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ABSTRACT: In the context of drug−receptor binding affinity
calculations using molecular dynamics techniques, we implemented
a combination of Hamiltonian replica exchange (HREM) and a novel
nonequilibrium alchemical methodology, called virtual double-system
single-box, with increased accuracy, precision, and efficiency with
respect to the standard nonequilibrium approaches. The method has
been applied for the determination of absolute binding free energies
of 16 newly designed noncovalent ligands of the main protease
(3CLpro) of SARS-CoV-2. The core structures of 3CLpro ligands were
previously identified using a multimodal structure-based ligand design
in combination with docking techniques. The calculated binding free
energies for four additional ligands with known activity (either for
SARS-CoV or SARS-CoV-2 main protease) are also reported. The
nature of binding in the 3CLpro active site and the involved residues besides the CYS−HYS catalytic dyad have been thoroughly
characterized by enhanced sampling simulations of the bound state. We have identified several noncongeneric compounds with
predicted low micromolar activity for 3CLpro inhibition, which may constitute possible lead compounds for the development of
antiviral agents in Covid-19 treatment.

1. INTRODUCTION

As the whole world is currently plagued by the Covid-19
pandemic, the race to identify an effective antiviral agent for
SARS-CoV-2 is frantically ongoing. Among the viral functional
proteins, the main protease 3CLpro1,2 constitutes a very
attractive biomolecular target for drug design. Indeed,
inhibition of 3CLpro using small molecules is currently the
main goal of the crowdsourcing drug discovery initiative for
pandemics.3 This protein is responsible for the cleavage of
pp1a and pp1ab large polyproteins expressed by the virus RNA
upon cell entry. The cleavage on multiple points of these
polyproteins releases in the infected cell mature nonstructural
proteins that are important for virus replication. For example,
the virus replication machinery itself, the RNA-dependent
RNA polymerase (RdRp), is generated upon 3CLpro cleavage
of pp1a, pp1ab.4,5 It is hence expected that a potent and
specific inhibitor of 3CLpro can effectively block the viral
replication once the virions have entered the cell.
One of the main approaches for anti-Covid-19 drug

development is based on past experience on the SARS 2003
outbreak. Indeed, the RNA of SARS-CoV-2 and of SARS-CoV
share nearly 80% genomic sequence identity.6 The main
protease of SARS-CoV7and SARS-CoV-22,5,8 differs by only 12
residues, with none of these differing residues being directly

involved in the catalytic site.9 It is hence expected that
inhibitors for SARS-CoV 3CLpro bind effectively the strictly
related SARS-CoV-2 main protease. 3CLpro-based drug
discovery for SARS10 was mainly directed toward the so-called
covalent Michael inhibitors11,12 via electrophilic attack on the
cysteinate of the 3CLpro catalytic CYS145−HIS41 dyad. New
irreversible covalent inhibitors for SARS-CoV-2 3CLpro were
recently proposed in ref 5. On the other hand, the consensus in
drug discovery leads to excluding electrophiles from drug
candidates for reasons relating to safety and adverse effects
such as allergies, tissue destruction, or carcinogenesis.13

Noncovalent inhibitors for SARS-3CLpro were first identified
in ref 14 and later characterized in ref 15, leading to the
synthesis of ML188 with a measured inhibitory activity of 2
μM.
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The second arm of the current research for drug therapy of
Covid-19 is focused on drug repurposing, hence testing
approved compounds with little (and known) side effects
and with a minimal development cost for off-label use. In this
context, a very extensive and complete multicentric study of
the SARS-CoV-2 protein interaction map16 revealed human
targets for drug repurposing. The targets were in this case
human proteins (such as σ-receptors or bromodomains)
characterized as playing an important part in the viral
interactome.
From a computational standpoint, docking studies on 3CLpro

started to appear immediately after the release in mid-February
of the PDB structure of 3CLpro.8 Docking is one of the main
computational tools used in compound triaging in the cited
COVID-19 moonshot worldwide initiative.3,17 As of today,
more than 20 entries on 3CLpro ligand screening using docking
either alone or in combination with structure-based or data-
driven approaches have been published so far, according to the
Scopus database. Many more, deposited in preprint servers, are
awaiting for the peer-review process to complete. We were
among the first to deposit on the arXiv server a study9 on
3CLpro inhibitors using a multimodal structure-based design18

in combination with molecular docking.19 Evaluation of
docking scores is fast and docking is indeed an invaluable
tool for a plausible pose prediction and for a semiquantitative
assessment of the inhibitory power of a ligand. However,
binding free energies solely based on docking are, in general,
considered not sufficiently reliable as this technique exhibits by
design a major weakness, that is, the partial neglect of the
ligand and receptor Boltzmann-weighted conformational
disorder as well as of solvent-related microsolvation phenom-
ena, eliciting the crucial and elusive entropy contribution to
the binding free energy.20

Pose prediction using Docking can be assessed and refined
using molecular dynamics (MD) advanced techniques with full
atomistic detail such as free energy perturbation21 (FEP) or
thermodynamic integration (TI).22 Surprisingly, to our
knowledge, not many FEP studies combined with alchemical
transformation23,24 on 3CLpro binders appeared so far in the
literature.25 Possibly, this is due to the fact that FEP-based
modern alchemical techniques26 are costly and generally
applied to relative binding free energies on strictly congeneric
series, with hence a limited value in drug discovery campaigns
based on de novo design. On the other hand, FEP calculations
for absolute binding free energies (ABFEs) are still quite rare
as they face serious sampling problems due to the mobility of
the ligand in the binding site, in general, especially for low-
coupling alchemical states.27

