10−4 to 4, 
the	overall	number	of	observations	from	10	to	500	times	the	number	
of	mountains.	Additionally,	to	create	different	degrees	of	unbalance	
in	data,	we	sampled	for	each	mountain	the	average	share	of	total	ob-
servations	from	0.1	to	0.9,	which	corresponds	to	at	least	3	observa-
tions	per	mountain.	We	used	the	difference	between	the	largest	and	
the	lowest	proportion	as	proxy	for	the	degree	of	unbalance.

For	the	so-	generated	data,	we	fitted	the	correctly	specified	lin-
ear	mixed-	effects	and	fixed-	effects	models	from	scenario	B	(Table 1, 
Equations	M8	and	M10)	and	calculated	type	I	error	rate	and	statis-
tical	power	of	the	population-	level	effect.	We	then	fitted	a	quantile	
regression using the qgam	R-	package	(Fasiolo	et	al.,	2020), with the 
statistical	 property	 (power	 and	 type	 I	 error	 rate)	 as	 response	 and	
variance,	number	of	levels,	total	number	of	observations	and	the	un-
balance	proxy	as	splines.	We	used	a	quantile	regression	with	splines	
as	we	expect	a	non-	linear	relationship.

3  |  RESULTS

3.1  |  Scenario A -  random intercepts per mountain

When	the	effect	of	the	temperature	predictor	was	the	same	among	
mountains,	 irrespectively	 of	 the	 number	 of	 levels	 (mountains),	 all	
models	 except	 for	 the	 overparametrized	model	 (random	 intercept	
and	slope)	showed	an	average	type	I	error	rate	of	5%	(Figure 1a–	d). 
Average	power	 increased	 (Figure 1e-	h)	with	 the	number	of	moun-
tains	from	90%	(2	mountains)	to	100%	(5–	8	mountains).	Note	that	

the	model	omitting	the	grouping	variable	presented	similar	proper-
ties as the other models for small variances in the random effect. 
However,	when	increasing	the	variance	of	the	random	intercept	 in	
the	 simulation,	 the	 model	 omitting	 the	 grouping	 variable	 showed	
lower	power	(Figure 1g,h).

For	the	overparametrized	model,	we	found,	on	average,	a	lower	
type	I	error	rate	of	less	than	5%	(Figure 1a-	d), and lower average sta-
tistical	power	to	detect	the	temperature	effect	for	a	small	number	of	
mountains	(Figure 1e-	h).	When	combining	singular	and	non-	singular	
fits,	the	overparametrized	model	had	more	average	power	compared	
to	only	non-	singular	 fits	 and	an	average	 type	 I	 error	 closer	 to	 the	
nominal	level	(Figure 1).

The	results	for	the	intercept	for	the	different	models	(see	Figure	
S9)	are	similar	to	the	results	for	the	slope	in	scenario	B	(see	below).

3.2  |  Scenario B -  random intercepts and slopes 
per mountain

In	scenario	B,	where	the	effect	of	the	temperature	differed	among	
levels, the modeling decision influenced the average power and av-
erage	type	I	error	(Figure 2).	We	found	that	average	type	I	error	rate	
of	 the	 correctly	 specified	mixed-	effects	model	 (Table 1,	 Equation	
M10)	slightly	increased	(Figure 2a)	with	the	number	of	levels	towards	
the	nominal	value	(0.05)	(Figure 2a). The increase was stronger for 
larger	variances	 (0.25)	 in	the	random	effects	 (Figure 2c).	With	sin-
gular	fits,	the	mixed-	effects	models	showed	a	higher	average	type	
I	error	 rate	than	the	nominal	 level	 for	 lower	number	of	mountains	
(Figure 2b,	d).	With	a	higher	variance	in	the	random	effects,	the	av-
erage	type	I	error	rate	was	only	increased	for	two	levels	(Figure 2d). 
The	overparametrized	model	with	correlated	random	intercept	and	
random	slope	(Table 1,	Equation	M11)	presented	similar	properties,	
but	with	decreased	average	power	(Figure 2e-	h).

