
Frontiers in Oncology | www.frontiersin.org

Edited by:
Julia T. Geyer,

Weill Cornell Medical Center,
United States

Reviewed by:
Yi Miao,

Nanjing Medical University, China
Ranganatha R. Somasagara,

North Carolina Central University,
United States

*Correspondence:
Olga K. Weinberg

Olga.Weinberg@UTSouthwestern.edu

Specialty section:
This article was submitted to
Hematologic Malignancies,

a section of the journal
Frontiers in Oncology

Received: 03 May 2021
Accepted: 28 June 2021
Published: 26 July 2021

Citation:
Kurzer JH and Weinberg OK (2021)

PHF6 Mutations in Hematologic
Malignancies.

Front. Oncol. 11:704471.
doi: 10.3389/fonc.2021.704471

MINI REVIEW
published: 26 July 2021

doi: 10.3389/fonc.2021.704471
PHF6 Mutations in Hematologic
Malignancies
Jason H. Kurzer1 and Olga K. Weinberg2*

1 Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States, 2 Department of Pathology,
UT Southwestern, Dallas, TX, United States

Next generation sequencing has uncovered several genes with associated mutations in
hematologic malignancies that can serve as potential biomarkers of disease. Keeping
abreast of these genes is therefore of paramount importance in the field of hematology.
This review focuses on PHF6, a highly conserved epigenetic transcriptional regulator that
is important for neurodevelopment and hematopoiesis. PHF6 serves as a tumor
suppressor protein, with PHF6 mutations and deletions often implicated in the
development of T-lymphoblastic leukemia and less frequently in acute myeloid leukemia
and other myeloid neoplasms. PHF6 inactivation appears to be an early event in T-
lymphoblastic leukemogenesis, requiring cooperating events, including NOTCH1
mutations or overexpression of TLX1 and TLX3 for full disease development. In
contrast, PHF6 mutations tend to occur later in myeloid malignancies, are frequently
accompanied by RUNX1 mutations, and are often associated with disease progression.
Moreover, PHF6 appears to play a role in lineage plasticity within hematopoietic
malignancies, with PHF6 mutations commonly present in mixed phenotype acute
leukemias with a predilection for T-lineage marker expression. Due to conflicting data,
the prognostic significance of PHF6 mutations remains unclear, with a subset of studies
showing no significant difference in outcomes compared to malignancies with wild-type
PHF6, and other studies showing inferior outcomes in certain patients with mutated
PHF6. Future studies are necessary to elucidate the role PHF6 plays in development of T-
lymphoblastic leukemia, progression of myeloid malignancies, and its overall prognostic
significance in hematopoietic neoplasms.
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INTRODUCTION

Plant homeodomain (PHD) finger proteins consist of a family of epigenetic regulators that bind to a
variety of targets, including both post-translationally modified and unmodified histones (1). The
PHD finger protein, homeodomain finger protein 6 (PHF6), is a highly conserved, 365 amino acid,
41kDa protein, that was first identified in the X-linked neurodevelopmental disorder, Börjeson-
Forssman-Lehmann syndrome (BFLS) (2, 3). PHF6 contains two imperfect PHD-like zinc finger
domains, two nuclear localization signals as well as a nucleolar localization sequence (Figure 1)
(2, 4–6). Expression of PHF6 is found in almost all tissues, with particularly high expression in the
brain/developing central nervous system as well as in all hematopoietic subpopulations (high levels
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in CD34+ precursor cells and B-cells; low levels in NK-cells and
monocytes) implicating a role for PHF6 in a variety of functions
including neurogenesis and hematopoiesis (2, 7, 8).
FUNCTION OF PHF6

Supporting a fundamental role for PHF6 in general development,
PHF6-homozygous knockout mice die perinatally (9). However,
scientists have also developed various knockout models in mice
to explore the role of PHF6 in hematopoiesis (8, 10–13). McRae
et al. showed that germline deletion of murine PHF6 is lethal in
males whereas heterozygous females survived to adulthood (10).
Using Phf6lox/Y;Tie-creTg/+ male mice with a Phf6-null mutation
in hematopoietic and endothelial cells, McRae et al. showed an
increase in Lin-c-Kit+Sca-1+ (LSK) stem and progenitor cell-
enriched populations, specifically the heterogeneous progenitor
cell population (HPC-1), with an enrichment in cycling forms
(10). Inactivation of PHF6 at various stages of development
results in increased embryologic proliferative properties of
hematopoietic stem cells, but also an increased ability for
PHF6-deficient neonatal and adult HSCs to repopulate the
bone marrow in serial transplant assays (10–13). Studies
suggest that this enhanced proliferative ability of PHF6-deleted
HSCs results, at least in part, from IFN-a signaling, the
inhibition of TNFa-associated growth suppressing genes, and
perhaps upregulation of JAK1 signaling (10–12).