In the past years, we have been developing a nonequilibrium
(NE) variant28−32 of alchemical transformations, whereby the
ligand is rapidly decoupled from the environment in a swarm
of rapid independent trajectories producing a NE work
(NEW) distribution histogram, related to the decoupling free
energy via well-known NE theorems. These NE alchemical
decoupling trajectories, typically lasting less than 1 ns, start
from equilibrium phase space points that are sampled using
very efficient and highly parallelizable enhanced sampling
techniques, such as Hamiltonian replica exchange with
torsional tempering.33 The NEW approach allows us to release
altogether the artificial conformational and orientational
restraints in the bound and unbound states that are commonly
used in FEP calculation to facilitate sampling34 at the price of
focusing on a pose that can be suboptimal.35 The NEW

approach turned out to be among the top-performing
techniques assessed in recent SAMPL challenges36,37 for
blind absolute binding free energy predictions. Here, we
have implemented yet a new improved variant of the NEW
approach, called virtual double-system single-box (vDSSB) on
the basis of the recent remark on the so-called DSSB approach
used in the latest SAMPL challenge.38

NEW-vDSSB has been applied to the calculation of the
dissociation free energy for a total of 21 3CLpro noncovalent
complexes, with some of the ligands identified in ref 9 and with
some of their analogues, as well as for few ligands with recently
measured activity for 3CLpro.17 The common binding pattern
of these ligands in the shallow and wide binding pocket of
3CLpro is analyzed in detail using enhanced sampled
configurations, providing valuable information on drug design
against the 3CLpro target. A few compounds with predicted
submicromolar activity have been designed, hopefully provid-
ing promising leads for an effective medicinal chemistry
campaign for the identification of a therapeutic agent for
Covid-19.
The paper is organized as follows: we first lay out with some

detail the theoretical background for the NEW-vDSSB
determination of the drug−receptor dissociation free energy.
We then describe the 3CLpro system and its function, giving a
rationale for its modelization in a drug design study. Technical
details for MD, in general, as well as for enhanced sampling
and nonequilibrium simulation approaches are described in
Section 4. Computed dissociation free energies for the 21
scrutinized complexes using NEW-vDSSB along with a detailed
analysis of the binding pattern is reported in Section 5. Section
6 presents concluding remarks.

2. THEORETICAL BACKGROUND
The NEW method has been developed in the past two decades
in the context of binding free energy calculations for drug−
receptor systems as a nonequilibrium variant of the free energy
perturbation21 method with stratification.23 In the non-
equilibrium double-system single-box approach39 (NEW-
DSSB), a bound ligand is annihilated in the receptor binding
site, while a second unbound ligand, kept using restraints far
away from the protein, is simultaneously grown in the bulk
solvent in a series n of independent alchemical trajectories,
where the alchemical parameter λ regulating the ligand−
environment coupling level23,24 is varied in the range [0,1] (or
[1,0]) according to a common time schedule. The alchemical
DSSB approach was recently applied40 also in the context of
the equilibrium alchemical FEP with λ-stratification.21,41,42

Provided that the two ligands do not feel each other and the
unbound ligand is constantly surrounded by a sufficiently thick
layer of the solvent, the computed work distribution in NEW-
DSSB is directly related to the dissociation free energy of the
ligand.43,44 NEW-DSSB works well if the simulation box is
large enough so that the growth and annihilation work of the
two distant ligands can be assumed to be uncorrelated.
Alternatively, in the single-box double-system approach
(SSDB), one can compute, in two different alchemical
processes, the decoupling and recoupling free energy for the
bound ligand and for the ligand in bulk, obtaining the binding
free energy as the sum of these two contributions.
In NEW-based alchemical techniques, the dissociation free

energy (except for a volume correction43,44) can be recovered
from the NE work distributions (obtained computing the work
for each of the n independent alchemical trajectories) as
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Δ = [ | ]G P W F( )DSSB DSSB (1)

Δ = [ − | ] + [ | ]G P W G P W A( ) ( )SSDB SSDB u SSDB b (2)

where P(W|F), P(−Wu|G), and P(Wb|A) are the work
distributions for the double system and for the unbound
(growth) and bound (annihilation) states of the single system,
respectively, and [·] is a functional of the work distribution of
the NE process, yielding the estimate of the free energy
difference, ΔG, of the process. For unidirectional processes,

[·] corresponds to the Jarzynski estimate45
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or to the Gaussian estimate46

μ βσΔ = −G
1
2

2
(4)

eq. 4 is valid when P(W) is the normal distribution, n(W,μ,σ)
with mean and variance μ and σ2. Wdiss = μ − ΔG corresponds
to the dissipated work in the NE process, which in the case of
the normal distribution is given by Wdiss = (1/2)βσ2. It should
be noted that, for normal distributions, the Crooks theorem47

implies that the forward distribution (PF(W)) and reverse
distribution (PR(−W) done with inverted time schedule) are
mirror-symmetric with respect to their unique crossing point,
Wc = ΔG, and that their maxima are βσ2 = 2Wdiss far apart from
each other.46 The inverse of the dissipated work in Gaussian
(Markovian) alchemical processes is a linear function48 of the
duration τ of the NE alchemical processes. Both accuracy and
precision decline with increasing dissipation48,49 (or, equiv-
alently, faster NE processes). Note that we have assumed a
forward process in NEW-DSSB that corresponds to the
annihilation of the bound ligand and growth of the ligand in
the bulk. The associated work for binding ligands is positive,
corresponding to positive dissociation free energies. This
choice is dictated by the fact27 that, in the reverse process, the
starting states of the decoupled and weakly restrained ligand in
the binding pocket are characterized by a high conformational
disorder, with most of the generated NE recoupling trajectories
producing suboptimal poses in highly dissipative processes.
This is a typical situation in NE transformations involving the
entrance into a free energy funnel.50

For non-Gaussian bidirectional processes done with time-
inverted protocols, eqs 1 and 2 take the form of

Δ = [ | − | ]G P W F P W R( ), ( )DSSB DSSB DSSB (5)

Δ = [ − | | ] + [ |

− | ]

