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ABSTRACT

The concept of exploiting correlated mutations has
been introduced and applied successfully to identify
interactions within and between biological macro-
molecules. Its rationale lies in the preservation of
physical interactions via compensatory mutations.
With the massive increase of available sequence in-
formation, approaches based on correlated muta-
tions have regained considerable attention. We an-
alyzed a set of 10 707 430 single nucleotide poly-
morphisms detected in 1135 accessions of the plant
Arabidopsis thaliana. To measure their covariance
and to reveal the global genome-wide sequence cor-
relation structure of the Arabidopsis genome, the
adjusted mutual information has been estimated for
each possible pair of polymorphic sites. We devel-
oped a series of filtering steps to account for genetic
linkage and lineage relations between Arabidopsis
accessions, as well as transitive covariance as pos-
sible confounding factors. We show that upon appro-
priate filtering, correlated mutations prove indeed in-
formative with regard to molecular interactions, and
furthermore, appear to reflect on chromosomal inter-
actions. Our study demonstrates that the concept of
correlated mutations can also be applied success-
fully to within-species sequence variation and estab-
lishes a promising approach to help unravel the com-
plex molecular interactions in A. thaliana and other
species with broad sequence information.

INTRODUCTION

At the molecular level, biological functions result from
complex and dynamic interactions between individual
molecules (e.g. protein–protein, miRNA–mRNAs, DNA–
DNA, DNA–RNA). With the great variety of possible

molecular interactions, the methods to experimentally de-
tect and computationally predict them are also very di-
verse (e.g. (1–3)). Despite tremendous progress, obtain-
ing a comprehensive view of interactions of all genome-
encoded molecules and genomic elements remains highly
challenging. However, independent of the type of interac-
tion, there is one assumption in common. Molecules ‘com-
municate’ between each other through structure-mediated
physical interactions. Thus, the information that defines the
structure of molecules, i.e. their sequences or molecular
makeup, should contain the information about their molec-
ular interactions. Given the challenges associated with pre-
dicting structures and their interactions based on favor-
able - in the sense of low free energy - physical interac-
tions, statistical approaches have been developed that har-
ness the wealth of genome sequence information to inform
on molecular interactions. Such statistical approaches ex-
ploit covariation at different sites detected in alignments of
genomic/protein/RNA sequences (4–10). Their rationale
relies on the concept of compensatory mutations. As one
interaction partner is mutated, leading to a change of struc-
ture or interaction surface potential, natural selection will
favor mutations in the cognate molecule that compensate
for this change in order to preserve the interaction. Thus,
correlated mutations, detected by performing covariation
analyses of sets of aligned sequences, can be taken as in-
dicators of possible molecular interactions.

In the plant Arabidopsis thaliana, the application of the
concept of covariance to deduce structural and functional
interactions has been demonstrated successfully for the pre-
diction of structure-function relationships of the pentatri-
copeptide repeat proteins (PPR). In silico and experimen-
tal evidence has demonstrated that covariance in genomic
sequences of orthologous protein–RNA pairs allow detect-
ing protein–RNA recognition events (5). This covariance
was identified by finding correlated mutations in the align-
ments between PPR binding factors and their RNA tar-
gets from different species (5–7,11,12). Correlated muta-
tions have also been used successfully to identify DNA-
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binding domains and sites of transcription factors, such as
the MerR-family proteins (13). Extended to whole genomes,
this concept was used in the Drosophila genus (14). In
this study, investigators searched for long-range covariation
clusters on a genomic scale based on genome-triple ‘finger-
prints’ and reported that compensatory mutations suggest
long range interactions between exons of mRNAs and also
between noncoding RNAs.

Although the rationale of using correlated mutations
to inform on molecular interactions seems very plausible
and straightforward, it has also been shown that covary-
ing sites do not necessarily correspond to sites that are
spatially interacting (4–10,15). Phylogenetic bias, transitiv-
ity effects, passenger mutations are some of the reasons
why the detected covariance can be misleading (4). How-
ever, several approaches have been devised that circumvent
these methodological problems. Maximum-Entropy prob-
ability models (MEPM) have been developed to predict
the 3D-structure of proteins and RNA-molecules as well
as protein–protein and protein–RNA interactions by us-
ing global statistical models of covariation over deep align-
ments of gene families (8–10). MEPMs were adapted for
each case of interaction or genomic element, which allowed
avoiding the transitivity effect and phylogenetic sampling
bias depending on the genomic element of study (10). All
these approaches have been implemented using alignments
of sequences from diverse species, avoiding, or at least re-
ducing, any phylogenetic bias. By contrast, addressing com-
pensatory mutations to detect functional associations in
closely related genomes remains a challenge.

In this study, we set out to exploit the recently re-
leased genome sequence information of 1135 genomes of
Arabidopsis thaliana accessions (16). Thus, we focused on
intra-species variation with mutations represented as sin-
gle nucleotide polymorphisms (SNPs). This dataset con-
tains around 10 million polymorphic sites, and all possi-
ble pairs were tested exhaustively for correlated mutations
as a means to detect functional associations. To determine
the molecules involved in these functional associations, the
availability of detailed genome annotations is critical. In
Arabidopsis, about 77% of the genes in the genome have
been annotated (17), and other genomic elements such as
pseudogenes, and mobile elements have also been identified.
To detect covariance, we used as a metric the Adjusted Mu-
tual Information (AMI) between pairs of polymorphic sites
(18). When working with genomes from the same species,
tight covariation can also emerge from factors other than
compensatory selection such as linkage, lineage (population
structure), and transitivity. We devised strategies to con-
trol for these confounding factors and to enrich for cor-
related mutations pairs with functional relevance. We pro-
vide a genome-wide covariation statistic and report higher
than expected numbers of events of correlated mutations
in molecules that have been reported to interact (protein–
protein, miRNA–mRNA) as well as present evidence for
the validity of interactions predicted based on detected co-
variance. Most strikingly, we found that genomic sites re-
ported to physically interact to form chromatin loops and
long-range chromosomal contacts were found enriched for
correlated mutations suggesting a link between 3D-genome
organization and the sequence correlation structure.

MATERIALS AND METHODS

Polymorphic site information

We used sequencing data and variant calls as available as
part of the Arabidopsis 1001 genome project including ge-
nomic sequences of 1135 A. thaliana accessions (16). We
considered the nuclear genome only (chromosomes 1–5)
and required polymorphic sites to be biallelic and excluded
any insertions/deletions (indels) in any accession (Table 1).
In total, 10 707 430 SNP-sites were available for analysis.
When computing pairwise correlations of SNP-sites, we re-
quired the respective minor allele frequency to be greater
than 5% at both sites. Allele frequency was computed rel-
ative to the number of accessions with unambiguous base
calls (i.e. A, C, G, T only and with no ambiguous calls, such
as N, allowed) at both sites, respectively. By requiring a min-
imum of 5% minor allele, we effectively selected older poly-
morphisms and excluded polymorphisms found exclusively
in a small number of accessions (‘private’ polymorphisms).
In total, approximately 5.7E+13 pairs of SNP-sites were in-
spected for evidence of correlated mutations.

Adjusted mutual information (AMI)

To detect correlated mutations, the adjusted mutual infor-
mation (AMI) was computed for every possible pair of poly-
morphic sites, using the analytical solution proposed by Ro-
mano et al. (18) (Equations 1–5). In essence, the AMI mea-
sures the agreement of the clustering of accessions based on
alleles at two different sites corrected for their chance agree-
ment. Given a specific polymorphic site, not all accessions
in the dataset may show an unambiguous nucleotide call at
this site, instead reporting Ns or other ambiguity codes. The
lowest percentage of ambiguous base calls across all SNP-
sites was determined as 4%; i.e. N-calls had to be taken into
account for all pairwise comparisons. To detect covariance
between two sites and without including ambiguous calls,
the AMI was calculated for the intersection of accessions
with definitive nucleotides called at both sites. We required
this intersection to comprise at least 300 accessions. In to-
tal, approximately 5.7E+13 AMI-computations had to be
performed, requiring efficient computing and program ex-
ecution distributed across many CPUs. A C-program was
implemented to perform the calculations in parallel on sev-
eral cores per node using shared memory (C program avail-
able upon request). Note that the ‘adjustment’ in the AMI-
metric also corrects for differences in the lengths of base-
vectors to be correlated and as caused by different occur-
rences of ambiguous calls (‘N’s), thereby rendering pairs
with different numbers of valid non-N accessions directly
comparable.
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Table 1. Summary of the numbers of SNPs per chromosome (Chr) and their relation to the size of chromosomes and the number of SNPs reported in pair
hits

Chr L, length of Chr (bp)
N, number of SNPs
on Chr N/L [%]

NP, number of SNPs in at
least in one pair hit NP/N [%]

1 30427671 2597567 8.54% 310017 12%
2 19698289 1868168 9.48% 230652 12%
3 23459830 2193866 9.35% 251132 11%
4 18585056 1766544 9.51% 221331 13%
5 26975502 2281285 8.46% 316096 14%
Total 1–5 119146348 10707430 8.99% 1329228 12%

AMI = MIab − EMIab√
Ha ∗ Hb − EMIab

, (5)

where MI is the Mutual Information, EMI the expected MI,
Ha/b is the entropy of variable a/b, respectively, and Hab is
the joint entropy, N is the total length of the variable vec-
tor. In our case, ai and bj are the base counts of type i = 1...r
and j = 1...r found at a particular SNP-sites a or b, respec-
tively, N is the number of accessions with unambiguous base
calls at both sites and r is the number of different alleles at
a site (here, r = 2, for biallelic SNP-sites), nij is the number
of accessions clustered together based alleles i and j at the
two sites a and b. The probability P(nij) is estimated from a
hypergeometric distribution. AMI values range between 0,
denoting random co-segregation of accessions, and 1, indi-
cating perfect agreement of the allele-based partitioning at
sites a and b.

Pairs of polymorphic sites that scored above an AMI-
value of 0.9 were considered correlated mutations (pair
hits). The threshold value of 0.9 was chosen as it was found
to be significantly larger than AMI-values that may arise
by chance as determined by an empirical permutation test,
which was carried out using a subset of randomly selected
966 243 SNP-sites and vertically (across accessions) shuf-
fled bases. The shuffling was repeated 1000 times. Com-
puting all pairwise AMI-values yielded a maximum AMI
value of 0.88 with the bulk of AMI values at considerably
smaller values (Supplementary Figure S1). Therefore, AMI
>0.9 was determined to be a sensible threshold value. This
sampling strategy to obtain a random reference distribution
was chosen as the number of ‘N’-accessions is highly vari-
able across different SNP-sites rendering analytical compu-
tations of the possible combinatorics challenging.