For	 the	correctly	 specified	 fixed-	effects	model,	 average	 type	 I	
error	 (≈	2%)	stayed	constant	with	the	number	of	 levels	 (Figure 2c) 
and	a	low	variance	in	the	random	effects	but	increased	stronger	to	
the	nominal	level	with	a	higher	variance	(Figure 2d).	Average	power	
increased	with	the	number	of	mountains	(Figure 2e-	h).	The	mixed-	
effects	model	showed	higher	average	power	than	the	fixed-	effects	
model	irrespective	of	the	number	of	mountains	(Figure 2e-	h).

The	underparametrized	model	without	the	grouping	variable	had	
a	 higher	 average	 type	 I	 error	 rate	 (0.2)	 and	higher	 average	power	
than	the	other	models	(Figure 2e-	h).	With	a	higher	variance,	the	av-
erage	type	I	error	rate	was	even	higher	(0.8;	Figure 2c, d).

3.3  |  Variance estimates of random effects and 
singular fits

We	 found,	 for	 the	 models	 (singular	 and	 non-	singular	 fit	 results	
combined)	in	Scenario	B	(random	intercept	and	slope)	that	random-	
effects'	variance	estimates	of	the	correctly	specified	model	(Table 1, 
Equation	 M10)	 approximately	 distributed	 as	 a	 chi-	squared	 dis-
tribution	around	 the	correct	value	 (0.01)	and	a	point	mass	at	 zero	
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(Figure 3a,b	 median	 is	 near	 to	 zero).	 The	 point	 mass	 at	 zero	 de-
creased	in	height	with	increasing	number	of	levels,	i.e.,	less	models	
estimated	a	 variance	of	 zero	with	 an	 increasing	number	of	moun-
tains	(Figure 3a,b,	see	also	Table	S1).	There	was	smaller	bias	for	the	
random intercept variance estimates than for the random slope 
variance	 estimates,	which	were	 still	 biased	 for	 eight	 levels.	When	
looking at models without singular fits, the variance estimates were 
chi-	squared	distributed	(Figure 3c,d).	The	bias	towards	larger	values	
was stronger compared to estimates with singular fits, especially for 
the	random	slope	estimates	(Figure 3d).

By	comparing	 the	 fitting	 algorithms,	we	 found	 that	using	MLE	
led	 to	more	 zero-	variance	 estimates,	 i.e.,	 singular	 fits,	 (Figure	 S3,	
S4)	 than	REML.	Additionally,	using	MLE,	non-	singular	variance	es-
timates	were	strongly	biased	(Figure	S3,	S4),	but	the	bias	decreases	
with	increasing	number	of	levels.	As	expected,	for	both	optimization	
routines,	increasing	the	number	of	levels	reduced	the	number	of	sin-
gular	fits	(Table	S1).

We	found	that	singular	fits	led	to	different	type	I	error	rates	and	
statistical	 power	 (Figure 4)	 in	mixed-		 and	 fixed-	effects	models.	 For	
singular	 fits,	 the	 type	 I	 error	 rate	 of	 the	 correctly	 specified	mixed-	
effects	model	was	constant	around	10%	(like	the	model	omitting	the	
grouping	variable),	while	with	non-	singular	fits	it	was	1%	for	two	levels	
and	increased	towards	3%	with	eight	levels	(Figure 4a). In comparison, 
the	 fixed-	effects	model	had	similar	 type	 I	error	 rates	 (no	distinction	
between	singular	and	non-	singular	fits	because	fixed-	effects	models	
do	not	estimate	 the	variance	of	 the	 individual	 level	estimates),	both	
increasing	from	0%	(two	levels)	towards	1%	(eight	levels)	(Figure 4c).

We	also	found	differences	in	power	for	the	mixed-	effects	mod-
els	between	singular	and	non-	singular	fits	(Figure 4b,	d). The power 
of	 the	mixed-	effects	model	with	 correct	 structure	was	 higher	 for	
singular	than	non-	singular	fits	especially	for	a	low	number	of	moun-
tains	(Figure 4b).

