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Simple Summary: A growing number of studies have focused their attention on the potential role of
microRNAs (miRNA) as biomarkers for several diseases. However, very few evaluated the role of
miRNAs in the aetiogenesis of frailty, a multidimensional geriatric syndrome, characterized by an
individual and dynamic state of impairments in one or more domains, such as physical, cognitive,
psychological, and social. In this review, we first provided an overview on the different frailty
domains, current assessment tools and plasma/blood biomarkers. Then, we collected the evidence
linking changes of miRNAs expression to impairment of frailty in physical and cognitive domains,
with the ultimate aim of finding those that are common. In silico analyses prioritized ten top-ranked
miRNAs and their targets, the three most significant regulating processes involved in inflammation
and energy homeostasis pathway. Such miRNAs, through the integration with existing markers, may
be useful for an early and accurate diagnosis of frailty in the elderly population.

Abstract: The past years have seen an increasing concern about frailty, owing to the growing number
of elderly people and the major impact of this syndrome on health and social care. The identification
of frail people passes through the use of different tests and biomarkers, whose concerted analysis
helps to stratify the populations of patients according to their risk profile. However, their efficiency
in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed.
Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in
different organismal districts. Changes in miRNAs expression have been described in biological
processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their
use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while
considering its complex nature, we revised the current literature on the field, for uncovering miRNAs
shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the
top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this
analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and
energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis
of frailty in the elderly population.

Keywords: miRNA; frailty; physical domain; cognitive domain; biomarkers; multisystemic impairment

1. Introduction
1.1. The Frailty Domains

Frailty is a common clinical syndrome in older adults characterized by a multisystem
impairment which ranges from musculoskeletal, to pulmonary, cardiovascular and neu-
rological systems and by a marked vulnerability to adverse health outcomes, including
an increased risk of disability, admission to long-term care and increased mortality [1,2].
Aging, which causes a progressive decrease in the physiological reserves and an overall
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loss of homeostasis, is the main risk factor for frailty. The pace of this progressive decay is
accelerated by genetic factors, epigenetic events and environmental stressors [3].

Literature still lacks a consensus for a comprehensive definition of frailty, although
the classification of frailty which most of all embraces its complex nature is that of a multi-
domain phenotype, firstly proposed by Abellan Van Kan et al. [4] and further developed
by many authors [5–9]. As outlined in Figure 1, the multi-domain model includes physical,
cognitive, psychological and social domains of frailty, while Box 1 describes the crite-
ria generically used for the classification of physical, cognitive and psychological/social
declines, applied by many frailty tools such as that of Fried et al. [10], Rockwood and
Mitnitski [11], Gobbens et al. [12], Peters et al. [13], Morley et al. [14] and Wieland and
Hirth [15]. The tools comprehend tests which can be used as endophenotypes (defined
as quantitative biological traits which reflect the function of a discrete biological system),
closely related to the specifical domain respect to the broad phenotype [16–18].

Box 1. Criteria used for the classification of impairments in the physical, cognitive and psychologi-
cal/social domains of frailty, applied by many frailty tools as described in the text.