Wendorff et al. similarly showed that conditional knockout of
PHF6 displayed expansions of total immature hematopoietic LSK
cells, but also showed increased multipotent MPP2, and MPP3
populations in 8-week-old mice, and no differences in the numbers
of more mature myeloid progenitors, uncommitted lymphoid
progenitors, or B-cell precursors (11). However, conditional
knockout of PHF6 does show a mild reduction in double-negative
DN2 and DN3 thymic progenitors and decreased numbers of
peripheral blood CD4 and CD8 positive T-cells in 8-week-old
mice (10, 11, 13). Moreover, knockdown studies in cord blood
and thymus-derived hematopoietic precursors showed that PHF6
loss fosters a preferential differentiation of B-lymphocytes, reduced
erythroid development, and accelerated T-cell development via
downregulation of NOTCH1 (8).
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Like other PHD finger proteins, PHF6 functions in chromatin-
mediated regulation of gene expression. It is capable of binding
double-stranded DNA, but not histones, in vitro via its atypical
PHD2 domain (14). Co-immunoprecipitation experiments using
antibodies to PHF6, reveal it interacts with constituents of the
nucleosome remodeling deacetylase (NuRD) complex, including
CHD4, HDAC1, and Rbb4 (6, 15). The NuRD complex is a major
ATP-dependent chromatin remodeling complex, implicated in
nucleosome positioning and both repressing and activating genes
involved in embryonic development (16). PHF6 has additionally
been shown to bind to the PAF1 transcription elongation complex,
regulating Neuroglycan C/Chondroitn sulfate proteoglycan 5
(NGC/CSPG5) and ultimately neuronal migration in murine
cerebral cortex development (17). One consequence of PHF6-
mediated transcription regulation includes the modulation of
levels of the RNA Pol I preinitiation complex activator, upstream
binding factor (UBF), thereby suppressing UBF-mediated rRNA
transcription (5, 18).

Knockdown studies of PHF6 suggest a tumor suppressor role
for the protein, as PHF6 deficiency in HeLa cell lines resulted in
increased UBF protein levels, and increased DNA damage at the
rDNA locus (5). Deficiency of PHF6 results in the formation of
DNA-RNA hybrid (R-loops) and increased R-loop-dependent
rDNA damage (5). Moreover, knockdown of PHF6 interferes
with the G2 checkpoint recovery of U2OS cells, leading to
decreased DNA repair in response to ionizing radiation (19).
These data implicate a tumor suppressor role for PHF6 resulting
from regulating DNA damage response.
PHF6 AND HEMATOLOGIC DISEASE

Despite the discovery of PHF6 via its role in BFL syndrome and
its prominent role in neurogenesis, mutations of PHF6 have only
been identified to date in hematologic malignancies (20). The
first and most well-documented hematologic malignancy
harboring mutations of PHF6 is T-lymphoblastic leukemia
(T-ALL), with fewer cases identified in acute myeloid leukemia
(AML), and rarer cases identified in pre-malignant clonal
hematopoiesis (4, 21–23). Mutations in hematologic malignancies
include deletion, missense, frameshift, and nonsense mutations,
FIGURE 1 | Diagram of PHF6. PHF6 has two imperfect PHD-like zinc finger domains (PHD1 and PHD2), two nuclear localization signals (NLS), and one nucleolar
localization signal. Mutations originally identified in T-ALL by Van Vlierberghe et al. (4) are identified at the top of the diagram, whereas mutations originally identified in
AML by Van Vliergerghe et al. (21) are identified at the bottom of the diagram.
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which span the whole coding region, with missense mutations
concentrated in the PHD2 domain (Figure 1) (4, 21, 24). The
ultimate effect of these mutations is to inhibit PHF6 function or
deplete its levels, and as such, provide supporting evidence that this
protein serves as a tumor suppressor. Indeed, a patient with BFLS
was noted to develop T-ALL (25).
T-Lymphoblastic Leukemia
The PHF6 locus is one of the most frequently mutated genes in
T-lymphoblastic leukemia (T-ALL). Inactivating mutations of
PHF6 have been identified in 5-16% of pediatric and 19-40% of
adult patients with T-ALL and ~25% of adults with T-
lymphoblastic lymphoma (T-LBL) with some groups
identifying an association with NOTCH1 mutations (67%-
84.6% of PHF6 mutated/deleted T-ALL with NOTCH1
mutations versus 39.8% PHF6 WT) (4, 26–38). Copy number
alterations of PHF6 in pediatric T-ALL has been reported to be
between 13-14% (39, 40). The location of PHF6 on chrX26.2 lead
researches to speculate that such mutations may at least partially
explain the 2-3 fold increased incidence of T-ALL in males, as
PHF6 mutations were originally found predominantly in male
T-ALL patients (31.5% vs 2.6%) (4). Subsequent studies,
however, have failed to show a gender preference (26–28, 33).
Recently, PHF6 mutations have additionally been found in up to
25% (3/12) of early T-cell precursor subtype of T-ALL (ETP), a
form of T-ALL that frequently expresses myeloid-associated
markers (41, 42).