3.4  |  Quantifying the influences of study design on 
power and type I error

We	found	that	the	average	type	I	error	of	mixed-	effects	models	is	
slightly	closer	to	the	nominal	value	than	its	fixed-	effect	counterpart	
(Figure 5a).	Additionally,	we	found	that	the	number	of	 levels	most	
strongly	influences	the	type	I	error	rate	for	mixed-		as	well	as	fixed-	
effects	model	 (Figure 5c).	With	 five	 or	more	 levels,	 however,	 the	
influence	of	 the	number	of	 levels	becomes	negligible.	Differences	
between	 the	mixed-		 and	 fixed-	effects	models	 arose	 for	 the	 vari-
ance	and	the	total	number	of	observations.	Here,	the	mixed-	effects	
model	was	less	influenced	by	a	small	random-	effects	variance	and	
a	 low	 number	 of	 total	 observations	 than	 the	 fixed-	effects	model	
(Figure 5b,d).	Balance,	 following	our	definition,	 (see	Methods)	 did	
not	influence	the	population-	level	effect	in	both	models	(Figure 5e).

For	power,	we	found	no	difference	between	a	fixed-		and	mixed-	
effects	model	 (Figure 5f-	j).	 For	 both	models,	 an	 increase	 in	 vari-
ance	decreased	 the	power,	while	 increasing	 the	number	of	 levels	
increased	the	power	(Figure 5g,i).	The	total	number	of	observations	
and	the	balance	between	groups	had	less	influence	(Figure 5h,j).

F I G U R E  1 Average	type	I	error	rates	and	average	power	for	linear	fixed-		and	mixed-	effects	models	fitted	to	simulated	data	with	2–	8	
mountains	(random	intercept	for	each	mountain	-		Scenario	A).	For	each	scenario,	5,000	simulations	and	models	were	tested;	(a,	b,	e,	f)	show	
results	for	simulated	data	with	a	variance	of	0.01	in	the	random	effects;	(c,	d,	g,	h)	show	results	for	simulated	data	with	a	variance	of	0.25	in	
the	random	effects;	(a,	c,	e,	g)	show	results	for	mixed-	effects	models	only	from	datasets	in	which	mixed-	effects	models	converged	without	
presenting	singular	fit	problems	and	(b,	d,	f,	h)	results	for	mixed-	effects	models	for	all	datasets.	Results	for	fixed-	effects	(a-	h)	model	are	from	
all	datasets.	(a-	d)	the	dotted	line	represents	the	5%	alpha	level
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4  |  DISCUSSION

Ecological	data	collections	or	experiments	produce	data	with	group-
ing	structures,	and	mixed-	effects	models	can	account	for	these	de-
pendencies.	 The	 main	 questions	 we	 explored	 in	 this	 article	 were:	
“should	 analysts	 stick	 to	 the	mixed-	effects	model	 or	 fall	 back	 to	 a	
fixed-	effects	model,	when	the	grouping	variable	has	few	levels?”,	and	
“how does this decision influence statistical power and type I error 
rate	of	 the	population-	level	effect?”	Here,	we	showed	with	simula-
tions	that	mixed-	effects	models	with	a	small	number	of	levels	in	the	
grouping	variable	are	technically	robust	(Figure 2), and that the deci-
sion	between	random	and	fixed	effect	matters	most	when	the	effect	
size	of	the	ecological	predictor	variable	differs	among	levels	(Figure 2).

When	 the	 effect	 of	 the	 ecological	 predictor	 is	 the	 same	 for	
each	level	of	the	grouping	variable	(scenario	A,	random	intercept	
model), almost all models presented the same average power and 
average	 type	 I	 error	 (see	 also	 Gomes,	 2021)	 (Figure 1a-	d). The 
only	 exception	was	 the	 overparametrized	model	 that	 presented	
too	low	average	type	I	errors	and	lower	average	power	(Figure 1). 
We	speculate	that	the	model	was	unable	to	correctly	predict	the	
additional	 random	 effects	 to	 zero.	 Notably,	 for	 scenario	 A,	 the	
underparametrized	 model	 omitting	 the	 grouping	 variable	 pre-
sented	correct	 average	 type	 I	 error	 rate	 (Figure 1a-	d).	However,	
this	 is	 illusive	because	average	power	decreased	with	 increasing	
effect	 sizes	 of	 the	 random	 effects	 (Figure 1g, h). This confirms 
that	the	grouping	variable	needs	to	be	included	to	correctly	parti-
tion	the	variance	among	the	different	predictors	(Bell	et	al.,	2019; 

Gelman,	2005;	Gelman	&	Hill,	2007).	Also,	including	the	grouping	
variable	is	mandatory	if	one	is	interested	in	the	average	intercept,	
otherwise	 it	would	cause	 inflated	average	type	 I	error	 rates	 (see	
Figure	S1; see the following section).