With that many necessary pairwise AMI computations
for ∼10Mill SNPs (5.7E+13 comparisons), multiple test-
ing appears to be a major concern at first. However, note
that the probability of two SNP-sites randomly showing ex-
actly correlated base changes is very small, and is, worst
case 1.3E–25 for 300 non-N accessions and 5% (=15 acces-
sions) minor allele frequency at both sites. In addition, with
1000 repeat runs of about ∼1Mill shuffled SNP-sites, we
performed about 10 times more random control simulations
compared to actual comparisons. Thus, protection against
false correlations due to random chance can be safely as-
sumed. More critically, non-random effects leading to cor-
related mutations other than functional associations (e.g.
via linkage or lineage) proved more challenging (see below).

Annotation of pair hits

Pair hits (pairs of SNP-sites with AMI > 0.9) were classified
with regard to molecular and functional annotation based
on the following criteria. First, for both of the SNP-sites
forming a pair, the types of genomic elements to which they
map were identified. Genomic element refers to the func-
tional class of the encoded molecules (e.g. protein-coding
or miRNA) at the respective sites or the type of local
genomic region (e.g. intergenic, intron). A pair hit was then
annotated as a particular class based on the combination
of the genomic element annotations associated with the
respective individual SNP-sites comprising the pair hit
(e.g. genomic element (A): miRNA, genomic element (B):
protein coding yields class (A,B): miRNA–protein coding).
Class annotations with reversed order were combined into
one class. Second, the sequence ontology classification
associated with every SNP-site was mapped as well as
the corresponding gene identifiers (AGI IDs) assigned if
the site was found within known genes. This information
was obtained from the VCF file from the 1001 genomes
project (available http://1001genomes.org/data/GMI-MPI/
releases/v3.1/1001genomes snpeff v3.1/1001genomes snp-
short-indel only ACGTN v3.1.vcf.snpeff.gz). Pairs shar-
ing identical gene IDs and genome element classification
were considered intra-molecular/element pairs, otherwise,
they were considered inter-molecular/element pairs.

Accounting for linkage

SNP-sites at close genomic distances on the same chro-
mosome will be linked because of the low probability of
crossing-over (recombination) between the two sites and the
associated reshuffling of alleles. Linked SNP-sites will yield
high AMI-values, which most likely do not reflect func-
tional associations, but a functional link is not strictly ex-
cluded either. Based on the observed distance intervals as-
sociated with pair hits (Figure 2), we set an effective distance
cutoff of 10k bp to exclude linked sites.

Sequence distance and average distance diameter: correction
for lineage

The possibility that a pair of SNP-sites can have high AMI
due to phylogenetic bias (lineage effect) was taken into ac-
count by the following approach. For all 1135 Arabidop-
sis accessions, their respective pairwise genome-sequence-
based distances were calculated based on 200 000 randomly
selected polymorphic sites. For each pair hit, each of the
two biallelic polymorphic sites split the set of accessions

http://1001genomes.org/data/GMI-MPI/releases/v3.1/1001genomes_snpeff_v3.1/1001genomes_snp-short-indel_only_ACGTN_v3.1.vcf.snpeff.gz
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into two clusters, one with allele ai, the other with allele
aj. For each accession cluster, the Average Distance Diam-
eter (ADD) was calculated. ADD is the average pairwise
sequence distance in the cluster of accessions sharing the
same allele at the respective site (Supplementary Figure S2).
ADD allows measuring how different the accessions in the
cluster are with regard to their genomic sequence. Sequence
distances were calculated using the software Phylip (19). In
a given pair hit, the set of accessions may be divided into
clusters because all accessions in each cluster originated
from the same ancestor, and therefore, all its descendants
have the same SNP mutation. Alternatively, the accessions
in a cluster may be evolutionarily distant, but natural selec-
tion favors the specific allele observed at this site; i.e. posi-
tive selection preserved an allele in otherwise changing ge-
nomic sequences. When a cluster is explained by ancestry
or phylogenetic relations, the ADD will be small because
the sequences are related, and hence, similar. By contrast,
when a cluster is explained by positive selective pressure, an
allele is preserved even for distant accessions. In the latter
case, this can possibly happen to compensate for a muta-
tion in an interacting molecule, therefore the evolutionary
sequence relations can be distant, and correspondingly, the
ADD high. Each pair hit is composed of two SNP-sites,
each SNP-site contains two clusters (ai, aj), each cluster has
an ADD value that expresses the sequence divergence of
that cluster. Thus, for every pair hit, there are four ADD
values, one for each accession cluster (two clusters) of each
SNP-site (two SNP-sites). Given that the pair hits have high
covariance (AMI > 0.9), both SNP-sites involved in a pair
hit cause the same (or almost the same) clustering of ac-
cessions. Therefore, the values of ADD differ between clus-
ters of accessions, but not between SNP-sites in the pair hit
(Supplementary Figure S2). The values for the ADD can
vary depending on the sequence distance inside the clusters
and several combinations of ADD between the clusters are
possible. For example, cluster ai can have a small ADD, and
cluster aj as well. This means that both clusters are likely
caused by ancestry relationships. Cluster ai can have a small,
and cluster aj a large ADD (or vice versa), then in cluster ai
accessions are closely related, but in cluster aj they are not,
in which case cluster aj is likely arose due to natural selec-
tion favoring that allele. Finally, both clusters can have large
values of ADD showing a strong selective pressure for those
SNPs in both clusters.

Reducing redundant pair hits: correction for transitivity

AMI-values were calculated for each pair of SNP-sites in-
dividually. As with any correlation measure, it may suffer
from indirect correlations, also referred to as transitivity.
When a SNP A is found to be correlated with both B and C,
and based on a true mechanistic coupling, then B and C will
appear correlated regardless whether or not they truly are
associated mechanistically (Supplementary Figure S3). We
corrected for transitivity based on profile vectors at SNP-
sites; i.e. the pattern of base changes across the different ac-
cessions at a given site. For example, if detected that two
molecules harbor SNP-sites with identical profile vectors,
we may postulate a connection between them as they are

correlated. If however, the very same pattern links these
molecules to yet another molecule (or many others), we pe-
nalize this SNP-site according to the transitivity-value (or
clustering coefficient) computed by the function ‘transitiv-
ity’ of the R packages ‘igraph’. Thus, the transitivity value
allowed us to identify correlations that are less likely to orig-
inate from indirect correlations by enriching for sites with
low transitivity value and reducing those that are redundant
(high transitivity value). For isolated pairs of SNP-sites; i.e.
both sites do not appear correlated to any other site, tran-
sitivity cannot be computed and an arbitrary transitivity
value of –0.1 was assigned to both sites. Note that transitiv-
ity relates to unique patterns in SNP-sites; i.e. if molecule X
is found correlated to molecule Y based two sites of iden-
tical SNP-patterns, and molecule Y is found correlated to
molecule Z, but based on another SNP-site with a different
pattern, we will not conclude X and Z to be linked as well.

Testing for the effect of the introduced pair hit filtering steps
using intergenic regions as reference

We tested for the effect of the introduced filtering steps
(linkage, lineage, and transitivity) according to the follow-
ing rationale. Given the set of actual SNP pair hits, we de-
termined their associated characteristics with regard to an-
notation (pair hit classes as explained above, the genomic
region/ molecule type). If the observed pair hits reflect true
enrichment of particular classes, then a set of randomly ob-
tained pair hits should show different characteristics.

The enrichment of particular classes was determined rel-
ative to pair hits that are unlikely to be functional. For the
purpose of this study, pair hits in intergenic regions were
assumed to be non-functional associations. Thus, the prob-
ability of finding pair hits in intergenic regions, with both
SNP sites located in intergenic regions, was taken as the
background probability.

The number of pair hits for a given interaction class
was normalized by the number of possible comparisons
amongst all SNP-sites in that class according to Equations
(6–10).

nCom pxy = nx ∗ ny, (6)

nCom pxx = nx ∗ (nx − 1)
2

, (7)

normFreqxy = n Pair Hitsxy

nCom pxy
, (8)

Expxy = nCompxy ∗ normFreqintergenic::intergenic, (9)

Exy = log
(

n Pair Hitsxy

Expxy

)
, (10)

where nCompxy is the number of comparisons (SNP–SNP
pairs) between two genomic elements x and y; nCompxx, the
number of comparisons within the same genomic element
x; nx/y, are the numbers of SNPs in genomic element x or
y; nPairHitsxy is the number of pair hits between genomic
elements x and y, normFreqxy is the normalized count of
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the number of pair hits (nPairhitsxy) over the number of
comparisons (nCompxy); Expxy, is the expected number of
hits between class x and y using pairs between intergenic
regions-intergenic regions as reference. Enrichment (or de-
pletion) factors (E) of pair hits relative to intergenic regions
are expressed as logarithmic ratios (natural log) of observed
vs. expected number of pair hits. In Equations (8–10), if x =
y, pair hits between the same type of genomic elements are
captured, with Equation (7) serving to compute the number
of possible pairs.

For all possible combinations of genomic elements, the
obtained enrichment factors, E, were compared to those ob-
tained from random re-sampling by generating SNP-pairs
between two randomly selected SNP-sites. The random re-
sampling aimed to destroy the covariance of the SNP-sites
due to functional correlations, but to retain the character-
istics of the observed pair hits that can be explained by
confounding factors (linkage, lineage, and transitivity). If
this random resampling produces similar enrichment pro-
files as observed for true pair hits with regard to their ge-
nomic class characteristics, the correlated mutations are un-
likely to reflect functional associations, but may likely be
caused by confounding factors. The random re-sampling
was done by taking SNP-sites and repairing them randomly
applying three conditions. (i) The distribution of the ge-
nomic distance between SNP-sites (number of bps between
the SNP-sites) was forced to be identical for the actually
observed pair hits and the re-sampled SNP-pairs. (ii) The
SNP-sites included in the resampling were filtered applying
the same ADD (see above) as well as (iii) the same clus-
ter coefficient value (transitivity) thresholds. Thus, the fil-
tering for confounding factors was kept, but the actual co-
variance was destroyed by randomly pairing up SNP-sites.
In the re-sampling, only those SNP-sites, which were iden-
tified as part of pair hits, were considered, thereby eliminat-
ing SNP-sites from the original SNP-set that represent noise
(regions that are difficult to sequence and, thus, rich in poly-
morphisms) or any other SNPs that are unlikely to repre-
sent any interaction. Furthermore, this selection renders the
data manageable, as for ∼5.7E+13 pairs, the fraction of N-
base calls needs to be tracked resulting in prohibitively large
data files. This approach of re-sampling only from those
SNP-sites that were part of at least one pair hit was applied
throughout this study whenever re-sampling was performed
or the total number of comparisons was to be estimated.