G P W G P W A P W A P

W G

( ), ( ) ( ),

( )
SSDB SSDB u u SSDB b

b (6)

where F and G denote the forward and reverse processes and
the functional [·] is the Bennett acceptance ratio (BAR)
estimate.51,52 Note that in eq 2, referring to the unidirectional
SSDB estimates, if the ligand bears a net charge, one must add
an analytic correction to ΔG due to the annihilation of the net
charge in the two independent alchemical processes when
using particle mesh Ewald (PME)53 with a neutralizing
background plasma.54,55 The correction exactly cancels out in
the unidirectional DSSB processes and in bidirectional SSDB.
At constant τ, the BAR bidirectional estimate is more accurate

than unidirectional estimates, provided that there is sufficient
overlap between the forward and reverse work distribu-
tions.48,49,56

As discussed in ref 57, for the case of the NEW applied to
Gaussian processes, the DSSB/SSDB efficiency ratio R can be
shown to be given by

σ
= +

+
+

+ σ( )
R

r
r

(1 )
2(1 )

(1 )

1
3

SSDB
2

2

2
SSDB

(7)

where r = Ls/Lb(r ∈ (0, 1]) is the ratio between the side
lengths for the optimal box of the bound and unbound
systems. According to eq 7, DSSB is more efficient than SSDB
(R < 1) when the variance of the NE work distributions
(assumed to be equal for the growth and annihilation
processes) are small and r ≃ 1. The eciency gain in DSSB
becomes insignicant when the optimal box for the bound
system is signicantly larger than that of the un- bound ligand
(which occurs systematically in drugreceptor systems) and/or
in the case of highly dissipative processes.
However, since in SSDB the work values in the two

alchemical processes for bound and unbound states are
independent random variables (RV), one can emulate the
DSSB by combining each value of the RV Wb(A) with each
value of the RV Wu(G), hence obtaining n2 work RV’s W =
Wb(A) + Wu(G) instead of the original n. This process
corresponds to evaluating the convolution P(W|F) = (Pb*Pu)
(W|F) = ∫ dwPb(W|A) Pu(W − w|G), thus leading to the
following equations

Δ = [ * | ]G P P W F( )( )vDSSB B u (8)

Δ = [ * | * − | ]G P P W F P P W R( )( ), ( )( )vDSSB B u B u (9)

where eqs 8 and 9 refer to the unidirectional and bidirectional
estimates, respectively, and (Pb*Pu)(−W|R) = ∫ dwPb(−W|G)
Pu(−W + w|A). When using a bidirectional approach in
vDSSB, due care must be taken in using a time-inverted
protocol for both legs (bound and unbound) of the alchemical
process.
The advantages of eq 8 over eq 1 are evident. First, the

convolution of the Pu and Pb distribution boosts the statistics,
increasing significantly the resolution of the vDSSB work
distributions, P(W|F) and P(−W|R). The convolution (Pb*Pu)
(W|F) can now be computed using a sample of n2 work
outcomes at the cost of n bound and unbound trajectories. In
the second instance, at variance with DSSB, where a common
time protocol for the process is adopted, in vDSSB, the time
protocol for the bound and unbound states alchemical
simulations can be chosen independently with no violation
of the Crooks or Jarzynski theorems. In particular, the
alchemical process for the unbound state can be done using
a much faster rate with respect to that of the bound state since
the dissipation in the anisotropic environment of the binding
pocket is, in general, much higher than that experienced by the
ligand in the isotropic environment of the bulk solvent. Third,
in vDSSB, the optimal box size can be chosen according to the
physical dimension of the solute. For the ligand in bulk, the
box can be chosen much smaller than that of the ligand in the
bound state, with a significant gain in the computational
efficiency (up to 35% according to eq 7).
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3. 3CLPRO−LIGAND COMPLEXES
3.1. CLpro Structure and Function. 3CLpro acts as a

dimer.58 The monomer is in turn composed of two loosely
coupled units, the chymotrypsin-like domains I + II (residues
1−197), harboring the catalytic site, and the cluster of helices
domain III (residues 198−304), regulating dimerization via
two intertwined salt bridges involving ARG4(A)-GLU290(B)
and GLU290(A)-ARG4(B) of the A and B protomers, as
shown in Figure 1a. The dimer is characterized by two

symmetric extended clefts (shown as blue arrows in Figure 1b)
for pp1a, pp1ab adhesion. Each dimer cleft ends at the solvent-
exposed catalytic site with the CYS145−HIS41 proteolytic
dyad. The two catalytic dyads, on the opposite sides of the
dimer, very likely act independently for maximizing the
catalytic efficiency. Polyproteins are cleaved by betacoronavirus
SARS-CoV and SARS-CoV-2 main proteases at the glutamine
level in the general sequence X(L/F/M)Q↓(G/A/S)X, where
X is any residue.4 The cleavage sites in the SARS-CoV-2 pp1ab
sequence59 are reported in Table 1.
It is worth noting the hydrophobic character of most of the

Q-neighboring amino acids, indicating that docking of the
polyprotein at the proteolytic site is likely to occur via
complementary hydrophobic interactions. In the light of the
dimer peculiar structure and functional mechanism, with the
solvent-exposed and distal proteolytic sites, the dissociation

constants for 3CLpro ligand association can be effectively and
reliably computed by modeling only the domain I + II of one
protomer for the bound state (residues 1−197). We must
nonetheless stress that the computed ΔG pertains to the
associations of the ligand with one protein, irrespective of the
state of association of the protein. At free ligand concentration
equal to Kd ≡ e−ΔG/RT, i.e., when half of the protein molecules
are inhibited, the probability to have both monomers inhibited
on a catalytically active dimer is equal to 1/4, whatever the
dissociation constant of the dimer is,58 hence the need for
identifying nanomolar or sub-nanomolar inhibitors of 3CLpro.