The physical domain
Physical frailty was reported by Maxwell and Wang [8] as “characterized by gradual loss of
energy, strength, endurance, and motor control”. It is defined basically considering ≥4 of 8 criteria,
reflecting the screening of muscle health and functional status: unintentional weight loss, exhaustion,
strength, perceived health, walking, balance, hearing and vision impairments [19]. A series of socio-
demographic, lifestyle, and health-related factors have been shown to be associated with physical
frailty, such as age, female sex, cardiovascular diseases, multimorbidity, BMI, and smoking.
The cognitive domain
Cognitive impairment in absence of dementia is considered a relevant domain of frailty. Cognitive
impairment is defined as <10th percentile on global cognitive functioning, detected with cognitive
tests, such as the MMSE (Mini Mental State Examination) score [20] and the cognitive abilities
screening instrument (CASI) [21].
The psychological and social domains
Psychological frailty is defined on the base of two criteria such as depressive symptoms and mental
health, and is measured by Geriatric Depression Scale and Mental Health Inventory 5 (MHI-5) [22].
A higher psychological frailty risk is associated with the female sex, low educational level, smoking,
a short sleep duration and multi-morbidity, while being married, a long sleep duration and being
physically active are normally associated with a lower risk of being psychologically frail.
Social frailty is measured as≥2 of 3 criteria among loneliness, social support and social participation.Biology 2022, 11, x FOR PEER REVIEW 3 of 20 
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was proposed as a non-cognitive manifestation that precedes the onset of dementia [25]. 
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Common to all the frailty assessment tools is the physical domain, while the cognitive
domain is included in only 50% of them. This because in the past there was still some
uncertainty about the relationship between frailty, cognitive impairment and dementia,
so that some authors exclude people severely cognitively compromised in the analyzed
cohorts. Recently, cognitive impairment was recognized as a significant determinant of
frailty and consequently a novel target for the prevention [23].

Growing evidences suggest that the different frailty domains are not independent
entities, but share subcellular pathophysiological mechanisms, not only increasing the
vulnerability and frailty prevalence [24] but also forming a substrate for the development
of chronic age-related diseases, such as Alzheimer diseases (AD), where physical frailty
was proposed as a non-cognitive manifestation that precedes the onset of dementia [25]. In
addition, social and physical frailty were considered as a risk factor for the development
of the other, considering that a decline in social roles precedes the activity of daily living
disabilities among community-dwelling independent older adults, with an impact on the
mortality risk [26,27].

Although at a population level the overlap among impairments in different frailty
domains can be limited to a small proportion of the oldest population, with around 17% of
people found frail at two or more domains [19], evidences were reported that multi-domain
interventions are able to improve health status in elderly people at-risk from the general
population [28]. The co-occurrence of physical, cognitive and emotional decline was named
triad of impairment (TOI) and it was used in the past as a surrogate marker of frailty in
some studies, such as the Cardiovascular Health study [10] and Aberdeen Birth Cohort
study [29].

The overlap among different phenotypic domains of frailty account for pathogenic
pathways shared among multiple districts, which provide a background prone to dys-
function, driving the accumulation of deficits which concur with frailty development. By
filtering the extensive literature [30–32] (and references therein), seven most-cited and repli-
cated biological mechanisms dysregulated in frailty can be retrieved, which are common to
different domains, as schematized in Figure 2.
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nected denominators observed in both physical and cognitive decline status, occurring in a
very early step of frailty onset and contributing to its progression.

1.2. Current Biomarkers of Frailty

The identification of the above biological hallmarks has driven the research on the
identification of circulating biomarkers whose screening, in association with a complete
geriatric assessment, including cognitive and physical tests, can be helpful for a primary
frailty diagnosis of the patient. Figure 3 [33–37] resumes the most common identified
blood and biochemical markers of frailty covering different sets of physiological parame-
ters, which includes inflammatory markers [38] oxidative markers [39,40], nutritional and
metabolic markers, hematological markers, endocrine and immune markers [36].
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However, while for some of them the association with frailty is clear, in other cases
their efficiency as prognostic markers of frailty is still under discussion [41,42]. This is the
case for creatinine, whose levels can reflect both kidney insufficiency and sarcopenia: thus,
by using creatinine as a biomarker of frailty alone, a misidentification of frail subjects may
occur [43].