The role PHF6 plays in leukemogenesis is actively under
investigation. Analyzing whole exome sequencing data from
diagnostic and relapse leukemias, Wendorff et al. showed that
somatic mutations of PHF6 occur early in leukeomogenesis (11).
Nevertheless, animal models have revealed that while PHF6
mutations/deletions may be initial events, they are insufficient
for tumor initiation without additional driver mutations. For
example, Miyagi et al. did not observe leukemia development
subsequent to serial transplantation of PHF6-deleted HSCs in
mice (12). Likewise, no T-ALL tumors developed in a PHF6+/-

zebrafish model (43).
Studies show that PHF6 dysfunction cooperates with several

other driver mutations. For example, inactivation of PHF6 in
hematopoietic progenitors has been reported to facilitate
NOTCH1-induced T-ALL, potentially through increasing
leukemia-initiating cells and development of a “leukemia stem
cell transcriptional program” in lymphoblasts (11, 13). A study of
102 pediatric T-ALL cases in Taiwan showed that PHF6
mutations frequently cooperate with HOX11L2 overexpression
and/or WT1 mutations (44). In addition, PHF6 mutations have
been shown to be associated (at times in conjunction with
DNM2) with T-ALLs that overexpress homeobox transcription
factors, TLX1 and TLX3 (4, 32, 45). Indeed, ectopic expression of
TLX3 in PHF6-deleted mice facilitated early onset leukemia and
a hTLX1;PHF6+/- zebrafish model demonstrated fully penetrant
early-onset leukemia development, underscoring the role of
cooperation between these mutations in leukemogenesis (10,
43). Other associations include those with mutations in X-
linked genes, USP9X and MED1 as well as with IL7R-JAK
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pathway genes, WT1, PTPN2 deletions, and HOX11L2
overexpression (33, 34, 44, 46). In the setting of ETP, PHF6
mutations frequently occur with mutations in EZH2, EED, and
SUZ12 (41). Finally, a network of miRNAs, including miR-19b,
miR-20a/93, miR-26a, miR-92, and miR-223, have been shown
to target multiple PHF6 and other T-ALL-associated tumor
suppressors, and thus promote leukemia (47).

PHF6 has additionally been shown to interact with LMO2 to
bind DNA via the LMO2/TAL1/LDB/GATA2 complex in T-
ALL cell lines (48). The PHF6/LMO2/TAL1/LDB/GATA2
complex was shown to bind at DNA segments associated with
hematopoietic or lymphoid organ development, hematopoiesis,
as well as T-cell activation and differentiation (48).