3.2. 3CLpro-Tested Compounds. In the present study, we
have computed, using NEW-vDSSB, the absolute binding free
energies (ABFEs) of the 21 compounds reported in Figure 2.
Compounds 79, 27, 19, 77, and 39 were previously identified9

as probable binders (8 < ΔG < 9 kcal/mol) using a multimodal
structure-based design18 in combination with molecular
docking.19 Compound nml (ML188) is a known inhibitor15

for SARS-CoV 3CLpro with micromolar activity. Compounds
dolu and pari are Dolutegravir and Paritaprevir and are
recently identified60 using virtual screening (Docking and
Standard MD) as candidate lead compounds for SARS-CoV-2
3CLpro and 2′-OMTase inhibition. All other compounds have
been designed in this study by analyzing the binding pattern
from bound-state enhanced sampling trajectories (vide infra).
Among the compounds reported in Figure 2, only dolu, pari,
and oml are commercially available as reported by the ZINC
database.61 The activity (IC50) of the compounds 1d45, 0b12,
and 2913 for the inhibition of the SARS-CoV-2 main protease
was recently measured in the context of the Covid-19
Moonshot initiative.17

4. METHODS
4.1. Overview. We started by docking the OpenBabel-

generated62 3D structure of the ligands to the PDB structures
of 3CLpro (domains I + II only) and PLpro using Autodock4.19

The optimal initial docking pose was found by running 50
minimization rounds with the center of mass (COM) of the
fully flexible ligand placed within a 15 Å side-length cubic box
centered at the protein active sites. The latter were identified
by the midpoint vectors connecting the α carbons of the
CYS145−HIS41 catalytic dyad in 3CLpro. The 3CLpro target is
rigid to avoid sampling of unlikely nonopen conformations of
the active site region.
The so-generated initial structures of the complexes were

first equilibrated in a cubic box of appropriate size, filled with
TIP3P63 explicit water molecules, by running short simulation
(100 ps) in the NPT ensemble. The resulting solvated
complexes were then fed to the ORAC MD program64 for
the Hamiltonian replica exchange (HREM) sampling of the
bound states using a powerful torsional tempering scheme in
the binding site region engaging only eight replicas.33,65 For
each complex, we collected 540 configurations sampled at
regular intervals during the 25 ns NPT simulation of the
HREM target (unscaled) state (T = 300 K and P = 1 atm).
From these HREM-harvested equilibrium configurations, we
launched, on a single parallel job, a swarm of 540 independent
alchemical nonequilibrium (NE) trajectories31,32 where the
ligand−environment interactions were rapidly decoupled in
0.36 ns, eventually producing a ligand annihilation work
distribution. During the HREM and NE simulations, the ligand
was prevented to drift away from the active site using a weak
harmonic restraint between the centers of mass (COM) of the

Figure 1. (a) Three-dimensional (3D) structure of the SARS-3CLpro

dimer.5 Domains I + II and III are in yellow and gray, respectively.
The catalytic sites (VdW representation) are in ocher. The salt
bridges GLU290-ARG4, connecting domains III of the protomers, are
in blue (GLU290) and red (ARG4), respectively. (b) Surface
representation of upper and lower sides of the dimer highlighting the
clefts for pp1a/pp1ab adhesion. The catalytic pocket is shown in red.

Table 1. SARS-CoV-2 pp1ab Cleavage Sites

res(Q) seq gap

3263 LQS 3263
3569 FQS 306
3922 MQG 353
3942 LQA 20
4253 LQA 311
4392 LQS 139
5324 LQA 932
5605 LQG 281
5925 LQA 320
6179 LQS 254
6452 LQS 273
6798 LQS 346
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ligand and the receptors.31 No orientational or conformational
restraints are imposed on the ligand, which is free to explore all
of the poses and orientations within the allowance volume43,66

V = (2πRT/K)3/2 set by the weak COM−COM restraint.
The recoupling work distribution of the ligand in bulk

solvent was obtained using fast-growth (0.36 ns) alchemical
simulations. The starting configurations, in this case, were
generated by combining 540 solvent-decoupled conformations
of the ligand, sampled in an 8 ns HREM simulation with
torsional tempering of the isolated (gas-phase) molecule, with
equilibrated structures of pure TIP3P water molecules in
standard conditions.
The standard dissociation free energies, ΔG0, were

computed using the Jarzynski estimate45 equation (eq 8),
evaluated on the work distribution obtained by combining the
negative growth work values of the ligand in bulk with the
positive decoupling work values of the ligand in the bound
state, and by adding a standard state binding site volume
correction.31 The 95% confidence interval of the predicted
dissociation free energies was obtained by bootstrapping with
resampling on the two independent sets of growth and
decoupling work values, before convoluting the data. All MD
calculations were performed using the program ORAC64 on
the CRESCO6 high-performance computing (HPC) facility
located in Portici (Italy) and managed by ENEA.67 Details of
the MD settings, HREM parametrization, and NE protocols
are reported subsequently, in Sections 4.2−4.4.
4.2. MD: General Settings. All simulations for the bound

and unbound states were done in the NPT isothermal−
isobaric ensemble under periodic boundary conditions on
cubic or orthogonal MD boxes with explicit TIP3P water
molecules. We used the AMBER99SB-ILDN force field68 for

3CLpro. Default protonation states (pH = 7.6) of titratable
residues were used. The ligands were described using the
GAFF2 force field, with atom types and AM1/BCC charges
assigned using the PrimaDORAC web interface.69 The
potential parameters for all ligands of Figure 2 are provided
in the Supporting Information (SI). The external pressure was
set to 1 atm using a Parrinello−Rahman Lagrangian70 with
isotropic stress tensor. The temperature was held constant at
300 K using three Nose−́Hoover thermostats coupled to the
translational degrees of freedom of the systems and the
rotational/internal motions of the solute and the solvent.
Constraints were imposed only to X−H bonds, with X being a
heavy atom. The equations of motion were integrated using a
multiple time step r-RESPA scheme71 with a potential
subdivision specifically tuned for biomolecular systems in the
NPT ensemble.70,72 The long-range cutoff for Lennard−Jones
interactions was set to 13 Å. Long-range electrostatics were
treated using the smooth particle mesh Ewald method,53 with
an α parameter of 0.38 Å−1, a grid spacing in the direct lattice
of about 1 Å, and a fourth-order B-spline interpolation for the
gridded charge array. The net charge on the system (due to
proteins) was neutralized by a uniform neutralizing back-
ground plasma as it is customary when using PME.54