Some biomarkers, such as endocrine ones, are age- and sex-specific, with different
and sometimes opposite trends of association observed in males and females. For example,
some studies reported that in men aged 65–90 years higher estradiol levels were associ-
ated with a decreased frailty [44], while in females higher estradiol levels were associated
with increased frailty up to the age of 79, but not thereafter (Carcaillon et al. [45] for the
Spanish Toledo Study for Healthy Aging). Moreover, an interaction between hormones
and inflammation was found in women with CRP (C-Reactive Protein) levels. Thus, even
though it is difficult to compare different studies, due to the application of different frailty
measures, these evidences suggest that the intertwining among different physiological sys-
tems can drive the associations with frailty phenotype, further confirming the importance
of considering the whole set of markers in an integrated approach [46,47].
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2. Search for Novel Biomarkers of Frailty: The Role of miRNAs

Novel biomarkers of frailty can be reasonably chosen among factors acting in patho-
physiological mechanism common to the physical and cognitive domains, and should be
highly sensitive to minimum changes in physiological conditions. Such markers should
be integrated with those previously discussed, to complete the picture of changes in the
physiological status consequent to the occurrence of frailty. In this context, the evaluation
of circulating microRNAs (miRNAs) was proposed as non-invasive diagnostic biomarkers
of frailty, potentially regulating very large sets of genes (even hundreds of putative gene
targets are known) and targeting different pathways at the same time [48].

MiRNAs are small non-coding single-stranded RNAs approximately 21–25 nucleotides
long, regulating gene expression by binding to complementary messenger RNAs (mRNAs)
and preventing the production of the corresponding protein [49]. MiRNA biogenesis is a
step-wise process which starts with pri-miRNAs, long primary transcripts produced by
RNA polymerase II and then processed into a pre-miRNA (~70- to 120-nucleotide-long)
by a multiprotein complex containing the nuclear RNase III enzyme, known as Drosha.
Then, this pre-miRNA is exported into the cytoplasm, to be processed into a mature duplex
(~18- to 23-nucleotide-long) by the RNase III Dicer-1. A ribonuclear-protein complex, called
RNA-induced silencing complex (RISC), composed by the guide strand of the duplex along
with Argonaute proteins, directs to target mRNA and through sequence complementarity
causes its translational repression [50]. A “seed region” (nucleotides 2 to 8) at the 5′ end
of the mature miRNA can mediate the recognition of the mRNAs target site [51], usually
by binding the target sequences at the 3′ UTR but sometimes also in 5′ UTR and open
reading frame [52]. Each miRNA targets hundreds of transcripts, regulating fundamental
cell processes such as proliferation, apoptosis, differentiation, migration, metabolism and
stress response [53]. In addition to intracellular miRNAs, circulating extracellular miRNAs
have been detected in different biofluids including blood, plasma, serum, saliva, urine and
pleural effusions [54]. They can circulate as free molecules or be bound to carriers such
as low-density lipoproteins (LDL), high-density lipoproteins (HDL), ribonucleoproteins
and extracellular vesicles (EVs) [54]. In relation to different pathophysiological conditions,
biofluids can have specific circulating miRNAs [55].

Several authors analyzed miRNA levels in pathological conditions [56–58] and in
relation to aging [59–63], further supporting the use of miRNA panels as potential diagnos-
tic biomarkers. A critical role of these small molecules has been documented relative to
the frailty-associated phenotypes, i.e., in muscle development and homeostasis [64], but
also in neuronal processes such as brain development, synaptic plasticity, and learning
and memory functions [65]. A study of network biology, by analyzing the interactome
of frailty-related genes, prioritized 10 miRNA markers indirectly associated with frailty
through the association of their targets [66]. To date, only three studies directly evaluated
changes in blood plasma miRNAs in frail/non frail subjects [67–69]. Rusanova measured
levels of the inflammation-related miRNAs, miR-21, miR-146a, miR-223, and those of miR-
483, associated with the control of melatonin synthesis, reporting an association between
the expression of miR-21 with the presence of frailty [67]. Ipson and co-workers, instead,
examined the levels of plasma-derived exosome miRNA and identified eight miRNAs
significantly enriched in frailty subjects: miR-10a-3p, miR-92a-3p, miR-185-3p, miR-194-5p,
miR-326, miR-532-5p, miR-576-5p, and miR-760 [68]. Interestingly, many of these markers
modulate on/off switching of crucial cellular mechanism involved in frailty, such as miR-
194-5p, which is both associated with cellular senescence and ROS production [70] and was
reported to regulate muscle cell homeostasis [71]. Very recently, Carini and co-workers [69]
carried out a larger study by profiling a total of 41 frail/non frail subjects for a miRNA set
of 2654 markers. They found two miRNAs downregulated in the frailty group, namely
miR-101-3p and miR-142-5p, both previously associated with oxidative stress-induced
apoptosis and immune-inflammatory responses. As a whole, these researches indicate miR-
NAs mechanistically involved in the aetiogenesis of frailty, pinpointing the main pathways
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(as inflammation or ROS production) in common among different frailty domains, thus
making them good candidates as frailty biomarkers.