The actual enrichment profile with regard to pair hit class
was compared to the randomized data via the Pearson lin-
ear correlation coefficient, r. We applied this procedure for
the various filtering steps with an effective filtering becom-
ing apparent by a low correlation coefficient r. High corre-
lations would suggest no difference of observed versus ran-
domized pair hit statistics, while low correlations would be
indicative of differences, and therefore, reflect a signal in the
observed data. In addition to the Pearson correlation coeffi-
cient, we computed correlation coefficients weighted by the
number of pairs observed for every particular pair hit class
by using the R package ‘wCorr’. Thereby, the influence of
large, but not statistically supported enrichment factors as-
sociated with low numbers of occurrences (random fluctu-
ations) was reduced.

Annotation of known interactions, enrichment analysis, and
semantic similarity of predicted protein–protein interactions

Three publicly available databases of molecular interactions
were used to assign information to each pair hit, and to de-
termine whether the polymorphic sites in a pair hit belong
to a pair of molecules reported to interact. Protein-protein
interactions (PPI) were identified using the AtPIN database
(20), ANAP (21), and IntAct (22). In total, 18,288 unique
proteins and their 187,313 interactions reported based on
experimental evidence were used as a benchmark set after
filtering the databases avoiding PPIs detected by predicting
methods. Interactions between molecules not (yet) reported
interacting, but with predicted interaction based on corre-
lated mutations were tested for biological plausibility using
the concept of semantic similarity. This method is based on
gene ontology (GO) term annotation (23) and tests for an
involvement of molecules (proteins) in the same biological
processes.

The databases miRBase (24) and miRTarBase (25) were
used to identify miRNA–mRNA-target interactions with
3654 reported interactions serving as a benchmark test set.

To test for interactions at the chromatin level, we used
the coordinates of chromatin loop formations at gene-
resolution as reported in the study of Liu et al. (26). SNP-
sites located inside the coordinate intervals of DNA loops
described to be in contact were considered as interacting
polymorphic sites.

The enrichment of pair hits associated with interacting
molecules (PPI, miRNA–mRNA, or loops) was tested by
comparing the frequency of actual pair hits detected on
molecules reported to interact to those obtained from ran-
dom sampling. The random sampling was repeated 100
times and reported as a z-score statistic, with z-score com-
puted as z-score = (fa – <fr>)/�r, where fa is the actually
observed frequency, <fr> the mean random frequency, and
�r the associated standard deviation. This comparison was
done first using all the originally obtained pair hits against
100 samples of the same set, and secondly, using the filtered
set (for lineage, linkage and transitivity) compared also to
100 samples of this filtered set. As described above, in ev-
ery random sample run, SNP-sites were randomly paired
up creating the same number of pairs as in the original set
and preserving the original chromosomal distance distribu-
tion, but reconnecting them randomly.

Comparison with Hi-C data to detect long-range chromatin
interactions

Long-range chromatin interactions have been studied in
Arabidopsis using the Hi-C technology (27,28). From Wang
and collaborators, we received a table with the Hi-C data for
the five Arabidopsis nuclear chromosomes containing Hi-C
data presented as a 1193 by 1193 matrix of real-number val-
ues (28). This matrix consists of bins of genomic regions of
size 100K bp and using the TAIR9 (equivalent to TAIR10)
genome assembly as reference. The Hi-C data were rendered
binary by introducing a threshold of >3 to indicate inter-
action, and otherwise no interaction, as recommended by
the study authors (personal communication). To perform a
comparison, we converted our pairwise and position-based
data to a binned representation as well. The number of pair



Nucleic Acids Research, 2018, Vol. 46, No. 16 8119

hits per cell (100K × 100K bp) was normalized by the num-
ber of possible comparisons between the two bins of length
100K bp, i.e. all pairwise comparisons of any SNP-site in
each cell. A binomial test was implemented to define, which
pairs of bins showed more hits than expected. The expected
probability of pair hits was estimated from the performed
random sampling (see above). To account for linkage, only
SNP–SNP pairs at distances greater than 10K or on differ-
ent chromosomes were considered while also preserving the
actual distance distribution of pair hits at larger distances.
In addition, SNP–SNP pairs were filtered for lineage and
transitivity (set Lk + Ln + Tr). Pairs of bins were consid-
ered significantly enriched for correlated mutations based
on binomial testing with applied FDR correction for multi-
ple testing (pFDR<0.05). Both data sets (Hi-C and bin-wise
SNP correlation data) were tested for co-segregation using a
Fisher exact test on the binary data; i.e. interacting yes/no,
enriched for correlated mutations yes/no.

Gene co-expression/ GO-term enrichment analysis

Gene expression information were obtained from
NASCArray (29) with reported expression values for
20 807 unique nuclear encoded genes probed across 5,295
hybridizations covering a diverse set of conditions and
using the ATH1 Affymetrix Arabidopsis gene-chip. Raw
values were log-transformed and jointly normalized apply-
ing a quantile normalization using the ‘normalize.quantile’
routine of the R package ‘preprocessCore’. Pairwise gene
co-expression was assessed by computing Pearson correla-
tion coefficients of the normalized expression values across
all hybridizations.

Gene-ontology (GO) information was obtained from
TAIR (30,31). Enrichment of specific GO-slim terms in one
particular gene set compared to another set was assessed by
performing Fisher’s exact test of the respective term counts
in the two sets to be compared. Associated P-values were
tested for multiple GO-term testing based on the proce-
dure introduced by Benjamini and Hochberg (32). Gene sets
were not rendered unique; i.e. genes can be contained in the
set engaging in positive and negative pairwise co-expression
(with respectively differing gene partners) as well as, if a
gene was reported in multiple pairings, its GO-term anno-
tations were counted repeatedly, effectively increasing their
weights.

RESULTS

From an all-against-all comparison of all SNP-sites pass-
ing the selection criteria and across all considered 1135 A.
thaliana accessions, 41 065 045 pairs of SNPs were detected
at an Adjusted Mutual Information (AMI) level of above
the employed threshold value of 0.9 and were considered
significant correlations, henceforth referred to as pair hits.
The total number of pair hits corresponds to 7 × 10−5%
of all computed comparisons. Of all 10 707 430 polymor-
phic sites available for analysis, 1 329 228 (∼12%) were part
of at least one pair hit (Table 1). The distribution of in-
dividual SNP-sites in the five nuclear chromosomes of A.
thaliana shows a specific segregation by genomic elements.
Without correcting for gene-region size, many SNP-sites

are found in protein-coding regions and transposable ele-
ment genes. The SNP-density profile also reflects the chro-
mosomal structure with high SNP densities near the cen-
tromeric regions, especially related to transposable element
genes (Figure 1A). Most pair hits (84%) were found to be in-
volved in inter-molecular interactions, with pair hits corre-
sponding to protein–protein interactions being the most fre-
quent correlated pair hit class (Figure 1B). However, upon
normalization, we found that the most abundant pair hits
relative to the corresponding number of comparisons were
found on pairs of snoRNA–snoRNA, tRNA–tRNA, trans-
posable element (TE)–TE, and TE–pseudogenes molecules
(Figure 1C).

Linkage disequilibrium

Correlated mutations will also reveal linkage effects, the
joint inheritance of proximal SNP-sites due to reduced
probabilities of crossing-over events, known also as linkage
disequilibrium. Indeed, a pronounced increased frequency
of pair hits at close genomic distances extending to a dis-
tance of up to 10K bps is evident (Figure 2). Most of the pair
hits were found in close proximity along chromosomes with
47% of all pair hits (including inter-chromosomal pairs)
detected within the genomic distance range of up to 10K
bps on the same chromosome. Linkage disequilibrium ap-
pears lost at a distance of approximately 10K bp (Figure
2). This agrees well with previous reports on linkage effects
in A. thaliana (33). Thus, linkage is an important source of
SNP–SNP correlations. It does not require any functional
and compensatory origin, and hence, needs to be accounted
for in order to reduce false positive associations. Therefore,
when comparing the observed correlation structure to ran-
dom data, the random sampling was designed to reproduce
the observed linkage decay (see Materials and Methods).

Correlation structure of the Arabidopsis nuclear genome

We inspected the global correlation structure of SNP-sites
in the nuclear genome of Arabidopsis thaliana by compar-
ing actual SNP-pair frequencies to two reference distribu-
tions. Most simplistically, the number of observed SNP–
SNP pairs follows the density of SNPs alone. Evidently,
and demonstrated already (Figure 2), linkage has a pro-
nounced effect on the correlation structure and was ac-
counted for by a distance-biased random re-sampling used
as a second background distribution. The heatmap of ac-
tual vs. expected pair hits indeed reveals regions of in-
creased SNP–SNP correlations relative to both tested back-
ground frequencies (SNP-density alone, distance-biased to
account for linkage) (Figure 3). Local clusters as well as
long-range paired regions of elevated correlation can be
identified. Local clusters primarily correspond to genomic
regions around centromers. Long-range interactions also
appear associated with these chromosomal segments.

When comparing pair hit counts to density-derived ran-
dom pairings, again, the effect of linkage (Figure 2) becomes
evident, as the diagonal (close proximity of SNPs) coin-
cides with increased pair counts relative to random expecta-
tion at the expense of larger distances (lower than expected
counts, Figure 3, lower-right triangular matrix). By con-
trast, the distance-biased resampling effectively accounts
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Figure 1. Summary of overall SNP and pair hits data and annotation characteristics. (A) Density of polymorphic sites along the genome as represented by
the chromosome structure and molecule/genomic element type. (B) Percentage of pair hit annotation classes, counted as relative number of pair hits (left)
and relative number of paired molecules (right). (C) Normalized abundance of pair hits representing the fraction of all significant SNP–SNP correlations
carrying a particular type of class relative to all possible comparisons of any SNP–SNP site of this class. Numbers above the normalized frequency bars
denote absolute counts of pair hits.

Figure 2. Frequency distribution of genomic distances in base-pairs (bp)
of SNP-sites found correlated (pair hits) at bin width of 100 bp.

for the linkage effect (no elevated counts on the diagonal).
Rather, except for the pericentromeric region, a relatively
large (∼2 Mb) interval of seemingly lower than expected ac-
tual SNP-pairs is revealed (green band around diagonal in
Figure 3, upper-left triangular matrix). This, however, may
primarily result from the applied distance-bias-corrected re-
sampling that effectively uniformly distributes the hugely
increased pair frequency observed in the pericentromeric re-
gions to all chromosomal regions (see Discussion on this
point).