4.3. HREM Simulations. The HREM simulations of the
bound state were run by launching, in a single parallel job, 12
batteries of independent Hamiltonian replica exchange
simulation with eight replicas, for a total of 96 MPI instances
and a total simulation time on a per complex basis of ≃0.2 μs
(25 ns on the target state). In each eight-replica battery, we
used a torsional tempering scheme (including 14 nonbonded
interactions) with a maximum scaling factor s = 0.2
corresponding to a torsional temperature of 1500 K. The

Figure 2. Ligands for 3CLpro.
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“hot” region includes all residues with at least one atom at a
distance of less than 4.2 Å from any atom of the ligand, as
found in the best docking pose. The scaling factors, sm, along
the eight replica progression are computed according to the
protocol sm = s(m−1)/7. The exchange was attempted every 15 fs
(every large time step73), and the average exchange rate was, in
all cases, around 15−20% with round-trip times of around
0.3−0.4 ns.
The ligand was weakly tethered in the binding site via a

harmonic restraint potential between the COM of the ligand
and that of the protein, with equilibrium distance correspond-
ing to the COM−COM distance of the lowest energy docked
pose and a force constant of 0.05 kcal mol−1 Å−2.
For setting up the starting configurations of the decoupled

ligand in bulk, we first harvested 540 configurations of the
isolated (gas-phase) molecule via an 8 ns (target state) HREM
simulation using four replicas with torsional tempering with a
minimum scaling factor of s = 0.1, corresponding to a torsional
temperature of 3000 K, and using the protocol sm = s(m−1)/3, m
= 1...4 along the four replica progression. The 540 sampled
gas-phase ligand conformations, with random orientations and
positions, were combined with a single equilibrated sample of
about 1800 water molecules in standard conditions in a cubic
box, producing 540 starting configurations of the decoupled
(ghost) ligand in the bulk.
4.4. NE Alchemical Simulations. For the ligand in the

bound state, the alchemical annihilation simulations were
performed starting from the λ = 1 (fully coupled) equilibrium
configurations collected in the preceding HREM step. NE
annihilation trajectories were run for 360 ps: in the first 120 ps,
the electrostatic interactions were linearly switched off; in the
following 120 ps, two-thirds of the Lennard−Jones potential
was turned off, and in the last 120 ps, the one-third residual
was finally switched off.
A time-inverted protocol was adopted for the ligand in the

bulk state (u state); in this case, the fast-growth alchemical
simulations were started from the λ = 0 (fully decoupled) and
the NE trajectories were run for 360 ps. In the first 120 ps,
one-third of the Lennard−Jones potential was turned on. In
the following 120 ps, the Lennard−Jones potential was
switched on completely. In the last 120 ps, the electrostatic
interactions were linearly turned on. All of the simulations for
computing inhibitor constants are done using the program
ORAC.64 The program is distributed under the GPL and can

be downloaded free from the website www.chim.uni-
fi.it.

5. RESULTS AND DISCUSSION

5.1. Binding Free Energy Results. In Figure 3, we
illustrate the vDSSB approach for evaluating P(W|F), referring
to the mma ligand. The annihilation (bound ligand) and
growth (bulk ligand) work distributions are constructed by
computing the work in a few hundreds of NE alchemical
decoupling and recoupling 0.36 ns trajectories, respectively.
Note that the dissipation for the growth process in bulk is
much smaller than that for the annihilation in the bound state
at equal time τ of the NE processes, leading to a systematic
disparity in the histogram resolution. The mean-variance, σ2,
values for the growth and annihilation distributions Pu(−W|G)
and Pb(W|A) are 1.1 and 15.3 kcal2 mol−2, respectively. In the
reported typical example for the mma ligand, both
distributions “look” Gaussian and they both amply satisfy the
Anderson Darling (AD) test for normality.74 We recall that the
AD test gives only the probability for rejecting the null
hypothesis (i.e., the work values are normally distributed) but
does not provide, like any other normality test, any certitude
on the correctness of the null hypothesis.
As a matter of fact, the convolution of the two distribution

(right panel in Figure 3), by boosting the statistics and the
resolution of the work histogram, visually reveals the non-
Gaussian character of the resulting P(W|F), which, in the case
of mma, exhibits a marked negative skewness. In this event, eq
4 cannot be used. The high number (n2) of work data for the
construction of P(W|F), with good sampling also in the left tail
of the distribution, allows for a reliable estimate of the free
energy based on the Jarzynski exponential average,75 eq 3.
Alternatively, the convolution distribution can be decomposed
into c normal components, P(W|F) = ∑i

cwi n(W,μi,σi), using
the expectation-maximization (EM) algorithm,76,77 with ∑i

cwi
= 1. By the Crooks theorem, it can be shown50 that the free
energy functional for Gaussian mixtures is given by

∑ μ σΔ = −G RT wn Wln ( , , )
i

c

i i iEM

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
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The EM algorithm is very efficient in fitting the convolution
histogram, as Figure 3 shows. For the assessment of the
confidence level for the estimate (whether Jarzynski or EM)

Figure 3. Left panel: growth, Pu(−W|G), and annihilation, Pb(−W|G), work distributions computed using 540 work values for the mma ligand (see
Figure 2). Right panel: convolution work distribution (Pb*Pu)(W|F) for the forward process (black) and expectation-maximization (EM) fit
(green) with three components, with ΔGi = μ1 − βσi

2/2. The inset shows a highlighted view of the left tail of the distribution and the EM fit.
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based on the combination of the work data, some important
remarks are in order. Bootstrapping the n2 sample of the
combination yields an unrealistically small error. As errors in
the coarse-grained distributions Pu(−W|G), Pb(W|A) can be
propagated in the high-resolution convolution, the uncertainty
of the estimate must be evaluated by bootstrapping
independently the growth and annihilation work samples and
then combining the data using either the Jarzynski or EM
functional of the bootstrapped convolution.
In Figure 4, we show the (convolution) work distributions