When	 the	 effect	 size	 of	 the	 ecological	 predictor	 differs	 for	
each	 level	 of	 the	 grouping	 variable	 (scenario	B;	 random	 intercept,	
and random slope model), the average type I error and power were 
influenced	 by	 both	model	 choice	 and	 the	 presence	 of	 singular	 fit	
warnings.	 The	 mixed-	effects	 models	 had	 a	 better	 average	 type	 I	
error	than	the	fixed-	effects	models,	especially	for	a	 larger	number	
of	 mountains	 (Figure 2).	 Power	 was	 comparable	 between	 mixed-		
and	 fixed-	effects	 models.	 But	 with	 non-	singular	 and	 singular	 fits	
combined,	 the	mixed-	effects	 model	 had	 higher	 type	 I	 error	 rates	
and	power	than	the	fixed-	effects	models.	In	both	cases,	the	mixed-	
effects	models	showed	good	type	I	error	rates	(about	more	or	less	
than	5%)	for	a	small	number	of	levels.

Overparametrized	mixed-	effects	models	presented	in	both	sce-
narios slightly lower average type I error and average power com-
pared	to	the	correctly	parameterized	mixed-	effects	model	(Figures 1 
and 2).	This	trade-	off	between	type	I	error	and	power	is	in	line	with	
Matuschek	 et	 al.	 (2017)	 for	 different	model	 complexities.	Overall,	
the	overparametrized	models	are	more	conservative	but	have	 less	
power	than	the	simplified	models.	We	think	these	more	conservative	
estimates	are	preferable	over	anti-	conservative	estimates,	because	
some analysists tend to try a variety of analyses and only report sig-
nificant	ones	(Simmons	et	al.,	2011), and more conservative average 
type I error counteract this procedure.

F I G U R E  2 Average	type	I	error	rates	and	average	power	for	linear	(mixed-	effect)	models	fitted	to	simulated	data	with	2–	8	mountains	
for	scenario	B	(random	intercept	and	random	slope	for	each	mountain	range).	For	each	scenario,	5,000	simulations	and	models	were	tested;	
(a,	b,	e,	f)	show	results	for	simulated	data	with	a	variance	of	0.01	in	the	random	effects;	(c,	d,	g,	h)	show	results	for	simulated	data	with	a	
variance	of	0.25	in	the	random	effects;	(a,	c,	e,	g)	show	results	for	mixed-	effects	models	only	from	datasets	in	which	mixed-	effects	models	
converged	without	presenting	singular	fit	problems	and	(b,	d,	f,	h)	results	for	mixed-	effects	models	for	all	datasets.	Results	for	fixed-	effects	
(a-	h)	model	are	from	all	datasets.	In	(a-	d)	the	dotted	line	represents	the	5%	alpha	level
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However,	 dropping	 the	 correlation	 structure	 between	 ran-
dom	 effects	 should	 be	 carefully	 considered.	 It	 is	 possible	 that	
the type I error rate increases when no correlation in the model 
is	assumed	although	there	is	one	in	the	data-	generating	process.	
Group-	mean	centering	of	the	population-	level	effect	may	mitigate	
the	requirement	of	assuming	a	correlation,	but	it	also	changes	the	
interpretation	of	the	model	because	the	 individual	 levels	are	not	
referenced	to	the	population-	level	effect	anymore	(they	are	now	
independent).

In	scenario	B,	underparametrized	models	exhibited	inflated	type	
I	errors	(in	line	with	Schielzeth	&	Forstmeier,	2009;	Barr	et	al.,	2013; 
Bell	et	al.,	2019)	but	very	high	average	power	(Figure 2).	We	spec-
ulate	that	additional	variance	coming	from	the	difference	between	
levels	in	the	grouping	variable,	which	is	not	accounted,	is	attributed	
to	the	population-	level	effect	and	causes	overconfident	estimates.