In addition to the position-local pair counts, both ref-
erence schemes reveal evidence of long-range and inter-
chromosomal SNP–SNP correlations. In particular, the
pericentromeric regions of all five chromosomes display
pronounced increased pair frequencies over extended inter-
vals and appear to be correlated across chromosomes. While
within chromosomes, linkage may extend over longer re-
gions due to decreased recombination rates near the cen-
tromere (16), across chromosomes, linkage cannot explain
the observed high frequency of high correlations. Higher
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Figure 3. Heatmap of the natural logarithm of the ratio of the number of observed pair hits, Np, (correlated SNP pairs; counts per bins of 100K bp) and
(A) lower-right triangular matrix: the number of pairs estimated purely based on the density of SNPs, and (B) upper-left triangular matrix: the number
of random pairs forced to follow the same distance distribution (Figure 2). In (A), the number, Np,r, of density-derived, random pairs per cell (i, j) (bin i
(x-axis), bin j (y-axis) was obtained by Np,r = Ni*Nj/T, where Ni,j are the number of SNPs in bin i, j, respectively, and T is a scaling factor to render to
the total number of actual and density-based pairs identical. To both, the numerator and the denominator, an arbitrary constant of 10 was added to avoid
dividing by zero and to mitigate the noise due to small numbers. Note that, also in the case of distance-biased re-sampling, the emerging clusters of elevated
pair hit frequency do not reflect local SNP-density as the random re-sampling does consider local SNP density (see Methods).

than expected counts of SNP–SNP pair correlations are
also found outside pericentromeric regions.

Strikingly, vertical and horizontal stripes of elevated pair
frequencies (red-colored cells in Figure 3, e.g. emanating
from the interval 13–14 Mb on chromosome 1, near the
centromeric region, and extending across large genomic
regions and even across different chromosomes suggest
high frequencies of correlated mutations associated with
selected regions of the nuclear genome. Upon further in-
spection, we concluded those correlations to result from
the population structure present in the set of the 1135 ac-
cessions. Correlated SNPs found in the regions associated
with ‘stripes’ were determined as those effectively segregat-
ing North American accessions from all others (European,
Asian accessions). The colonization of the North American
continent was reported to have been a relatively recent event
(a few centuries ago) and associated with a fast geographic
spread (34,35). Thus, North American accessions are genet-
ically more homogeneous and reveal a founder-effect, re-
ported already in the seminal publication on the used set of
1135 genomes to result in noticeable population structured
evidenced by SNP-patterns (16). As a consequence, the par-
ticular alleles present in the founder population have been
preserved and are revealed here as sites distinguishing them
from other accessions leading also to their apparent correla-
tion, which however, will likely have no functionally causal
origin.

While this global picture does not provide any immedi-
ate functional insights, it does show that the actual correla-
tion structure differs from random expectation and reveals
the need to account for confounding factors, in particular,
linkage and descent.

Filtering out confounding factors

To identify pair hits that reflect functional associations via
compensatory mechanisms, confounding factors, such as
linkage (Lk), lineage (Ln) and transitivity (Tr), need to
be taken into account. These biases have also been dis-
cussed in other studies (4,8–10,36). Hence, we aimed to de-
termine their impact on our results and developed strate-
gies to eliminate pair hits that are predominantly affected
by linkage, lineage, and the transitivity effect. To detect
whether the signal in the correlated mutations is originat-
ing from functional associations, we compared actual pair
hits to carefully composed randomizations. The generated
random re-parings of SNP-sites were designed to follow the
same global linkage distribution and were subjected to the
same lineage and transitivity thresholds as applied to the
actual SNP-pairs (see Materials and Methods). For testing
whether pair hits reflect functional associations as opposed
to result from confounding factors, we pursued the follow-
ing rationale: If observed pair hits are considerably differ-
ent from random pair hits with respect to their genomic ele-
ment type statistics (profiles as displayed in Figure 4), func-
tional associations have likely been detected. By contrast,
in cases of similar statistics of the genomic element types,
the observed pair hits will predominantly be uninforma-
tive. Intergenic regions were assumed to be non-interacting
and used as the background probability. For all pair hits,
we found that interactions between RNAs (miRNA, tRNA,
snoRNA, sRNA), transposable elements (TE), and pseudo-
genes have a probability of being correlated above what is
expected based on the background probability, while many
other classes occur less frequently (Figure 4A). Naively,
we expected other types of interactions, such as protein–
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protein interactions, to be enriched relative to intergenic
regions. Instead, they were found to be depleted. Further-
more, upon randomly re-sampling, a very similar enrich-
ment profile was obtained as for the observed pair hits data
(Pearson correlation coefficient, r = 0.86, Figure 4A). Thus,
when considering all pair hits, no strong evidence of func-
tional relevance of correlated mutations was apparent.

To account for linkage as a driver of correlated muta-
tions, all pair hits with distances of smaller than 10K bp
were discarded based on the observed distance dependence
of pair hits (Figure 2). This subset is referred to as subset
Lk. Again, enrichment of genomic classes represented in
the set was tested relative to intergenic regions as the ref-
erence (Figure 4B). There was no pronounced difference in
the enrichment factor distribution between the subset Lk
and the complete results using intergenic regions-reference.
Furthermore, when comparing the subset Lk to its random
sampling, pair hits still exhibit a high correlation level (r =
0.79).

Using different accessions from the same plant species
can be expected to confer a strong phylogenetic bias to our
results as the different accessions are closely related by de-
scent. Therefore, it is essential to discriminate whether the
detected covariance is functional or primarily reflects the
phylogenetic history (lineage) and, thus, population struc-
ture. To account for phylogenetic bias, we measured all
pairwise sequence distances between accessions and used
the Average Distance Diameter (ADD) to assess the level
of genome sequence diversity. The ADD was calculated
among the groups of accessions that correspond to clusters
of accessions based on the particular allele at a SNP-site (see
Materials and Methods; for illustration, see Supplementary
Figure S2). The rationale for this approach is to use SNP-
sites resulting in clusters of accessions that correspond to
high sequence diversity as this can be taken as evidence that
natural selection may have favor a particular allele at a given
site. Consequently, only pair hits with corresponding clus-
ters of accessions displaying high diversity were considered.
The top-75% percentile of the ADD diversity was used as a
threshold. This subset was denoted as subset Lk+Ln, com-
prising 34% of the all pair hits.

The distribution genomic element enrichment of subset
Lk+Ln displayed a different distribution compared to the
pair hits obtained without any filters (Figure 4C). The dis-
tribution of subset Lk+Ln also showed increased deviation
relative to its random sampling, albeit still at a high overall
level, r = 0.71. Thus, accounting for confounding factors
still appears incomplete.

As the last explicitly considered confounding factor we
inspected possible effects from transitivity (Tr). Indirect
covariances can result in overestimation of pair hits (see
Materials and Methods, for illustration, see Supplemen-
tary Figure S3). Using pair hits with a smaller cluster co-
efficient, and hence, likely less affected by the transitiv-
ity effect, we aimed to reduce the number of redundant
pairs. The 25% percentile of the lowest values of transitiv-
ity were considered for analysis (subset Lk+Ln+Tr, com-
prising pair hits with larger distance than 10K bp, the
75% highest ADD, and the 25% lowest transitivity val-
ues corresponding to 20% of the original set (8 549 704
pair hits)). The combination of the three filters yielded a

distribution of the data that could not be reproduced by
sampling. Sample and subset Lk+Ln+Tr have an associ-
ated correlation coefficient of r = 0.16 (Figure 4D). Thus,
following the rationale that actual profiles of genomic-
class associations should not be reproducible by random
sampling, we conclude that subset Lk+Ln+Tr may be en-
riched for functionally relevant correlations, and thus, may
reflect molecular interactions. Interestingly, interactions
such as tRNA–tRNA, protein–snoRNA, snoRNA–tRNA,
miRNA–miRNA, miRNA–snoRNA, protein–tRNA, TE–
TE, protein–protein (PPI), miRNA–protein, miRNA–
miRNA, protein–tRNA, protein–snoRNA were found
overrepresented in this set relative to background (pairs of
intergenic–intergenic regions). As these interaction classes
appear biologically plausible, e.g. base-pair complementar-
ity for RNA-mediated interactions or possible correlated
amino acid changes in interacting proteins, or miRNA–
target protein interactions reflecting the potential interac-
tion of miRNA to the associated mRNA, the results ob-
tained for subset Lk+Ln+Tr appear biologically reason-
able. Likewise, pairings including pseudogenes were found
at low levels, which can also be taken as evidence of the va-
lidity of our results as pseudogenes can be assumed non-
functional. Note that the three introduced filtering steps
were not applied sequentially, but were each based on the
complete set and the intersection of those was taken. As
the filtering reduced the number of pair hits, the correla-
tion between actual and sampled pair annotations may de-
crease purely due to increased stochasticity (smaller num-
bers). However, the number of considered pair hits after fil-
tering remained large. Furthermore, the enrichment factors
obtained for the various classes appear biologically plausi-
ble. This view is supported further when inspecting protein–
protein and miRNA–target gene interactions for the origi-
nal and filtered set, where the filtered set yielded a larger
fold increase of true interactions relative to random sam-
pling (see below). To quantitatively account for the possi-
ble effect of small numbers, we also computed occurrence-
weighted correlation coefficients (designated Wr in Figure
4). Observed similarly as for the Pearson correlation coeffi-
cients, a dissociation of class profiles of actual vs. random
SNP-pairs is observed only when combining all three filter-
ing steps (Lk+Ln+Tr, Wr = 0.29), while the profiles remain
closely correlated when considering all other filtering steps
alone (Lk, Wr = 0.98; Lk+Ln, Wr = 0.97).

While the overall correlation structure after filtering (sub-
set Lk+Ln+Tr) and as assessed by the heatmap of all-
against-all chromosomal regions (Figure 5A, 100K bins)
appears similar to the unfiltered pair hit set (Figure 3), pro-
nounced differences can also be observed. Regions of in-
creased density of correlated SNPs appear more condensed
to large, but local clusters. The respective cross-peaks in-
dicative of possible non-local interactions are relatively de-
pleted except for correlations between chromosomes 2 and
3, for which the two respective local clusters also appear cor-
related among each other. Because of the introduced lineage
and other filters, the ‘stripiness’, discussed above to result
from the population structure and associated with North
American accessions, has been reduced suggesting that non-
informative correlations have been filtered out, albeit cer-
tainly not entirely.
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Figure 5. Summary of pair hit results obtained for subset Lk+Ln+Tr. (A) Heatmap of the natural logarithm of the ratio of number of observed pairs in the
filtered data and the number of randomly sampled pairs, counts per bins of 100K bp. To both, the numerator and the denominator, an arbitrary constant
of 10 was added to avoid dividing by zero and to mitigate the noise due to small numbers. (B) Normalized abundance of pair hits representing the fraction
of all significant SNP–SNP correlations carrying a particular type of genomic element class relative to all possible comparisons of any SNP–SNP site of
this class. Numbers above the normalized frequency bars denote absolute counts of pair hits.