P(W|F) and the COM−COM distance distribution functions
for all 21 ligands. These two probability distributions, obtained
from the NE and HREM simulations, respectively, are the two
ingredients used in delivering the predicted standard
dissociation free energy of the ligand−3CLpro complex. The

combined work distributions serve for the calculation of the
Jarzynski or EM functional, while the COM−COM histograms
are used for the evaluation of the correction due to the binding
site volume.55 The latter is estimated as Vsite = (4/3)π (2σ)3,
where σ2 is the variance of the HREM-determined COM−
COM histogram, yielding the standard state correction ΔGvol =
RT ln(Vsite/V0) with V0 = 1661 Å. All ligands are electrically
neutral at the physiological pH with the exception of 2913,
which has a positive charge on the sp3 nitrogen. For the latter
ligand, we applied the finite-size correction to the annihilation
free energy for both the bound and unbound states as
described in refs 54, 55.
The convolution work distributions (Figure 4, left) exhibit a

marked non-Gaussian character (see also AD tests reported in
Table 2), leaving hence only eqs 3 or 10 for the free energy

Figure 4. Left panel: work distributions for the vDSSB approach for the ligands reported in Figure 2 as obtained from the NE simulations in the
bulk (growth) and in the 3CLpro bound state (annihilation). Right panel: corresponding COM−COM distribution functions as obtained in the
HREM simulations of the bound state. The green circles refer to the initial pose as obtained from Autodock4 software.19

Table 2. Standard Dissociation Free Energy Estimates (in kcal/mol) for the 21 Ligands Shown in Figure 2b

ligand ΔGJ
0 ΔGEM

0 ΔGvol ADconv ADu ADb ΔGq ΔGexp.

pari 10.7 ± 0.6 8.1 ± 4.1 −2.4 490.8 0.40 0.37 −8.6 ± 0.9 n/a
opa 9.4 ± 0.5 6.5 ± 3.1 −2.5 315.0 0.18 1.14 0.3 ± 0.8 n/a
ml 9.0 ± 0.7 9.0 ± 1.9 −3.2 131.1 0.15 0.45 −0.4 ± 0.6 7.9a

op3 8.8 ± 0.8 6.9 ± 1.8 −2.2 79.5 0.11 0.48 −2.5 ± 0.8 n/a
27 8.3 ± 0.5 8.1 ± 0.9 −2.7 165.6 0.40 0.54 −1.3 ± 0.3 n/a
39 7.6 ± 1.5 6.2 ± 2.8 −2.5 559.5 0.40 1.39 −1.8 ± 0.4 n/a
mma 7.4 ± 0.8 6.8 ± 1.7 −3.4 55.6 0.37 0.36 0.2 ± 0.4 n/a
ppa 7.3 ± 0.8 4.7 ± 2.5 −3.7 278.2 0.16 0.99 −3.6 ± 2.4 n/a
op2 7.1 ± 2.0 6.3 ± 3.1 −2.6 776.2 0.39 2.03 0.2 ± 0.6 n/a
dolu 6.7 ± 1.6 5.0 ± 3.4 −3.9 190.7 0.74 0.51 0.3 ± 2.0 n/a
19 6.5 ± 0.7 5.2 ± 1.5 −1.9 138.5 0.26 0.54 −3.2 ± 0.6 n/a
30 6.1 ± 0.9 5.1 ± 1.4 −3.5 116.7 0.38 0.43 −1.1 ± 0.3 n/a
mp2 5.8 ± 0.6 3.2 ± 1.4 −3.4 40.7 0.82 0.36 1.8 ± 1.2 n/a
mpa 4.3 ± 1.2 3.6 ± 2.9 −3.7 113.4 0.77 0.49 −1.5 ± 0.4 n/a
77 4.0 ± 0.4 2.3 ± 1.7 −3.0 141.7 0.17 0.53 −0.8 ± 2.4 n/a
n27 3.9 ± 0.6 2.9 ± 1.3 −2.5 114.0 0.42 0.46 −1.1 ± 0.4 n/a
79 3.7 ± 0.9 2.4 ± 0.9 −2.8 142.6 1.91 0.54 −0.4 ± 0.8 n/a
nml 3.1 ± 0.4 1.5 ± 0.5 −3.1 52.5 0.68 0.58 1.0 ± 0.9 n/a
1d45 5.4 ± 0.8 4.6 ± 1.1 −2.9 223.8 0.65 0.22 1.0 ± 0.9 10.0
0b12 9.3 ± 0.9 7.0 ± 1.6 −3.1 183.8 0.50 0.31 1.0 ± 0.9 7.46
2913 5.8 ± 0.8 5.5 ± 1.6 −2.8 201.5 0.63 0.52 1.0 ± 0.9 7.0

aThe experimental value refers to the SARS-CoV 3CLpro inhibition.15 bΔGJ, ΔEM, ΔGvol, ADconv, ADu, ADb, and ΔGq refer to the Jarzynski free
energy estimate; the EM-based free energy estimate; the volume correction; the AD normality test for P(W|F), Pu(−W|G), and Pb(W|A); and the
electrostatic contribution to the dissociation free energy.
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estimate. For ΔGEM, in all cases, we have used c = 3. The
COM−COM ligand−3CLpro distance distributions (Figure 4,
right) denote, in general, a rather large binding site volume,
with distance oscillations extending for nearly 4 Å in several
cases (e.g., pari, 27, op3, 19, 79), indicating either a shallow
and wide binding site pocket in 3CLpro and/or a significant
ligand conformational activity of the ligand in the binding site.
As we shall see later on, these peculiar features of 3CLpro