In the following sections we reviewed the knowledge on miRNAs associated with
physical and cognitive decline. In particular, we considered the literature that found associ-
ations between miRNAs and phenotypes related to physical frailty, such as muscle loss,
sarcopenia, cachexia, or participating in the proliferation and differentiation of myogenic
progenitors and myotubes, applying keywords such as “sarcopenia”, “physical impairment
at old age”, “physical frailty”, “muscle loss” and “skeletal muscle decline”. In the case of the
cognitive domain, we used keywords such as “cognitive decline”, “cognitive impairment”
and “neurodegeneration”. Furthermore, for the retrieval of the list of relevant miRNAs, we
excluded studies carried out in model organisms, focusing on human studies (cells, tissues
or individuals) but excluding those related to severe pathological age-related conditions.
In the case of cognitive domain of frailty, because our interest was to identify early markers
of neurodegeneration, we considered early stages of Mild Cognitive Impairment (MCI).

3. MiRNAs as Biomarkers of the Physical Domain of Frailty

By reviewing the literature on phenotypes related to physical frailty, we identified a to-
tal of 57 miRNAs associated with physical phenotypes, resumed in Table S1 [67–69,72–111].
An inspection of their characteristics revealed that they belong to three main groups:
muscle-related miRNAs, inflamm-miRNAs and mitochondrial miRNAs (mitomiRNA).

Among muscle-related miRNAs a sub-group, classified as myomiRs and comprising
miR-1, miR-206, miR-208a, miR-208b, miR-133a, miR-133b, miR-486 and miR-499 [112]
has been extensively investigated. These miRNAs regulate myoblast proliferation, differ-
entiation and regeneration i.e., increasing the expression of targets such as the myogenic
factors MYOG (myogenin), MYF5 (myogenic factor 5), MYOD1 (myogenic differentiation
1) and PAX7 (paired box protein 7), in order to induce muscle regeneration and to prevent
fibrosis [113]. Moreover, beyond acting at muscle level, some of them can exert additional
functions such as cell fate regulation, chromatin remodeling and oxidative stress con-
trol [57]. They can regulate, or be regulated by, factors involved in the IGF-1/Akt/mTOR
signaling pathway, known to control skeletal muscle protein synthesis and muscle pro-
tein breakdown, processes controlled by anabolic stimuli, such as physical activity and
nutritional status [88,94,97,114,115].

Many miRNAs related to physical frailty are involved in inflammation, which is
recognized as the underlying pathway in sarcopenia and muscle loss. The best known are
miR-21 and miR-146a, proposed as inflamm-miRNA owing to their ability to master (NF-
κB)-driven inflammatory pathways [116]. MiR-21 was proposed by Rusanova et al. [67]
as a biomarker of human muscle frailty. Its levels were found to correlate with AOPP
(Advanced oxidation protein products) levels, mediators of the proinflammatory effect of
oxidative stress [117].

MiR-146a is one of the most prevalent miRNAs in the literature in instances of chronic
inflammatory disorders and oxidative stress, both in the muscle [118,119] and in the
brain [120] and is a regulator of osteogenesis and angiogenesis [121].

Other families of miRNAs related to both physical frailty and inflammatory status are
miR-19 and miR-181 [122,123].