Evidently, as the heatmap presents the averaged overview,
individual pair hits can still be present across all chro-
mosomes and distance intervals. Furthermore, inter-
chromosomal regions corresponding to possible correla-
tions between centromeric regions, observed with high SNP
frequency (Figure 5A), appear depleted for pair hits after
filtering, indicating a reduced probability of true functional
interactions via compensatory mutations.

Pronounced differences are apparent with regard to rela-
tive abundance of pair hits for particular genomic element
classes. As described before, classes that appear biologically
plausible have moved to higher rank positions with regard
to their enrichment factors (Equations 6–10) compared to
the unfiltered set (Figure 4C compared to Figure 4A). For

example, protein–protein interactions are ranked seventh
after filtering, but were ranked 24th in the original set.

Correlated mutations reflect known interactions

The subset Lk+Ln+Tr was tested for enrichment of known
interactions between molecules. We focused on three types
of interactions: protein–protein interactions (PPI), interac-
tions between miRNAs and their target genes, and DNA–
DNA interactions in chromatin loops and long-range chro-
matin interactions.

Concerning PPIs, 4,020 pair hits were found between pro-
teins reported to interact; i.e. each of the two correlated
SNP-sites were found present on proteins reported to in-
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Figure 6. AMI-value distribution of SNP–SNP pairs on interacting pro-
teins resulting either in nonsynonymous changes on both interacting pro-
teins (mean = 0.021, median = 0.0096) or in synonymous changes (mean
= 0.018, median = 0.0070), Wilcoxon-test P-value 3.63E–118, natural log.

teract. This set contained 290 unique gene-gene pairs cor-
responding to 642 unique protein–protein pairs as some
genes encode more than one protein variant via splice vari-
ation. When performing 100 runs of random re-pairings
of the same set of polymorphic sites (subset Lk+Ln+Tr),
counts of pair hits on interacting proteins were found with
a mean of 1053 ± 80 (s.d.). By comparison, actual pair hits
were enriched 3.8 fold (z-score = 36.9, P = 1.9E–298) for
known PPI relative to random pairings, and thus, may re-
flect functional associations between proteins. Without fil-
ters (all pair hits) the difference between the actual number
of PPIs found with correlated mutations and the PPI found
in the sampling was less pronounced and increased by a fac-
tor of 1.75 only (6 049 457 pair hits, z-score of 429.8, P = 0).
Thus, the introduced filtering steps proved effective in en-
riching for true interactions, but also significantly reduced
the number of candidate associations, likely producing false
negatives as well.

With regard to PPIs, the notion of compensatory mu-
tations should have merit only in cases of nonsynony-
mous (i.e. amino acid changing) mutations. Synonymous
(or silent) changes should not change the physics of inter-
actions at all (but may affect other processes such as trans-
lation efficiency). Indeed, when examining SNP–SNP pairs
on proteins known to interact, we found AMI-values as-
sociated with nonsynonymous-nonsynonymous changes to
be significantly larger (mean = 0.021, median = 0.0096,
Wilcoxon test P-value = 3.6E–118) than those obtained for
synonymous-synonymous pairs (mean = 0.018, median =
0.007) (Figure 6). While significant, the magnitude of differ-

Figure 7. Boxplot of the semantic similarity of proteins predicted to in-
teract based on a pair hit linking them compared to a set of protein pairs
formed randomly. In this statistic, only those protein pairs were consid-
ered that are not reported to interact using the available PPI information
(Wilcoxon test P-value < 2.2E–16).

ence is small, possibly explained by synonymous changes
being in turn correlated with nearby functionally relevant
nonsynonymous changes or by providing a suitable ge-
nomic context for fixing nonsynonymous changes.

Aside from protein–protein interactions, miRNA-
protein-coding-mRNA are natural candidates molecular
interaction types to harbor compensatory mutations, as
for this type of molecular interaction, mutations directly
translate into (almost) binary interaction decisions with
base pairing possible or not. By contrast, mutations in
proteins may either not result in any change of protein as
they can be silent, and even if changing the amino acid,
interactions between different amino acid residue types are
not of binary character. Indeed, for miRNA–mRNA, we
found 177 pair hits on 26 unique miRNA–mRNA molecule
pairs corresponding to a 26.4-fold enrichment relative to
random sampling (100 runs of random repairing, z-score
= 157.7, P = 0). Again, when taking all pair hits; i.e.
not including the filtering steps, the difference was less
pronounced (fold = 1.63, z-score = 31.2, P = 2.35E–214).

The statistic reported above was based on SNP-pairs
(pair hits) and their distribution on interacting molecules.
Next we examined the predictive value of pair hits with
regard to molecule-based interaction predictions. While
for both types of molecular interactions, the positive pre-
dictive value (PPV) was low (protein–protein interaction:
0.15%, miRNA–mRNA interactions: 0.7%; Table 2), for
miRNA–mRNA pairs, the observed enrichment (odds re-
ported by the Fisher exact 2 × 2 table test, i.e. counts of
concordant/discordant pairs) was very pronounced (odds
= 5.36) and highly significant (P = 2.5E–11). By contrast,
for protein–protein interactions the enrichment of concor-
dance was small (odds = 1.16) and significance low (P =
0.016).

Gene-loops and chromatin interactions

Lastly, we probed for correlated mutations to inform on
physical interactions at the DNA/chromosomal level test-
ing both short-range gene loop formations (26) as well as
long-range chromatin interactions (27,28) reported in Ara-
bidopsis and based on Hi-C data.
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Table 2. Predictive value of correlated mutations with regard to A)
protein–protein and B) miRNA–mRNA interactions. Counts are based on
a per-molecule basis, and were not based on SNP-pairs. Odds refers to the
ratio of concordant (Yes/Yes, No/No) to discordant table entries (Yes/No,
No/Yes)

A) Protein-protein
correlated SNP-pair

Yes No
Reported Yes TP = 290 FN = 50293
interacting No FP = 187023 TN = 37498722

Odds (enrichment): 1.16

Fisher exact test P-value: 0.016

Positive Predictive Value (TP/(TP+FP) = 0.15%

B) miRNA-mRNA

correlated SNP-pair

Yes No

Reported Yes TP = 26 FN = 594
interacting No FP = 3628 TN = 444630

Odds (enrichment): 5.36

Fisher exact test P-value: 2.5E-11

Positive Predictive Value (TP/(TP+FP) = 0.7%

In reported DNA–DNA contacts in gene loops, we found
60 pair hits (fold = 2.8 relative to the mean obtained from
100 runs of random re-pairings, z-score = 8.74, P = 2.14E–
18). In this test, the introduced distance filter of 10K bp
eliminated most of the reported gene loop contacts. When
including all pair hits (without any filtering), we detected
432 870 pair hits, 4.3 times more than the mean obtained
from the 100 runs of random re-pairings of the same num-
ber of original pair hits (z-score = 1102, P = 0). Note that,
while there will be substantial linkage within 10K bp, and
thus many pair hits (Figure 2), in the random repairing the
distance-dependent frequency distribution was preserved to
account for linkage. Thus, correlated mutations also reflect
on chromosomal gene loop contacts.

Next, we tested whether correlated mutations reflect
long-range chromatin interactions. Specifically, we asked
whether sites of physical contacts between distant chromo-
somal regions overlap with pairs of genomic regions rich in
correlated mutations. Both, Hi-C data informing on phys-
ical chromosomal contacts and pair hits reflecting corre-
lated mutations were binned into intervals of 100K bp, mak-
ing each pair (cell) of 100K–100K bins the basic interact-
ing unit. We found a significant overlap of long-range chro-
matin interaction cells detected using Hi-C technology and
cells with significant numbers of pair hits (Fisher’s exact
test, P-value < 2.2E–16) (Figure 8A). The correspondence
appears particularly strong near pericentromeric regions,
both within and across different chromosomes. In compar-
ison to the Hi-C data, a larger number of cells appear to
be interacting in our pair hits data (blue cells in Figure 8A)
as our data can also reflect different levels of interactions,
not only at the chromosomal level, and/or because of dif-

ferences in thresholding. However, the significance of the
Fisher test suggests that correlated mutations may indeed
reflect long-range chromatin interactions.

In the pairwise regions with concordant evidence of in-
teraction revealed by both SNP–SNP correlation (pair hits)
and Hi-C data, 29.9% of the genomic classes are TE-TE
genes pair hits, 24.9% intergenic regions-TE and 20.6%
protein–TE (Figure 8B), all found at higher frequencies
than in regions not showing agreement of pair hit and Hi-C
data (discordant cells, Figure 8B, TE–TE 19%, P < 2.2E–
16; intergenic–TE 12.%, P < 2.2E–16; protein–TE 10.5%, P
< 2.2E–16 with P-values obtained from Fisher’s exact test
compared to concordant regions). Moreover, there is an en-
richment of intergenic–intergenic pairs in chromatin inter-
acting regions concordant with our data compared to dis-
cordant cells (4.8% compared to 1.6%, P < 2.2E–16). By
contrast, pairs of the class protein–protein interactions are
depleted, explained by the paucity of protein coding genes
in pericentromeric regions (Figure 1).

Prediction of novel protein–protein interactions

As pair hits were indeed found to reflect molecular interac-
tions between proteins, it can be assumed that also those
pair hits that link two different proteins that are not re-
ported to interact based on the currently available informa-
tion may, in fact, interact. To test for this possibility and
taken as an indirect evidence, we checked whether two pro-
teins connected via at least one identified pair hit, but not
reported to interact, are involved in the same biological pro-
cess as captured by their GO-term annotation. Indeed, the
semantic similarity of the putative 471 002 PPIs based on
pair hits proved significantly higher semantic than obtained
for a random sampling of protein pairs (Figure 7, Wilcoxon
test P-value < 2.2E–16).

In addition to novel protein–protein interactions, Table
3 lists the pair counts of all other molecule types predicted
to interact based on detected pair hits (filtered set) with one
and, imposing a stricter filtering, five or more showing them
as correlated. Actual molecule pairs associated with the lat-
ter are available as Supplementary File 1. Of note are the
highlighted predictions for the types detected to be enriched
relative to expectation (Figure 4D).