binding make the dissociation free energy prediction inherently
less accurate. It is worth noting that, in some cases, the
docking-determined COM−COM distance, corresponding to
the initial pose, is significantly different from the most-likely
HREM-determined COM−COM distance, corresponding to
the peak of the distribution.
In Table 2, we report the results for the computed standard

dissociation using the vDSSB approach. Ligands are sorted
from the most powerful (pari, Jarzynski estimate), of the
predicted low nanomolar affinity (20 nM), to the weakest
(nml), of the millimolar activity (5 mM), as resulting from
ΔGJ. The ΔGJ and ΔGEM estimates appear, in general, strongly
correlated (see Figure 5), although the latter shows a
systematic downshift from a few fractions of kcal/mol to
more than 2 kcal/mol for pari and op3. In general, the
Jarzynski estimate is more precise but less accurate than ΔGEM
based on Gaussian mixtures.55 For dissipative NE processes,
the Jarzynski estimate very likely remains biased75 despite the
statistics boosting on the left tails of the work distribution
obtained by combining the independent RVs corresponding to
the growth and annihilation work of the ligand.
ΔGEM, on the other hand, while in principle more accurate

and unbiased,50 is significantly less precise. We recall that the
error in the free energy estimates is obtained by bootstrapping
independently the growth and annihilation work sample (each
containing n = 540 work values) and then combining the
bootstrapped data to form the convolution P(W|F). For ΔGEM,
the error goes as [1/(n/c)]1/2, i.e., it increases with the number
of components (c = 3 in our case). EM appears to be sensitive
to bootstrapping fluctuations in the Pu(−W|G) and Pb(W|A)
distributions, producing a rather large variance for the
calculation of ΔGEM by eq 10. In general, the Jarzynski
estimate is found, with no exception, within the confidence
interval of the EM-based estimate. One could hence propose as
consensus value for the estimate and for the confidence level of
the arithmetic mean of the two estimates and errors. A
comparison with the experimental results is possible for
compound ML (ML188). The measured standard dissociation

free energy for the ML188-SARS-CoV 3CLpro complex was
found to be15 7.9 kcal/mol, which competes favorably with the
consensus vDSSB value of 9.0 kcal/mol found for the strictly
related ML188-SARS-CoV-2 complex. For the ligands with
known activity, i.e., 1d45, 0b12, and 2913, the consensus value
agrees satisfactorily with the experimental counterpart for 0b12
(ΔGc = 8.1 kcal/mol, ΔGexp. = 7.46 kcal/mol) and 2913 (ΔGc
= 5.7 kcal/mol, ΔGexp. = 7.0 kcal/mol), while it differs
significantly for 1d45 (ΔGc = 5.0 kcal/mol, ΔGexp. = 10.0 kcal/
mol). However, while 1d45 is labeled as a noncovalent binder
of SARS-CoV-2 3CLpro according to the Covid-19 moonshot
activity data,17 the same compound was found to be a potent
covalent inhibitor with approximately the same dissociation
free energy (ΔGexp. = 10.3 kcal/mol) for the highly
homologous SARS-CoV 3CLpro.12 Covalent binding (that is
not accounted for in vDSSB of FEP-based techniques) may
explain the observed difference between the experimental and
calculated dissociation free energies for 1d45-3CLpro inter-
action.
In Figure 5, we report the correlation plots of the Jarzynski

estimates with the EM and Autodock4 estimates. Jarzynski−
EM correlation is strong, as measured by the Pearson
coefficient R and the Kendall rank coefficient τ. The mean
unsigned difference (MUE) is 1.4 kcal/mol, corresponding to a
systematic underestimation of ΔGEM with respect to ΔGJ. Free
energy estimates obtained with Autodock4 exhibit a rather
unexpected significant correlation with vDSSB estimates.
The predicted dissociation free energy range for the 21

ligands goes from 11 to 5 kcal/mol with Autodock4 and from
11 to 3 kcal/mol for the vDSSB Jarzynski estimate, with a
surprising agreement for pari (highest docking affinity) and 79
(lowest docking affinity) compounds. It should be noted that,
except for pari and 79, Autodock predicts dissociation free
energy in a range of less than 3 kcal/mol for all other ligands.
Probably, the narrow spread in the Autodock4 prediction is
due to the smoothing induced by the use of implicit solvent
along with the default Gasteiger−Marsili charges78 on polar
atoms. Absolute values of Gasteiger−Marsili charges on such
atoms are in fact significantly smaller than those of the AM1/
BCC charges and the AMBER99SB charges used in vDSSB for
the ligand and the protein, respectively. Nonetheless, given the
low computational cost of Docking, Autodock4 results are
remarkable indeed, both in the pose prediction and estimation
of the dissociation free energy.

5.2. Binding Features in 3CLpro. As discussed in Section
4.4, the alchemical protocol prescribes the turning off and on

Figure 5. Correlation diagram for the Jarzynski- and EM-based dissociation free energy estimates (left) and for the Jarzynski- and Autodock-based
dissociation free energies of the 3CLpro ligands in Figure 2.
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in the sequence of the electrostatic and Lennard−Jones
ligand−environment interactions, so that these two contribu-
tions to the dissociation free energy can be single out. In Table
2, we report the electrostatic contribution to the dissociation
free energy, computed as the sum of the discharging free
energy of the ligand in the bound state and the recharging free
energy of the ligand in the bulk. The estimates have been done
in all cases using eq 4 on the individual electrostatic work
samples. As can be seen, such contributions are, in general,
small and often negative, with electrostatic interactions being
indifferent to or opposing the binding. As far as electrostatics is
concerned, for many ligands, the bulk water is hence a more
favorable environment than the protein-binding site.20,32,55