Finally, some miRNAs listed also regulate mitochondrial functions and are known as
mitomiR [124]. Most of them are nuclear-encoded; some mitomiRs modulate mitochondrial
function by binding mRNA in the cytoplasm (examples can be found among miR-27a,
miR-34, mir-155 or miR-181a), while others are imported into mitochondria as part of RISC
or pre-RISC and target mitochondrial-encoded mRNA (i.e., mir-151a and miR-181c).

4. MiRNAs as Biomarkers of the Cognitive Domain of Frailty

Table S2 [68,69,120,125–154] summarizes the 43 miRNAs reported in association with
cognitive impairment/decline in older adults.
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Actually, it is known that the brain expresses about 70% of experimentally detectable
miRNAs [155].

The critical role of miRNAs in the central nervous system was demonstrated in model
organisms, where the disruption of the miRNA biogenesis machinery [156–158] or the
knock-out of specific miRNAs produced worsened long-term memory, enhanced Aβ

burden, and increased tau pathology, revealing a possible influence of miRNAs on many
genes of the tau subnetwork [159–161]. As for humans, in recent years two papers emerged
with evidence for the discrimination power of miRNAs in respect to cognitive decline in
old age. First, Kondo and collaborators (2019) found a positive correlation between low
serum levels of miR-20a, miR-27a, and miR-103a and MMSE scores in Japanese individuals
with early-stage cognitive decline [126]. After, Gullet et al. (2020) by an in-silico analysis
proposed three miRNAs (miR-140-5p, miR-197-3p, miR-501-3p) as blood-based biomarkers
of cognitive aging, and top-ranked predictors of multiple cognitive outcomes in healthy
older adults [146].

Pathways targeted by multiple miRNAs include Aβ genesis, regulation of AMPAR
subunits, autophagy homeostasis, apoptosis, microglial activation, NF-κB signaling, blood-
brain barrier maintenance, synaptic plasticity and neurogenesis [120].

Interestingly, many miRNAs related to cognition also have roles in inflammation,
confirming the inflammatory pathway as a major component of neurodegenerative diseases
and a plausible mechanism at the crossroad between several frailty domains. Among them,
some were addressed by some authors as NeurimmiRs (the best known are miR-9, miR-
21, miR-124, miR-132, miR-135, miR-146a, miR-155, miR-186, miR-223, in addition to
the miR-29 family) affecting both immune and neuroinflammatory processes [162]. The
evidence documenting their role in different pathological conditions characterized by
cognitive decline demonstrates the major role of miRNAs in the neuroimmune interface,
acting as ‘negotiators’ between these two interacting compartments, through direct or
indirect alterations of neuron-glia and/or brain-to-body signaling [162]. Considering the
importance of the network nervous–endocrine–immune system in maintaining the overall
homeostasis [163], these miRNAs may be at the crossroad between the cognitive domain
and the other domains of frailty.

5. In Silico Analysis of Shared miRNAs between Cognitive and Physical Domains

Figure 4 represents the Venn diagram describing the overlapping miRNAs between
cognitive and physical domains, indicated in bold in the Tables S1 and S2.
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There are 22 miRNAs related exclusively to the cognitive domain of frailty and 36 only
to the physical domain, while 21 were common. We performed miRNA-target enrichment
of the 21 miRNAs identified by a target prediction tool, MIENTURNET (http://userver.bio.
uniroma1.it/apps/mienturnet/, accessed on 11 July 2022) [164] by using experimentally
validated (miRTarBase) miRNA-target interactions for discover the targets of the candidate
miRNA list. With an FDR cut-off <0.05, and a minimum number of two interactions of
gene-miRNAs, we retrieved 55 genes significantly associated with those miRNA markers
(Table 1).