Co-expression of gene pairs linked via correlated mutations

In addition to direct physical interactions, functional links
between two genes linked via correlated mutations could
also become evident as correlated gene expression behav-
ior. Exploiting a large compendium of gene-expression mi-
croarray data (see Methods), we indeed detected differences
of the levels of gene-co-expression for gene pairs linked pair
hits compared to gene pairs from a random pairing of SNPs
(Figure 9). Here, and to allow for the effect of possible regu-
latory effects, we considered all SNP-locations within gene;
i.e. including also non-CDSs sites such as introns or UTR.
However, contrary to expectation, we did not find correla-
tion levels to be shifted to larger positive values, but instead,
a shift to larger absolute values; i.e. including larger negative
values. This result was even more pronounced when select-
ing only those gene pairs with five or more pair hits linking
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Figure 8. (A) Heatmap of genomic regions considered interacting. Cells (pairwise bins of 100K bp) that have significantly more pair hits than randomly
expected are considered correlated and colored blue. Cells (same bin size of 100K bp) considered physically interacting based on Hi-C data shown in
green. Overlapping cells for both sets are colored red. (B) Percentage of pair hit annotation classes, counted in paired regions that appear to be chromatin
interactions as well as enriched for correlated mutations (left panel, ‘concordant’) and counted in regions that are not chromatin interactions (right,
‘discordant’).

Table 3. Predicted interactions of molecules based on the presence of at
least one/ five pair hit(s) revealing them as correlated. Highlighted bold are
the molecule type pairs identified as enriched for pair hits in the genome-
wide screen and after filtering (Figure 4D) (Transfer RNA (tRNAs), small
nuclear RNA (snRNA), Small nucleolar RNAs (snoRNAs), non-coding
RNA (ncRNA), microRNA (miRNA), protein coding sequences, Trans-
posable Elements (TE)). Actual molecule pairs predicted to interact based
on five or more pair hits are available as Supplementary File 1

Class At least 1 pair hit 5 of more pair hits

Protein::Protein 471002 70079
Protein::TE 391524 53514
TE::TE 170575 38862
ncRNA::Protein 12848 1234
Protein::tRNA 11805 1110
ncRNA::TE 7059 1158
miRNA::Protein 4705 367
tRNA::TE 4046 307
Protein::snoRNA 2519 195
miRNA::TE 1706 84
snoRNA::TE 742 33
Protein::snRNA 210 12
ncRNA::tRNA 155 4
ncRNA::ncRNA 103 10
tRNA::tRNA 86 1
miRNA::tRNA 69 3
miRNA::ncRNA 58 1
snRNA::TE 45 1
ncRNA::snoRNA 32 0
snoRNA::tRNA 25 0
miRNA::miRNA 15 0
miRNA::snoRNA 5 0
snRNA::tRNA 3 0
ncRNA::snRNA 1 0

them (medians of absolute pairwise gene expression Pear-
son correlation coefficients of random gene pairs = 0.086,
median of gene pairs linked by at least one/five pair hit =
0.091/0.097, P = 7.7E–87/2.46E–169 (Wilcoxon test)), al-
beit the magnitude of difference was small. Thus, the expres-
sion of genes linked via pair hits is notably different from
their random expectation.

Figure 9. Pairwise gene expression correlation of transcripts encoded by
gene pairs linked via correlated mutations (pair hits) and as measured by
raw (left) and absolute (right graph) Pearson correlation coefficient, r. Con-
sidered gene-pair sets were linked by at least one (294 479 gene pairs with
available gene expression information for both genes) or five pair hits (56
718 pairs) and compared to a set of randomized pairings (172 443 gene
pairs) of the same set of SNP-sites. All SNP-locations on genes were con-
sidered; i.e. also including non-CDS regions such as introns or UTR.

To understand the unexpected increase of not only posi-
tive, but also negative correlation levels between genes with
correlated mutations, we performed a GO-term (functional
terms) enrichment analysis of gene sets with genes engag-
ing in pairwise positive correlation (r > 0.2) and contrasted
those to a set of genes with pairwise negative co-expression
regulation (r < –0.2). In line with expectations, genes en-
gaging in positive pairwise gene co-expression and with at
least 5 or more pair hits were enriched for the GO term
‘protein binding’, pFDR = 1.8E–11 (other GO terms with
PFDR < 0.05: ‘receptor binding or activity’ PFDR = 5.8E–
4; ‘nucleotide binding’, PFDR < 2.6E–3). Thus, the notion
of correlated mutations reflecting functional, and primar-
ily physical, interactions seems validated as positive gene
expression correlation is immediately consistent with this
mode of interaction. By contrast, among genes with neg-
ative expression correlations, but also linked via at least five
pair hits, no single GO term reached the same level of signif-
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icance as observed for ‘protein binding’ in the positive cor-
relation set. Instead, GO terms ‘DNA or RNA binding’,
pFDR = 1.97E–3; ‘unknown molecular function’, PFDR =
1.97E–3; ‘transferase activity’, PFDR = 2.6E–3; ‘transporter
activity’, PFDR = 3.1E–3; ‘nucleic acid binding’, PFDR =
1.2E–2; ‘other binding’, PFDR = 1.2E–2, were obtained at
borderline significance levels.

DISCUSSION

The concept of detecting and exploiting correlated muta-
tions as indications of physical or functional interactions
has been appealing from its inception (37–39). Its underly-
ing rationale appears straightforward and convincing. Fur-
thermore, the basis for its successful application - the avail-
ability of broad sequencing information - is growing rapidly.
The power of this approach has also been demonstrated by
its successful application in predicting structural aspects or
proteins (e.g. (8,11)) and RNA (36). At its core, the method
requires evolution to have acted to select for compensatory
mutations. Thus, sufficient evolutionary time needs to have
elapsed in order for evolution to take effect. Therefore, pre-
vious studies on correlated mutation aimed to increase evo-
lutionary distances between the considered genomes and in-
cluded different species only.

Here, we set out to test and apply the concept of
correlated mutations within the same species (Arabidop-
sis thaliana). Evidently, the considered genomes are more
closely related with less evolutionary time separating the
different Arabidopsis accessions as compared to different
species, and therefore, the selective forces of evolution will
have had less time to act. It has been estimated that Ara-
bidopsis thaliana diverged from its ancestors around 5 MYA
(40); i.e. relatively recently compared to the ∼450 million
years of land plant evolution (41). North American acces-
sions are supposed to have colonized their current habitats
as recently as a few centuries ago (34,35). Thus, it was not
obvious whether the concept of correlated mutations can be
used successfully when applying it to within-species varia-
tion. Nonetheless, by implementing a series of filtering steps
and by performing appropriate controls, our study sug-
gests that correlated mutations can also reveal physical, or
broadly functional, interactions between molecules or ge-
nomic regions even within a species. Correlated mutations
were found to be enriched in molecule pairs known to inter-
act. Thus, this confirmation also implies that this approach
may also have predictive value, even though the number of
false positive predictions can be expected to be high (Ta-
ble 2). Our study also reveals the overall genome-wide cor-
relation structure of the Arabidopsis genome and required
implementing an efficient computation scheme rending the
computation of around 1013 comparisons possible. Subse-
quently, we shall discuss methodological aspects as well as
the biological implications of our results.

Mutual information - the metric employed in this study
- is a mathematically robust method to detect covariance
between categorical variables (here, alleles). However, its
power to detect functional associations has also been ques-
tioned due to different confounding factors (4,8,10). Two
positions in an alignment can be covarying because they
descended from the same ancestor in which two random

mutations appeared (lineage) or because they are inherited
jointly due to proximity on the chromosome (linkage) (33).
Indeed, both effects became evident in this study as well
(Figures 2 and 3). In addition, methods for measuring co-
variance frequently fail to properly account for the transi-
tivity effect caused by indirect correlatoins, thereby overesti-
mating the number of interactive pairs (8,10). Additionally,
sequencing errors could result in false and repetitive SNPs.
This could lead to a substantial overestimation of the num-
ber of pair hits due to the transitivity effect, because all rep-
etitions appear to be covarying with each other. To address
these difficulties, we devised as series of filters. By maximiz-
ing genomic sequence distance within the splits of acces-
sions introduced by the two alleles at a given site, we aimed
to reduce the lineage effect. By penalizing sites with a high
clustering coefficient, we diminished the influence of the
transitivity effect. Linkage was avoided by only considering
pairs at a distance of 10K bp or larger. As a consequence,
the annotation characteristics of the actually detected pair
hits differed significantly from its random control (Figure
4D), which can be taken as evidence that the filters have
yielded non-random SNP-correlations. As furthermore, the
fold enrichment of known interactions detected by pair hits
increased after filtering, we can also conclude that the ef-
fect of the introduced filtering steps was not only leading to
non-random pair hits, but that those are enriched for true
associations. We also tested for the possibility that sequence
repeats may result in increased pair hit frequencies due to
sequence read mapping mistakes. However, no such corre-
lation was evident (using repeats of length 15 bp spaced at
500 bp and exemplary testing chromosome 1; not shown.)

Our reasoning to conclude that we detected functional as-
sociations relied on comparisons to random controls. When
generating random background pair distributions, we also
aimed to avoid spurious associations by accounting for con-
founding factors. First, by maintaining the distance distri-
bution between pairs in the random sampling, we tested if
the enrichment was related to linkage, recombination pat-
terns, gene conversion, chromosome structure or another
factorrelated with the location of polymorphisms that could
be influencing our findings. Without any filtering, these
location-associated effects were indeed found to explain to
large extent the observed correlation structure (Figure 4A),
and thus need to be taken into account. However, randomly
sampled pairs with low transitivity and high sequence di-
versity in combination with maintaining the distance distri-
bution showed little correlation with the real, filtered results
(Figure 4D). This suggests that the enrichment observed af-
ter filtering is neither related to the distribution of the poly-
morphic sites in the genome, nor to the influence of phy-
logenetic biases, nor to the transitivity originating from in-
direct covariation. Consequently, we feel supported in the
conclusion that the observed covariance will reflect func-
tional association. The recognition of linkage, lineage, and
transitivity as strongly influencing factors is also important
for the prediction of new interactions. However, these fac-
tors do not preclude true functional association, and thus,
by filtering for them, truly functionally correlated sites may
have been lost upon filtering.

To account for linkage, we generated random SNP-pairs
to follow one distance distribution, expected to be globally
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valid, and introduced a distance cutoff of 10K bp. However,
near the centromers, linkage has been reported to show in-
creased linkage (16). Consequently, a separate treatment of
pericentromeric regions with regard to linkage seems indi-
cated. While treating the background distribution uniform
across all chromosomes and regions did initially, i.e. before
applying the filters, indeed result in noticeable biases (green
band along the diagonal in Figure 3, upper triangle), the ef-
fect was largely eliminated when applying all filters (Figure
5A). It needs to also be noted that given the SNP-data, it
is not possible to clearly separate out linkage-effects from
possible true functional correlations, for which, indeed, we
found evidence (chromosomal contacts, Figure 8).