Since all predicted dissociation free energies are positive, the
binding contribution must come from the sum of the ligand’s
annihilation and growth Lennard−Jones contributions. The
latter is the main chemical−physical determinant for the cavity
work and hydrophobic interactions, in general. The fact that
hydrophobic interactions are very often those driving the
ligand−protein association is due to the heterogeneous nature
of the receptors’ binding sites, systematically exposing a
mixture of hydrophilic and hydrophobic residues or moieties.
3CLpro makes no exception to this rule.
In Table 3, we report in detail the binding features of the five

most potent and four weakest ligands, as assessed by the

contact probability between the ligand and the protein residues
of domain I + II of 3CLpro obtained from the HREM
simulations of the bound state. A ligand is assumed to be in
contact with a given protein residue if any ligand−residue
atom−atom distance is found below 4.5 Å. Values of 1 for the
contact probabilities in Table 3 imply that the ligand has been
found in contact with the given residues in all HREM-sampled
configurations during the 25 ns simulation of the target state.
The high number of vicinal residues with significant average

contact probabilities (>0.5) and their mixed character (about
half of them can be classified as hydrophobic) is again an
indication of the wideness and low specificity of the 3CLpro

proteolyitic site. Not surprisingly, years of medicinal chemistry
research, after the SARS-CoV 2003 outbreak, were not

sufficient for identifying nanomolar or sub-nanomolar 3CLpro

noncovalent inhibitors, designing mostly Michael inhibitors
with an electrophilic warhead.4,10,12 As previously discussed,
the nanomolar ligand 1d4517 very likely is a mild noncovalent
ligand for the SARS-CoV-2 main protease and its strength is
due to a postreaction involving a covalent bond on the
cysteinate, as found for the SARS-CoV highly homologous
3Clpro.12

Based on the reported data, we can attempt to propose a
common binding pattern in 3CLpro that might be of help in
designing better noncovalent inhibitors for this important viral
target. All tested ligands appear to interact strongly with the
catalytic dyad H41−C145, with stronger interaction found, in
general, for the most potent binders. Persistent hydrophobic
interactions in the potent ligands (left part of the table) are
those referring to residues L27, M49, and H164 with the
histidine residues systematically involved in stacking inter-
actions with the ligand planar moieties. Weak binders (right
part of the table) show significantly smaller contact
probabilities for these nonpolar or weakly polar residues.
Remarkable differences between strong and weak binders are
also seen in correspondence to the polar residues E166, D187,
R188, and Q189, for which all of the five best binders have
approximately unitary contact probability. Very likely, these
exposed residues, located on the segment immediately
preceding the loop connecting the two subunits in the
3CLpro monomer (see Figure 1a), help to reduce or annihilate
the penalty from the electrostatic contribution to the
dissociation free energy. These data, in combination with the
free energy data of Table 2, are suggestive for an amphiphilic
pharmacophore design that is capable of interacting favorably
with the polar residues 187−189, with the catalytic dyad, and
with M49, L27, and M165.
In Figure 6, we report as an example of the two-dimensional

(2D) (generated using Ligplot79) and 3D (generated using

VMD80) NPT equilibrated structure of the binding site of the
opa−3CLpro complex.

6. CONCLUDING REMARKS
In this contribution, we have described vDSSB, a new
nonequilibrium alchemical technique that exploits enhanced
sampling and work distribution convolution to effectively
emulate the double-system single-box approach with increased
efficiency, accuracy, and precision. vDSSB, as described in the

Table 3. Residue Contact Probability (See the Text) in
3CLpro for the Some Representative Ligands Reported in
Figure 2

Figure 6. Left: 2D representation79 of the binding site of the opa−
3CLpro complex. Right: corresponding 3D representation.80 Hydro-
phobic and polar residues are in blue and red, respectively. The
catalytic dyad, H41−C145, is in orange.
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present study, can be implemented with no need for code
modification in the most popular MD programs supporting NE
alchemical simulations (e.g., GROMACS81 or AMBER82).
The collected information provides valuable clues and

indications for 3Clpro binding and, possibly, inhibition, as
they are based on extensive and advanced molecular dynamics
simulations on HPC facilities involving several tens of
microseconds of simulations in total using state-of-the-art
atomistic force fields and explicit solvents. Nonetheless, when
dealing with compounds with pharmacological interest for the
ongoing Covid-19 pandemic, caution is a must and some
caveats regarding our results are in order.
First, in ref 9, we have shown that the protonation state of

catalytic dyad has a very limited impact (fraction of kcal/mol)
on the predicted binding free energies (using Autodock4) for
about 100 tested ligand−3Clpro complexes. In this study, all
calculations have been hence done assuming both C145 and
H41 in their neutral state. Although in explicit solvent
atomistic simulations, the electrostatic screening at short
distance is much more effective with respect to that resulting
from an implicit solvent approach, the effect of protonation
state on binding affinity modulation cannot be ruled out.
Second, a weak point of all alchemical theories, whether

equilibrium (such as FEP or TI) or nonequilibrium (vDSSB),
is the computation of the standard state correction related to
the binding site volume. In FEP, this correction is estimated
from the difference between the free energy of imposing the
restraint potential (usually a harmonic function involving
translational, orientational, and conformational degrees of
freedom of the ligand) in the binding site at full ligand
coupling and the free energy of releasing that restraint at zero
coupling. In the strong restraint limit, this difference can be
shown43,83 to be equal to RT log(Vsite/V0). While the zero-
coupling contribution is computed analytically, the bound-state
free energy cost of the restraint in virtually all FEP applications
for absolute binding free energy determination is inappropri-
ately computed again via FEP using a stratification where the
restraints are progressively switched on, in a few windows and
in a few nanoseconds in total at best, with the ligand lingering
in the presumed binding site with the presumed conformation/
orientation. In NEW-vDSSB, only a COM−COM constant
restraint potential is imposed along the alchemical coordinate,
with, hence, no biasing on whatsoever the ligand orientational/
conformation that is sampled (in the fully coupled initial
states) using powerful enhanced sampling approaches. In this
case, the binding volume correction is likely to produce fewer
artifacts (related to, e.g., a wrong ligand pose) with respect to
FEP in de novo absolute binding free energy predictions.
Nonetheless, ΔGvol is based on an approximated calculation of
the elusive binding site volume and standard dissociation free
energy could be hence significantly affected.
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