Table 1. Gene targets significantly associated with the 21 miRNA markers candidates for the in silico
analysis.

miRNA-Target Enrichment Results

Gene p-Value FDR O
Rt

Interacting
miRs miR 1 miR 2 mioR 3 miR 4 miR 5 miR 6 miR 7 miR 8

PTEN 2.75 × 10−6 0.011 0.126 8 miR-26a miR-29b miR-23a miR-92a miR-155 miR-34a miR-486 miR-21
ATP1A1 3.02 × 10−5 0.016 0.048 4 miR-93 miR-92a miR-26a miR-155

CIT 4.20 × 10−5 0.016 0.052 4 miR-93 miR-29b miR-92a miR-486
GATA3 1.59 × 10−5 0.016 0.018 3 miR-92a miR-29b miR-27a
GIT2 3.70 × 10−5 0.016 0.024 3 miR-26a miR-210 miR-92a
MYC 2.84 × 10−5 0.016 0.140 7 miR-26a miR-30a miR-92a miR-23a miR-125a miR-34a miR-29b

PPP1R2 4.20 × 10−5 0.016 0.052 4 miR-210 miR-142 miR-30a miR-34a
RGS5 3.13 × 10−5 0.016 0.079 5 miR-142 miR-92a miR-124 miR-9 miR-23a
STAT3 2.64 × 10−5 0.016 0.107 6 miR-92a miR-874 miR-21 miR-23a miR-124 miR-29b
TKT 3.70 × 10−5 0.016 0.024 3 miR-92a miR-26a miR-206

CAMKV 6.57 × 10−5 0.020 0.058 4 miR-92a miR-26a miR-23a miR-874
CCL8 6.22 × 10−5 0.020 0.008 2 miR-23a miR-92a
PDS5B 6.22 × 10−5 0.020 0.008 2 miR-27a miR-92a
CTC1 7.08 × 10−5 0.020 0.127 6 miR-93 miR-92a miR-26a miR-29b miR-181a miR-874

COL4A2 9.55 × 10−5 0.024 0.032 3 miR-29b miR-92a miR-210
HES1 9.55 × 10−5 0.024 0.032 3 miR-23a miR-92a miR-9

CPEB4 1.07 × 10−4 0.025 0.101 5 miR-26a miR-34a miR-92a miR-874 miR-27a
KIAA1671 1.25 × 10−4 0.026 0.068 4 miR-93 miR-29b miR-92a miR-30a

LDHB 1.23 × 10−4 0.026 0.0350 3 miR-186 miR-23a miR-210
CNOT1 1.94 × 10−4 0.029 0.040 3 miR-93 miR-92a miR-23a
CSAG1 1.85 × 10−4 0.029 0.012 2 miR-186 miR-93
ESR1 2.04 × 10−4 0.029 0.116 5 miR-206 miR-29b miR-26a miR-142 miR-874
FUK 1.85 × 10−4 0.029 0.012 2 miR-93 miR-92a

MCM3 1.56 × 10−4 0.029 0.037 3 miR-93 miR-92a miR-210
P2RX7 2.15 × 10−4 0.029 0.078 4 miR-9 miR-146a miR-186 miR-125a
PFDN2 1.56 × 10−4 0.029 0.037 3 miR-93 miR-210 miR-92a
PIK3CG 2.15 × 10−4 0.029 0.078 4 miR-29b miR-27a miR-142 miR-26a
PSMC3 1.85 × 10−4 0.029 0.01 2 miR-92a miR-23a
WDR77 1.94 × 10−4 0.029 0.076 4 miR-27a miR-93 miR-186 miR-125a
PPARD 2.38 × 10−4 0.031 0.043 3 miR-92a miR-29b miR-30a
KCTD5 2.89 × 10−4 0.036 0.084 4 miR-92a miR-26a miR-125a miR-34a
TET2 2.87 × 10−4 0.036 0.045 3 miR-92a miR-29b miR-26a
APC 3.43 × 10−4 0.037 0.048 3 miR-210 miR-27a miR-142

CPEB2 3.47 × 10−4 0.037 0.088 4 miR-210 miR-26a miR-92a miR-142
FAU 3.69 × 10−4 0.037 0.016 2 miR-92a miR-23a