Natural selection that favors specific adaptations to spe-
cific environmental conditions represents another origin for
covariance, also referred to as purifying selection (42,43).
In essence, the environment acts as an independent fac-
tor producing indirect correlations between SNP-sites that
are themselves not directly functionally linked. For exam-
ple, accessions in hot climates may show specific mutations
increasing their fitness relative to those in colder habitats.
Those sites would be detected as correlated, but they are
caused by a third factor, the environment. Furthermore, the
environment may not only introduce independent changes,
but may also affect the fixation of compensatory muta-
tions. In a yeast model of a particular human disease, it was
demonstrated that environmental conditions influence the
fixation of compensatory mutations (44). However, it has
been reported that purifying selection in coding-regions of
plant genomes is virtually absent (45). This would suggest
that the extent of correlation due to environmental factors
and purifying selection may be small in Arabidopsis. How-
ever, it needs to be cautioned that seemingly neutral muta-
tions may reflect unrecognized adaptations. Furthermore,
it has been found that at least 5% of noncoding regions in
A. thaliana are under purifying selection in the family of
Brassicaceae (46). And although in the original publication
reporting the 1135 genomes used here, evidence of environ-
mentally driven selection of alleles was demonstrated for a
small set of SNPs (16), the authors cautioned that any at-
tempt to infer selection of particular alleles is inevitably ob-
scured by population structure effects. Therefore, indirectly
correlated mutations induced by external factors cannot be
ruled out to contribute to the set of pair hits reported in this
study.

When using closely related genomes as done in this study,
detecting correlated mutations necessarily becomes chal-
lenging for reasons of direct ancestry and linkage. However,
it also bears the advantage of allowing direct vertical align-
ment comparisons across the genomes without necessitat-
ing establishing homology between different molecules in
different species. Yet, large deletions/ insertions and rear-
rangements may happen also within species and may con-
stitute a source of error of our study (47,48).

Epistasis plays an important role in the fixation of com-
pensatory mutations and is pivotal for molecular evolution
(44,49). This phenomenon allows the fixation of deleteri-
ous mutations if compensated by other mutations, or gen-
erally by the genetic background of the organism. There-
fore, in essence, our effort to identify correlated muta-
tions can also be seen as yielding epistatic events and

reveals the extent of this mode of evolution. Epistasis
may also explain the unexpectedly small difference be-
tween the AMI of nonsynonymous-nonsynonymous and
synonymous-synonymous pair hits in known PPI (Fig-
ure 6). While not changing the amino acid, synonymous
changes may provide the conducive background for a non-
synonymous change via an as yet unidentified mechanism.

Aside from addressing the question as to whether even
within-species variation reveals evidence of compensatory
mutations, ideally, correlated mutations can be exploited for
predictions. While for miRNA–mRNA interactions, statis-
tics derived from both, SNP-pair-based as well as molecule-
based, resulted in significant positive predictive values,
protein–protein interactions were essentially evident only
when considering SNP-pair statistics, but not at the level of
molecule-molecule interactions (Table 2). Thus, on protein–
protein pairs reported to interact, several SNP-pairs were
found correlated rendering the SNP-pair-based statistic sig-
nificant. Possibly this may suggest several necessary com-
pensatory mutations, or is reflecting passenger mutations.
However, even many SNP-pairs collapse to only one molec-
ular interaction. The higher predictive value obtained for
miRNA–mRNA interactions compared to protein–protein
pairs may reflect a more immediate need for compensatory
mutations for interactions at the nucleotide level, whereas
in proteins, synonymous versus non-synonymous as well as
the severity of the introduced amino acid change provide
additional buffering of mutations. Taken together, while
for actual prediction purposes, SNP–SNP correlation may
not prove useful, a statistical signal, especially for miRNA–
mRNA interactions, was clearly discernable. To put low
predictive value in perspective, even in the case of within-
protein correlated mutations using very distant sequences,
and thus long evolutionary selection times, the accuracy of
correlated mutations to indicate spatial contacts has been
reported to be low (20%) (50,51).

Our treatment of molecular interactions assume the ex-
istence of a perfect gold standard. It is, however, possible
that molecules do interact, but their interaction has not
been observed or reported yet. And since we were able to
demonstrate that pair hits are enriched on molecules known
to interact, those that are found on molecules not (yet) re-
ported to interact may suggest that they may be function-
ally linked and may form physical contacts (Table 3), further
supported by their increased semantic similarity (Figure
7). A large proportion of those putative interactions are of
the type protein–protein interactions, which, of course, also
reflects the genomic sequence space protein coding genes
occupy in the Arabidopsis genome (Figure 1A). The pre-
dicted interactions await experimental confirmation or sup-
port from other data. Note that our method aimed to detect
correlated mutations that have functional meaning and re-
flect functional associations, however, absence of correlated
mutations does not mean absence of interaction. As with
any correlative approach and as a general word of caution,
high correlation levels cannot be taken as clear evidence of
causality, but only to be in agreement with a causal relation-
ship.

Pairs of tRNA-tRNA genes were found enriched for cor-
related mutations compared to intergenic regions (Figure
4). This may originate from tRNA-tRNA interactions in
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ribosomes as described by Smith and Yarus (52). The de-
tected compensatory mutations may reflect contacts be-
tween the anticodon loops of the P-site and A-site of the
tRNAs. Other RNAs such as miRNA and snoRNAs were
also found enriched with regard to SNP–SNP correlations
in comparison with intergenic regions. miRNA–miRNA
correlations may perhaps be explained due to competitive
mechanisms (53). Some RNA transcripts are able to com-
municate and co-regulate other RNAs by competing with
its shared RNA regulator molecule, typically a miRNA (53–
55). These are referred to as competing endogenous RNAs
(ceRNAs) and the term ‘target mimicry’ is often also used
to describe this phenomenon in plants (56). In Arabidopsis,
snoRNA are often polycistronic being transcribed from a
single promoter and are also found to be dicistronic with
tRNAs (57). The joint transcription suggests that those
snoRNA and tRNA share regulatory mechanisms, tran-
scriptional proteins and are evolutionary linked (58). Even
though it is still obscure why these two types of molecules
rely on the same transcriptional mechanisms, a joint func-
tional role appears possible.

Of note also is the high number of novel interactions
involving transposable elements (TEs). While the argu-
ments of SNP-density and covered genomic space of TE-
genes/elements hold as well, in the light of the reported
functional roles of TEs, correlated mutations also appear
plausible. For example, it was shown that they act as gene
expression regulators via small interfering RNAs (59) or by
introducing novel cis-regulatory elements (60); i.e. different
genomic sites are linked up, possibly reflected by correlated
mutations.

Interestingly, pair hits were found enriched in gene
loop contact regions and long-range chromosomal contacts
(Figure 8) suggesting a link between 3D-genome organiza-
tion and the sequence correlation structure. This may in-
dicate that the integrity of such contacts is preserved in
evolution via compensatory mutations. In Arabidopsis, dif-
ferent interacting elements for heterochromatin have been
recognized. Heterochromatic islands and KNOT-engaged
elements (KEEs) were found to be interacting (27,28,61).
The contact regions of IHIs and KEEs present a high pro-
portion of histone marks and TEs. The contact mechanism
of these intra- and inter-chromosomal heterochromatic in-
teractions remains unclear (62). Regions of high levels of
chromatin interactions are rich in epigenetic marks such as
DNA methylation, H3K9me2, and H3K27me1 (61,63,64).
However, the notion of a critical role of DNA methylation
or heterochromatin H3K9me3 marks to explain these con-
tacts has been discarded, because in their absence, interac-
tions remain the same (27). However, H3K27me3 was found
to play a direct or indirect role in shaping the chromatin
structure in plants (28,62). These finding and the observed
correlated mutation structure could suggest that TEs play a
pivotal facilitator role in heterochromatin interactions.

TEs could be also be involved in short-range euchromatin
interactions, so-called loops. In animals, euchromatin inter-
acting modules have been designated Topologically Associ-
ating Domains (TADs). TADs-boundaries harbor binding
sites for the CCCTC-binding factor (CTCF) that acts as an
insulator, putting together two TADs-boundaries and form-
ing a loop of the chromatin. Arabidopsis lacks CTCF to act

as the insulator protein (65). However, over 1000 TADs-
like regions were identified in Arabidopsis (28). The pres-
ence of these TAD-like regions suggests a similar mediator
acting through unknown mechanisms (64). In Arabidop-
sis, regions have been found that seem to repel each other
(28). Regions that are in the middle of the repelling regions
are referred to as insulator-like regions. Thus, regions up-
stream and downstream of insulator-like regions have op-
posite interactions directionality. 400 insulator-like regions
were recognized in Arabidopsis. As still little is known about
CTCF-like proteins in plants, it is difficult to establish how
relevant TEs are for these euchromatin interactions. How-
ever, in mammals, it has been found that species-specific
TEs can influence chromatin interactions by modifying the
binding sites of CTCF (66). The presented genome-wide
and species-specific structure of correlated mutations may
help to elucidate such specific mechanisms in plants by es-
tablishing links between genomic regions and the respec-
tively encoded molecules.

In an attempt to identify particular molecule types or ge-
nomic elements enriched for correlated mutations, we com-
pared all detected correlations on all possible such types
to correlations found between intergenic regions (Figure
4). The rationale for this choice was the assumption that
correlations between intergenic regions can be considered
functionally neutral. However, and largely independent of
the applied filtering, only about one-quarter of all possible
pairs of molecules or genomic regions were found to ex-
hibit more correlations than found between intergenic re-
gions. Thus, correlation between intergenic regions may be
more functionally relevant than thought and therefore oc-
cur more frequently than between many other types of ge-
nomic element pairs/molecules. Indeed, we observed an en-
richment of intergenic-intergenic contacts in chromosomal
regions exhibiting both physical contacts as well as show-
ing elevated pair hit counts (Figure 8). Thus, the relevance
of intergenic-intergenic contacts may lie in the maintenance
of the global chromosomal 3D-architecture, which in turn
may be reflected by an increased number of correlated muta-
tions. And therefore, intergenic-intergenic contacts should
not be considered neutral.

The continued and expanded sequencing efforts have
yielded large SNP collections not only in Arabidopsis.
The potential of these data to enable functional analy-
ses has been demonstrated before, for example, specifically
in Arabidopsis thaliana in the context of identifying novel
cis-regulatory elements (67). Our study investigates and
demonstrates the power of exploiting SNP information to
unravel the global correlation structure of the Arabidopsis
genome and to discern molecular interactions.