While sample sizes are small, patients with T-ALL harboring
PHF6 mutations tend to be older, have been demonstrated to
have lower white blood cell counts than other T-ALL patients, as
well as lower hemoglobin and platelet levels, splenomegaly/
lymphadenopathy, and have blasts with a tendency to express
CD13 (26, 29, 37). Genomic analysis of matched diagnosis,
germline (remission) and relapse DNA samples from 46 T-
ALL cases reveals that PHF6 alterations are found commonly
at diagnosis, and persist at relapse (49). While mutations in
PHF6 have been implicated in increased resistance to
prednisolone in T-ALL cell lines, the majority of studies have
shown no correlation with PHF6 mutations and overall survival
in patients with T-ALL, and a potential favorable prognosis
associated with T-LBL (4, 26, 27, 29, 50, 51). Nevertheless, one
study of pediatric T-ALL found PHF6 mutations/deletions
predict an inferior overall survival upon multivariate analysis
(44). Another study of Chinese adults found that the co-existence
of PHF6 and NOTCH1 mutations in T-ALL conferred a shorter
event-free survival and a poor prognosis (37). Further study is
therefore required to assess the true prognostic significance of
PHF6 mutations in T-ALL.
Myeloid Neoplasms
The largest study of PHF6 mutations in myeloid malignancies
involved targeted sequencing of 1760 cases with myeloid
neoplasms (24). This study revealed 54 patients with 62
somatic mutations of PHF6 (24). With regard to disease
burden, the percentage of blasts in the bone marrow tended to
be higher in patients with myeloid neoplasms harboring PHF6
mutations (24). As for cytogenetics, abnormal karyotypes showed
no significant predilection for PHF6 mutations, although +8, t
(8;21), and complex karyotypes were abnormalities most often
identified (24). At the molecular level, co-mutated genes
associated with PHF6 mutations included RUNX1, U2AF1,
SMC1A, ZRSR2, EZH2, and ASXL1, whereas PHF6 was found
to be mutually exclusive with SF3B1 (24). In contrast to T-ALL,
mutations of PHF6 tend to occur later in disease evolution,
sometimes with different mutations in parallel clones (24).

Acute Myeloid Leukemia
Inactivating somatic PHF6mutations have been found in ~2-3% of
AMLs (20, 21, 24, 28, 52, 53). Similar to T-ALL, a male
predominance was initially reported but not further substantiated
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for AML identified with PHF6mutations (21, 24, 53).With respect
to AML subtypes, PHF6mutations are found in 15% of AML with
inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and 15.4%of cases ofAMLwith
myelodysplasia relatedchanges (MRC) (24, 54). Interestingly, a case
report of AML with MRC harboring a P2RY8-CRLF2 fusion was
found to have gained a PHF6 mutation upon transformation to
AML, suggesting a potential role for PHF6 in the transition ofMDS
to AML (55). Further evidence for PHF6 mutations acquired
secondarily and leading to progression of myeloid neoplasms was
found in patients with germline mutations ofRUNX1, where PHF6
mutations were implicated in the transition to MDS in one patient
and the transition toAML in the other (56, 57). Interestingly, PHF6
has been shown to frequently co-occur with RUNX1 in AML (58).

Despite PHF6 mutations leading to inactivation of the
protein, an analysis of PHF6 expression levels in AML
regardless of mutation status revealed that PHF6 protein levels
are higher in patients with AML than normal controls, a finding
seemingly at odds with its role as a tumor suppressor (59).
Moreover, increased PHF6 levels correlated with an increased
percentage of blasts, with a possible correlation with CD34
positivity (59). Decreased PHF6 protein expression correlated
with longer overall survival than those with high expression
levels (2 years versus 6 months) (59).

A study of 318 pediatric patients with de novo AML identified
PHF6 mutations in 6 (2%) cases with FAB subtypes of M0, M1,
and M2 (53). The median age for this group was 12.6 years
(versus 9.5 in wild type PHF6 AML), with 4 of 6 succumbing to
the disease. Co-genetic abnormalities included RUNX1/
RUNX1T1 translocations, NUP98/KDM5A translocations, and
mutations in WT1, RAS, ETV6, TET2, IDH1, and BCORL1 (53).
Measuring the expression level of PHF6 showed decreased PHF6
levels in patients with mutations compared to M0, M1, and M2
AML subtypes with wild-type PHF6, again supporting a tumor
suppressor role for PHF6 and providing at least some genetic
context to the results found by Mousa et al. above (53, 59).

A study of 398 patients with AML younger than 60 years of
age revealed PHF6 to be associated with decreased overall
survival in patients with intermediate-risk AML with wild-type
FLT3-ITD (60). This implicates PHF6 mutations as a potential
prognostic marker to be used in intermediate-risk AML,
although it should be noted that this finding has not been
replicated by others (24). Interestingly, subdividing AML with
MRC cases that are associated with complex karyotypes into
typical (those harboring 5q, 7q and/or 17p abnormalities) and
atypical (those without these abnormalities) shows that AML
with atypical complex karyotypes tend to have PHF6 mutations
more frequently, TP53 mutations less frequently, be younger,
have a higher WBC and blast percentage, and higher complete
remission and overall survival rates (61).