GPD1L 3.69 × 10−4 0.037 0.016 2 miR-210 miR-142
IRAK1 3.43 × 10−4 0.037 0.048 3 miR-93 miR-92a miR-142
PHB 3.69 × 10−4 0.037 0.016 2 miR-27a miR-26a

SCAF8 3.69 × 10−4 0.037 0.016 2 miR-29b miR-92a
VMAC 3.43 × 10−4 0.037 0.048 3 miR-146a miR-186 miR-125a

HMGCR 4.05 × 10−4 0.039 0.051 3 miR-92a miR-29b miR-27a
HECTD1 4.74 × 10−4 0.043 0.053 3 miR-210 miR-142 miR-92a
TBC1D16 4.74 × 10−4 0.043 0.053 3 miR-26a miR-186 miR-210

TUT1 4.74 × 10−4 0.043 0.053 3 miR-93 miR-92a miR-26a
ABCB9 6.12 × 10−4 0.046 0.020 2 miR-210 miR-26a
CDH1 6.34 × 10−4 0.046 0.059 3 miR-92a miR-23a miR-9
DUSP5 5.51 × 10−4 0.046 0.056 3 miR-27a miR-92a miR-26a

IL6 6.34 × 10−4 0.046 0.059 3 miR-142 miR-26a miR-125a
INPP5A 6.12 × 10−4 0.046 0.020 2 miR-210 miR-142
KIF20A 6.12 × 10−4 0.046 0.020 2 miR-92a miR-23a
NEK6 6.12 × 10−4 0.046 0.020 2 miR-92a miR-23a
PDE4B 6.12 × 10−4 0.046 0.020 2 miR-26a miR-34a
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Table 1. Cont.

miRNA-Target Enrichment Results

Gene p-Value FDR O
Rt

Interacting
miRs miR 1 miR 2 mioR 3 miR 4 miR 5 miR 6 miR 7 miR 8

SOCS6 6.34 × 10−4 0.046 0.059 3 miR-23a miR-27a miR-142
UBE2R2 6.12 × 10−4 0.046 0.020 2 miR-93 miR-92a
ZNF618 6.34 × 10−4 0.046 0.059 3 miR-21 miR-27a miR-210

Significance was considered under a level of FDR < 0.05, and a minimum number of 2 interactions gene-miRNAs.
In italics are indicated the 10 top-ranked targets (p < 4.5 × 10−5). FDR: False Discovery Rate; OR: Odd ratio.

The top ten most significant targets (minimum of three gene-miRNA interactions and
p < 4.5 × 10−5) are indicated in italics and represented in the diagram of Figure 5.
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The network of miRNA-target interactions identified by the enrichment analysis 
(Figure 6) obtained by applying the same FDR < 0.05 allowed us to prioritize the most 
interesting miRNAs to submit for the functional enrichment analysis, which were: miR-
26a-5p, miR-29b-3p, miR-23a-3p, miR-27a-3p, miR-92a-3p, miR-210-3p, miR-9-3p, miR-
206,-miR-21-3p and miR-486-5p. 

Figure 5. Bar plot of the results of the enrichment analysis, obtained by using miTarBASE as reference
dataset. In the Y-axis are reported the top ten target genes of the submitted miRNAs, while the X-axis
represents the number of miRNAs targeting them. The color code reflects the adjusted p-values (FDR)
increasing from red to blue. The threshold for the minimum number of miRNA-target interactions
was set up to 2.

The network of miRNA-target interactions identified by the enrichment analysis
(Figure 6) obtained by applying the same FDR < 0.05 allowed us to prioritize the most
interesting miRNAs to submit for the functional enrichment analysis, which were: miR-
26a-5p, miR-29b-3p, miR-23a-3p, miR-27a-3p, miR-92a-3p, miR-210-3p, miR-9-3p, miR-206,-
miR-21-3p and miR-486-5p.