CONCLUSIONS

By developing a series of filtering steps and random con-
trols, our study was successful in establishing and apply-
ing the concept of correlated mutations to the identifica-
tion of functional and physical interactions in closely re-
lated genomes within a single species by exploiting single
nucleotide polymorphisms. This study succeeded in per-
forming a genome-wide detection of the sequence-level cor-
relation structure of a plant genome. As known physical in-
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teractions of molecules have been observed to be enriched
for correlated mutations, correlated mutations on molecules
not yet reported to interact or be functionally related may
also have predictive value. With the rapidly increasing se-
quencing information, the approaches developed in this
study may find broad application in other species.

DATA AVAILABILITY

All information of data resources and methods necessary to
replicate this study has been disclosed.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We wish to expressly thank Marco Ehlert (Max Planck of
Colloids and Interfaces, Potsdam-Golm, Germany) for the
critical help implementing an efficient computation strat-
egy making the necessary massive computations possible.
Further computing support was provided by Andreas Do-
nath from Max Planck for Molecular Plant Physiology
(Potsdam-Golm, Germany) and additional computational
resources kindly made available by Alessandra Buonanno
(Max Planck Institute for Gravitational Physics, Albert Ein-
stein Institute, Potsdam-Golm, Germany), and the Max
Planck Computer and Data Facility. We thank Ian Hender-
son for providing helpful comments, and Chang Liu, Suhua
Feng, and Detlef Weigel for providing assistance regarding
SNP- and Hi-C data interpretation.
Authors’ contributions: D.W. conceived the study. L.P.J. per-
formed all computations except for the co-expression anal-
ysis performed by D.W. Both authors devised the strategies
and methods of statistical testing, analyzed and interpreted
the results and wrote the manuscript.

FUNDING

Funding for open access charge: Institute funds (Max
Planck Society).
Conflict of interest statement. None declared.

REFERENCES
1. Zhang,Y., Gao,P. and Yuan,J.S. (2010) Plant protein–protein

interaction network and interactome. Curr. Genomics, 11, 40–46.
2. Axtell,M.J. (2013) Classification and Comparison of Small RNAs

from Plants. Annu. Rev. Plant Biol., 64, 137–159.
3. Panwar,B., Arora,A. and Raghava,G.P. (2014) Prediction and

classification of ncRNAs using structural information. BMC
Genomics, 15, 127.

4. Lapedes,A.S., Giraud,B.G., Liu,L. and Stormo,G.D. (1999)
Correlated mutations in models of protein sequences: phylogenetic
and structural effects. IMS Lect. Notes-Monogr. Ser., 33, 236–256.

5. Barkan,A., Rojas,M., Fujii,S., Yap,A., Chong,Y.S., Bond,C.S. and
Small,I. (2012) A combinatorial amino acid code for RNA
recognition by pentatricopeptide repeat proteins. PLoS Genet., 8,
4–11.

6. Okuda,K., Hammani,K., Tanz,S.K., Peng,L., Fukao,Y., Myouga,F.,
Motohashi,R., Shinozaki,K., Small,I. and Shikanai,T. (2010) The
pentatricopeptide repeat protein OTP82 is required for RNA editing
of plastid ndhB and ndhG transcripts. Plant J., 61, 339–349.

7. Kindgren,P., Yap,A., Bond,C.S. and Small,I. (2015) Predictable
alteration of sequence recognition by RNA editing factors from
arabidopsis. Plant Cell Online, 27, tpc.114.134189.

8. Marks,D.S., Colwell,L.J., Sheridan,R., Hopf,T.A., Pagnani,A.,
Zecchina,R. and Sander,C. (2011) Protein 3D structure computed
from evolutionary sequence variation. PLoS One, 6, e28766.

9. Hopf,T.A., Schärfe,C.P.I., Rodrigues,J.P.G.L.M., Green,A.G.,
Kohlbacher,O., Sander,C., Bonvin,A.M.J.J. and Marks,D.S. (2014)
Sequence co-evolution gives 3D contacts and structures of protein
complexes. Elife, 3, e03430.

10. Stein,R.R., Marks,D.S. and Sander,C. (2015) Inferring pairwise
interactions from biological data using maximum-entropy probability
models. PLoS Comput. Biol., 11, 1–22.

11. Barkan,A. and Small,I. (2014) Pentatricopeptide repeat proteins in
plants. Annu. Rev. Plant Biol., 65, 415–442.

12. Okuda,K., Shoki,H., Arai,M., Shikanai,T., Small,I., Nakamura,T.,
Barkan,A. and Small,I. (2014) Quantitative analysis of motifs
contributing to the interaction between PLS-subfamily members and
their target RNA sequences in plastid RNA editing. Annu. Rev. Plant
Biol., 65, 870–882.

13. Korostelev,Y.D., Zharov,I.A., Mironov,A.A., Rakhmaininova,A.B.
and Gelfand,M.S. (2016) Identification of position-specific
correlations between DNA-Binding domains and their binding sites.
application to the merr family of transcription factors. PLoS One, 11,
1–23.

14. Bindewald,E. and Shapiro,B.A. (2013) Computational detection of
abundant long-range nucleotide covariation in Drosophila genomes.
RNA, 19, 1171–1182.

15. Van Dijk,A.D.J. and Van Ham,R.C.H.J. (2010) Conserved and
variable correlated mutations in the plant MADS protein network.
BMC Genomics, 11, 607.

16. Alonso-Blanco,C., Andrade,J., Becker,C., Bemm,F., Bergelson,J.,
Borgwardt,K.M., Cao,J., Chae,E., Dezwaan,T.M., Ding,W. et al.
(2016) 1,135 Genomes reveal the global pattern of polymorphism in
arabidopsis thaliana. Cell, 166, 481–491.

17. Lamesch,P., Berardini,T.Z., Li,D., Swarbreck,D., Wilks,C.,
Sasidharan,R., Muller,R., Dreher,K., Alexander,D.L.,
Garcia-Hernandez,M. et al. (2012) The Arabidopsis Information
Resource (TAIR): Improved gene annotation and new tools. Nucleic
Acids Res., 40, 1202–1210.

18. Romano,S., Bailey,J., Vinh,N.X. and Verspoor,K. (2014)
Standardized mutual information for clustering comparisons: one
step further in adjustment for chance. Proc. 31st Int. Conf. Mach.
Learn., 32, 1143–1151.

19. Tuimala,J. (2006) A primer to phylogenetic analysis using the
PHYLIP package.

20. Brandão,M.M., Dantas,L.L. and Silva-Filho,M.C. (2009) AtPIN:
Arabidopsis thaliana protein interaction network. BMC
Bioinformatics, 10, 454.

21. Wang,C., Marshall,a., Zhang,D. and Wilson,Z.A. (2012) ANAP: An
integrated knowledge base for arabidopsis protein interaction
network analysis. Plant Physiol., 158, 1523–1533.

22. Orchard,S., Ammari,M., Aranda,B., Breuza,L., Briganti,L.,
Broackes-Carter,F., Campbell,N.H., Chavali,G., Chen,C.,
Del-Toro,N. et al. (2014) The MIntAct project - IntAct as a common
curation platform for 11 molecular interaction databases. Nucleic
Acids Res., 42, 358–363.

23. Yu,G., Li,F., Qin,Y., Bo,X., Wu,Y. and Wang,S. (2010) GOSemSim:
An R package for measuring semantic similarity among GO terms
and gene products. Bioinformatics, 26, 976–978.

24. Kozomara,A. and Griffiths-Jones,S. (2014) miRBase: annotating
high confidence microRNAs using deep sequencing data. Nucleic
Acids Res., 42, D68–D73.

25. Chou,C.H., Chang,N.W., Shrestha,S., Hsu,S.D, Lin,Y.L., Lee,W.H.,
Yang,C.D., Hong,H.C., Wei,T.Y., Tu,S.J. et al. (2016) miRTarBase
2016: updates to the experimentally validated miRNA-target
interactions database. Nucleic Acids Res., 44, D239–D247.

26. Liu,C., Wang,C., Wang,G., Becker,C., Zaidem,M. and Weigel,D.
(2016) Genome-wide analysis of chromatin packing in Arabidopsis
thaliana at single-gene resolution. Genome Res., 26, 1057–1068.

27. Feng,S., Cokus,S.J., Schubert,V., Zhai,J., Pellegrini,M. and
Jacobsen,S.E. (2014) Genome-wide Hi-C analyses in Wild-Type and
mutants reveal High-Resolution chromatin interactions in
arabidopsis. Mol. Cell, 55, 694–707.

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gky576#supplementary-data


8132 Nucleic Acids Research, 2018, Vol. 46, No. 16

28. Wang,C., Liu,C., Roqueiro,D., Grimm,D., Schwab,R., Becker,C.,
Lanz,C. and Weigel,D. (2015) Genome-wide analysis of local
chromatin packing in Arabidopsis thaliana. Genome Res., 25,
246–256.

29. Craigon,D.J., James,N., Okyere,J., Higgins,J., Jotham,J. and May,S.
(2004) NASCArrays: a repository for microarray data generated by
NASC’s transcriptomics service. Nucleic Acids Res., 32, 575D–577D.

30. Rhee,S.Y., Beavis,W., Berardini,T.Z., Chen,G., Dixon,D., Doyle,A.,
Garcia-Hernandez,M., Huala,E., Lander,G., Montoya,M. et al.
(2003) The Arabidopsis Information Resource (TAIR): A model
organism database providing a centralized, curated gateway to
Arabidopsis biology, research materials and community. Nucleic
Acids Res., 31, 224–228.

31. Berardini,T.Z., Reiser,L., Li,D., Mezheritsky,Y., Muller,R., Strait,E.
and Huala,E. (2015) The arabidopsis information resource: Making
and mining the ‘gold standard’ annotated reference plant genome.
Genesis, 53, 474–485.

32. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
rate: a practical and powerful approach to multiple testing author (s):
Yoav benjamini and yosef hochberg source. J. R. Stat. Soc. Ser. B, 57,
289–300.

33. Kim,S., Plagnol,V., Hu,T.T., Toomajian,C., Clark,R.M., Ossowski,S.,
Ecker,J.R., Weigel,D. and Nordborg,M. (2007) Recombination and
linkage disequilibrium in Arabidopsis thaliana. Nat. Genet., 39,
1151–1155.

34. Hagmann,J., Becker,C., Müller,J., Stegle,O., Meyer,R.C., Wang,G.,
Schneeberger,K., Fitz,J., Altmann,T., Bergelson,J. et al. (2015)
Century-scale methylome stability in a recently diverged arabidopsis
thaliana lineage. PLoS Genet., 11, e1004920.

35. Platt,A., Horton,M., Huang,Y.S., Li,Y., Anastasio,A.E.,
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