4.1  |  Variances of random effects and singular fits

The	rate	of	singular	fits	was	very	high	for	the	small	number	of	levels	
(Figure 3;	Table	S1). In our simulations, singular fits corresponded to 
zero	variance	estimates	of	the	random	effects.	The	resulting	distri-
bution	of	variance	estimates	consisted	of	a	right	skewed	chi-	squared	
distribution	 and	 a	 point	 mass	 at	 zero	 (many	 zeros	 corresponding	
to	the	singular	fits)	as	expected	(see	Stram	&	Lee,	1994). The vari-
ance	estimates	were	biased	and	 imprecise	with	a	small	number	of	

levels,	but	the	bias	decreased	with	the	number	of	levels	towards	zero	
(McNeish,	2017).	Removing	the	singular	fits	led	to	even	more	bias	in	
the	variance	estimates	(Figure 3c,d).

The	biased	variance	estimates	are	caused	by	ensuring	positive	
variances	 in	 the	 optimization	 routines	 (Bates	 et	 al.,	2015;	 Brooks	
et al., 2017).	In	case	of	a	singular	fit,	the	correctly	specified	mixed-	
effects	model	had	similar	power	and	type	I	error	as	a	fixed-	effects	
model	dropping	the	grouping	variable	(Figure 4):	no	difference	be-
tween	the	levels,	which	corresponds	to	a	fixed-	effects	model	with-
out	the	grouping	variable.	However,	the	models	still	differed	in	their	
number	of	parameters	(and	degrees	of	freedom)	which	might	explain	
the	 slight	 differences	 in	 power	 and	 type	 I	 error	 (Figure 4).When	
switching	 to	 fixed-	effects	 models	 for	 singular	 fits	 in	 the	 random	
effect,	the	type	I	error	rate	and	power	were	similar	to	the	random-	
effect	model	with	non-	singular	fits	(Figure 4).

4.2  |  Connection to study design

Earlier	 studies	 reported	mixed	 recommendations	about	 important	
study	 design	 factors.	 While	 some	 studies	 only	 stressed	 the	 im-
portance	of	the	total	number	of	observations	(Martin	et	al.,	2011; 
Pol,	2012),	we	 found,	 in	 accordance	with	Aarts	 et	 al.	 (2014), that 
the	number	of	levels	and	the	variance	between	levels	have	a	strong	
influence on type I error rates and power. Due to our simulation 
design,	which	automatically	 increases	the	number	of	observations	

F I G U R E  3 Variance	estimates	of	
random	intercepts	(a,	c)	and	random	
slopes	(b,	d)	for	linear	mixed-	effects	
models	(LMM,	Table 1.	Equation	M10)	in	
Scenario	B,	fitted	with	lme4	using	REML	
to	simulated	data	with	2–	8	mountains.	
Figures	(a)	and	(b)	show	the	results	for	all	
models	(singular	and	non-	singular	fits)	and	
figures	(c)	and	(d)	show	the	results	for	only	
non-	singular	fits.	For	each	scenario,	5,000	
simulations and models were tested. 
The	blue	dotted	lines	represent	the	true	
variance	used	in	the	simulation	(0.01),	
and the red lines the average variance 
estimates
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when	increasing	the	number	of	levels,	we	however,	cannot	perfectly	
separate	the	effects	of	number	of	observations	and	levels	from	each	
other.

The	influence	of	the	variance	on	power	and	type	I	error	is	mixed.	
On the one hand, increasing the variance had a positive effect on the 
type	I	error	for	both	models	but	the	fixed-	effects	model	was	more	
strongly	affected	(Figure 5).	The	different	distributional	assumptions	
might	explain	 this	different	behavior:	 the	mixed-	effects	model	as-
sumes	the	levels	to	be	normally	distributed	and	estimates	the	vari-
ance	of	the	levels’	flexibly,	whereas	the	fixed-	effects	model	makes	
no	distributional	assumptions.	We	speculate	that	the	mixed-	effects	
model	benefits	from	this	informative	distribution	assumption	in	this	
edge case with less than five levels. On the other hand, increasing 
the	variance	over	a	certain	value	(Figure 5g) decreased the power of 
both	models	because	more	variance	is	explained	by	the	difference	
between	levels,	and	this	 increases	the	uncertainty	of	the	slope	ef-
fect estimate.