To understand which could be the common molecular pathways linking the two frailty
domains, we performed a functional enrichment analysis of target genes of these 10 selected
miRNAs. Significant enrichment was found for miR-21-3p, miR-206 and mir486a-5p and
the relevant pathways, as shown in Figure 7.
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the number of miRNA targets found annotated in each category over the total number of recognized
targets indicated in round brackets).
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These results deserve a brief discussion. PTEN (Phosphatase and Tensin Homolog),
which is the master gene tagged by eight of the candidate miRNAs, encodes for a multi-
functional phosphatase belonging to the PI3K/AKT/mTOR pathway. This evolutionarily
conserved component, most prominently known for its function in tumorigenesis, is
increasingly seen as having a metabolic role as a negative regulator of the IIS (Insulin
Signaling pathway) [165].

In humans, recent results indicate a role of PTEN in the control of adipose tissue
growth with aging in cultured cells, associated with a higher insulin sensitivity [166]
and insulin resistance in the pathogenesis of T2D [167]. Interestingly, the KEGG analysis
showed an enrichment of molecular pathways related to nutrient regulation, such as
insulin resistance, FOXO signaling, biosynthesis of amino acids and penthose phosphate
pathway. Among the miRNAs prioritized by the KEGG analysis, miR-21, a PTEN inhibitor
and a downstream effector of AKT, is reported to be able to reverse high glucose- and
high insulin-induced Insulin Resistance in 3T3-L1 adipocytes, through modulating the
PTEN-AKT pathway [168].

Moreover, as previously stated, miR-21 is, an inflamm-miRNA particularly linked to
sarcopenia [67] but with a relevance in human age-related diseases [116].

The importance of inflammation as a crucial pathway in frailty comes from the interro-
gation of the STRING database (https://string-db.org/ accessed on 11 July 2022) showing
that PTEN is functionally interrelated with two further significant targets of the miRNA-
target enrichment: the nuclear phosphoprotein MYC (MYC Proto-Oncogene, BHLH Tran-
scription Factor) and the transcription activator STAT3 (Signal Transducer and Activator
Of Transcription 3). This trio is part of an inflammatory regulatory network, particularly
linked to the downstream program of IL6, which exerts both pro- and anti-inflammatory
activities, eliciting different biological responses on different cell types [169–171]. Overall,
these evidences further confirm the relevance of the energetic metabolism and inflammation
pathway in human frailty. This observation is further confirmed by the other two miR-
NAs merged from the KEGG analysis, miR-206 and miR-486-5p. Known as myomiRNA,
miR-206 suppresses IGF1 [172] and regulates also inflammation [173]. In turn, miR-486-5p
inhibits inflammatory response [174] and is known to up-regulate the expression of silent
information regulator 1 (SIRT1), a major regulator of lifespan and metabolic disorders [175],
whose levels have been associated with frailty in older adults [176]. Thus, it appears very
probable that these miRs may represent the link between nutrition and inflammation as
master regulators of frailty.

6. Conclusions and Final Remarks

The study of miRNAs represents an emerging area of interest in the aging research.
For their possibility to target several biological processes, they may represent efficient
diagnostic and prognostic biomarkers for frailty, which is characterized by impairment
in multiple domains, likely sharing common molecular pathways. Here we investigated
this issue by reviewing the literature on miRNAs associated with phenotypes of physical
and cognitive dysfunctions, with the aim of identifying regulators common to both frailty
domains. A target enrichment and functional enrichment approach provided us with a
panel of 10 miRNAs, which target energy metabolism and inflammatory pathways, further
confirming the relevance of these mechanisms in the failure of homeostasis related to frailty,
and which could be tested as signatures of impairment in both frailty areas.

Although the study of differentially expressed miRNAs in frailty is at its infancy and
further studies are necessary, we are very confident that the combination of miRNA-panels
and traditional biomarkers may have a clinical value, representing a promising tool for the
screening of the population at risk of frailty, to reach the aim of modeling health trajectories
toward positive outcomes.

https://string-db.org/
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