Given	the	strong	influence	of	the	number	of	mountains	on	type	
I error rates, we encourage to design a study with at least eight 
levels	because	with	more	than	eight	levels,	the	type	I	error	rate	was	
approximately	not	affected	by	the	number	of	levels	(Figure 5c). In 
our	 scenarios,	 the	 influence	of	 the	unbalanced	number	of	 obser-
vations	between	levels	was	small	(Figure 5)	confirming	the	robust-
ness	of	mixed-	effects	to	unbalanced	data	(Pinheiro	&	Bates,	1995; 
Schielzeth	 et	 al.,	 2020;	 Swallow	 &	Monahan,	 1984).	 However,	 if	
possible	 one	 should	 try	 to	 balance	 the	 groups	 because	 despite	
the	 robustness	 of	mixed-	effect	models	 to	 an	 unbalanced	 design,	
it	 impacts	 the	 interpretation	of	 the	 random	effects	and	balanced	
studies	 create	 the	 least	 problems	 regarding	 the	 model	 option	
(Dixon,	2016).	Moreover,	the	impact	of	study	design	on	type	I	error	
and	power	stresses	the	importance	of	pre-	experiments	and	power	
analyses	(e.g.,	Brysbaert	&	Stevens,	2018;	Green	&	MacLeod,	2016; 
Johnson et al., 2015)	 to	 maximize	 the	 meaningfulness	 and	 effi-
ciency of a study.

F I G U R E  4 Type	I	error	rate	and	power	of	the	correctly	specified	linear	fixed	and	mixed-	effects	models	in	scenario	B.	We	separated	the	
datasets	based	on	if	when	fitted	they	presented	a	singular	fit	(red	lines)	or	non-	singular	fit	(blue	lines)	warning.	Figure	(a)	and	(b)	are	results	
for	the	linear	mixed-	effects	models,	and	(c)	and	(d)	for	the	linear	fixed-	effects	models.	For	comparisons,	we	show	also	results	for	the	fixed-	
effects	model	that	omits	the	grouping	variable	(mountain)
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4.3  |  Practical suggestion

Before	giving	practical	advice,	we	must	recall	the	exact	situation	in	
which	this	manuscript	acts.	We	assume	that	an	analyst	is	interested	
in	a	population-	level	effect,	and	that	they	have	already	decided	to	
use	a	mixed-	effects	model	 (broad-	sense	analysis,	not	 interested	 in	
the	individual	levels	effects),	but	faces	a	small	number	of	levels,	so	
that our recommendations only apply to such situations.

In this situation, the variance estimates of the random effects sta-
bilizes	in	a	reasonable	manner	with	at	least	five	levels	in	a	grouping	
variable	(Figure 2).	With	less	than	five	levels,	variance	estimates	are	
biased	to	zero	(Figure 3)	 though	without	an	effect	on	the	observed	
average	type	I	error	rates	of	the	population-	level	effect	(Figures 1, 2). 
We	rather	found	that	the	question	of	how	to	deal	with	a	singular	fit	
in	the	mixed-	effects	model	is	more	crucial	than	the	actual	number	of	
levels.	If	there	is	a	singular	fit	warning,	switching	to	the	fixed-	effects	
model	leads	to	more	conservative	average	type	I	error	rates	(Figure 2). 
Acknowledging	that	most	singular	fits	occur	with	a	small	number	of	
levels	(Table	S1),	this	might	also	explain	the	common	rule	of	thumb	to	
not	fit	a	grouping	variable	as	random	effect	if	it	has	fewer	than	five	
levels	(Bolker,	2015;	Bolker	et	al.,	2009;	Gelman	&	Hill,	2007).

Our	 recommendations	 are	 summarized	 in	 Figure 6.	 We	 rec-
ommend	 starting	with	 the	mixed-	effects	model,	 regardless	 of	 the	
number	of	levels,	and	switching	to	a	fixed-	effects	model	only	in	case	
of	 a	 singular	 fit	warning.	How	 to	 deal	with	 singular	 fits	 is	 a	 topic	
of	ongoing	discussion.	While	Barr	et	al.	 (2013) states to start with 
the	maximum	model	and	simplify	the	model	in	case	of	convergence	

issues	and	singular	fits,	Matuschek	et	al.,	2017 suggests to think a 
priori	about	using	simpler	models	because	of	higher	power	in	return	
of	increased	type	I	error	rate.	However,	we	disagree	with	the	view	
of	 (Matuschek	 et	 al.,	2017) that trading a small increase in type I 
error	 rate	 for	higher	power	 is	 favorable,	 even	 though	 it	 could	 still	
be	 an	 interesting	 solution	 with	 the	 often-	small	 number	 of	 obser-
vations in ecological studies, when the increase in power prevails 
upon	the	increase	in	type	I	error	rate.	We	follow	the	position	of	Barr	
et	al.	(2013), and thus recommend starting with correlated random 
slope	and	intercept,	when	the	population-	level	effect	differs	among	
levels.	 If	 obtaining	 a	 singular	 fit,	 switch	 to	 uncorrelated	 random-	
effects	 (following	Matuschek	 et	 al.,	2017), and in case of another 
singular	fit,	switch	to	a	fixed-	effects	model.

Our recommendations assume that the random effect structure 
(e.g.,	random	slope	or	not)	is	known	a	priori,	which	is	often	difficult	in	
practice.	Although	model	selection	is	theoretically	possible	for	ran-
dom	effects	(e.g.,	simulated	(restricted)	LRTs	(Wiencierz	et	al.,	2011) 
or	by	residual	checks	(as	facilitated	by	Hartig,	2019),	the	frequentist	
point	of	view	recommends	sticking	closely	to	the	a	priori-	derived	hy-
pothesis, otherwise the risks such as they arise from multiple testing 
increase.	Moreover,	if	the	grouping	variable	was	included	as	a	con-
founder, this erroneous omission can cause a high type I error and 
wrong	 estimates.	 If	 there	 is	 uncertainty	 about	 the	 random-	effect	
structure	or	concern	about	the	statistical	power,	more	time	should	
be	 invested	 up	 front	 in	 hypothesis	 design	 and	 appropriate	 power	
analyses	for	mixed-	effects	models	(e.g.,	Brysbaert	&	Stevens,	2018; 
Green	&	MacLeod,	2016).

F I G U R E  5 Comparing	the	influence	of	study	design	factors	on	the	type	I	error	rate	(b	-		e)	and	power	(g	-		j)	of	linear	mixed-		(blue	lines)	and	
fixed-	effects	models	(red	lines)	with	their	respective	average	values	(a,	f).	We	found	that	the	variance	of	the	random-	effects	and	the	number	
of	levels	(number of mountains)	are	the	most	important	values	to	get	correct	type	I	error.	For	this	analysis,	we	used	the	plant	height	example	
for	Scenario	B	(random	intercept	and	random	slope).	Results	for	mixed-	effects	models	are	only	from	datasets	in	which	mixed-	effects	models	
converged	without	presenting	singular	fit	problems,	while	results	for	fixed-	effects	model	are	from	all	datasets
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5  |  CONCLUSION

In	conclusion,	we	showed	that	mixed-	effects	models	are	more	robust	
than	 previously	 thought,	 despite	 the	 biased	 variance	 estimates	 for	
low	number	of	levels	in	the	grouping	variable.	We	found	that	power	
and	type	I	error	of	the	population-	level	effect	are	robust	against	the	
model choice when the ecological effect is the same among the lev-
els	of	 the	grouping	variable,	however,	 the	model	matters	when	the	
ecological	effect	differs	among	levels.	When	in	doubt	about	the	data-	
generating process, we encourage starting with a simplified model 
(random	intercept	only)	and	consult	model	diagnostics	and	simulated	
LRTs	to	check	for	evidence	of	random	slope	effects.	When	finding	ev-
idence for random slopes in these tests, we recommend starting with 
the	mixed-	effects	model	and	switching	only	to	a	fixed-	effects	model	
in	case	of	a	singular	fit	problem.	With	this	work,	we	provide	a	practical	
guideline, which helps analysts in the study design, the data analysis, 
and	thus,	making	ecological	inference	more	informative	and	robust.
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