Myelodysplastic Syndrome
Animal models suggest a possible role for PHF6 mutations in
myelodysplastic syndrome (MDS), as aged mice with knocked-
out PHF6 exhibit megakaryocytic dysplasia and associated
decreased platelet counts as well as extramedullary hematopoiesis
(13). Nevertheless, PHF6 mutations are relatively rare (~3%) in
MDS (24, 62–64). The limited data indicate that PHF6 mutations
Frontiers in Oncology | www.frontiersin.org 4
are found most frequently (5.3% of MDS cases) in the high-grade
subtypes (MDS with excess blasts) (24). PHF6mutations tended to
show low variant allele frequencies and acquisition in sub-clonal
populations (24). The most frequent co-mutations were seen in
ASXL1, RUNX1, TET2, and DNMT3A (64). A study of 21 MDS
patients harboring PHF6 mutations revealed 61.9% had normal
karyotypes and no patients had complex karyotypes (64).

Myeloproliferative Neoplasms
PHF6 mutations are rarely identified in myeloproliferative
neoplasms (MPN) (0.7%), occurring in only 1.6% of chronic
myelogenous leukemia (24). A screen of 81patients with CML in
myeloid blast crisis identified 2 male patients with PHF6
mutations, with at least one patient showing no PHF6
mutations in the preceding chronic phase (65). This finding
raises the possibility that, similar to MDS, the accumulation of
PHF6 mutations might mediate progression of the disease.
Relatedly, a review of 22 patients with PHF6 mutations in
myeloproliferative neoplasms at three institutions revealed an
enrichment in cases with increased fibrosis and/or blast crisis
(66). Other than JAK2, the most common co-mutations in these
MPNs were ASXL1, and TET2 with a median of 2.5 non JAK2
co-mutated genes (66).

With respect to mixed myelodysplastic syndrome/
myeloproliferative neoplasm cases, PHF6 mutations were seen
in 4.7% of CMML patients (24). To date, no effect on survival has
been seen in PHF6-mutation associated CMML patients (64).
B-Lymphoblastic Leukemia
Despite their prevalence in T-ALL, PHF6 mutations have only
rarely been identified in B-lymphoblastic leukemia (4, 41, 67).
50% of the rare MEF2D-rearranged B-ALL was found to have
PHF6 mutations (67). Intriguingly, use of a retrovirally-
expressed shRNA screening library into a B-lymphobastic
leukemia cell line revealed that knockdown of PHF6 levels
inhibited cell growth and leukemia growth in transplanted
models (68). Indeed, CRISPR-Cas9-mediated deletion of PHF6
in a murine BCR-ABL1+; p19-/-; mCherry+ B-ALL cell line
resulted in delayed tumor formation after injection in
immunocompetent mice compared to wild-type B-ALL cells
(69). Moreover, PHF6 KO B-ALL cells induced a malignancy
closer in presentation to lymphoma than leukemia, with tumor
cells showing reduced expression of CD19 and B220 and B-cell
development genes (e.g., Cd74, IL4ra, Lyn, Ly86, and BLK), and
upregulation of CD4 and T-cell signal transduction genes (69).
These data therefore implicate PHF6 mutations as lineage
specific with respect to tumorigenesis, and even implicate
mutation of PHF6 as a potential mediator of lineage plasticity
in hematopoietic neoplasms.
Acute Leukemia of Ambiguous Lineage
The association of PHF6mutations with leukemias of ambiguous
lineage further supports a role for these mutations in lineage
plasticity. An analysis of 29 mixed phenotype acute leukemia
cases at Memorial Sloan Kettering Cancer Center revealed PHF6
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(23%) and DNMT3A (23%) as the most common recurrent
mutations (70). Mutations in PHF6 and DNMT3A are
mutually exclusive in MPAL, correlate with T-lineage marker
expression (83% and 100%, respectively), and have higher
relapse at 2 years (58% and 79%, respectively) compared to
MPAL lacking these mutations (70).

In addition to T/M cases, Xiao et al. identified PHF6
mutations in patients with T/B/M and T/B phenotypes (70).
Similarly, Getta et al. found PHF6 mutations in 3 of 16 MPAL
patients with at least 2 of 3 patients of the MPAL, NOS subtype
(B/T or B/T/M) (71). Furthermore, a review of 9 patients from
multiple institutions identified PHF6 mutations in 5 patients
with B/T MPAL (56%) (72).

Similar to T-ALL, PHF6 mutations are believed to be early
events in MPAL, as Xiao et al. found every blast population
isolated from selected cases showed nearly 100% VAF (70).
Interestingly, PHF6-associated MPAL correlates with younger
patients, higher hemoglobin and higher platelet values (70, 72).

Bond et al. performed an analysis of the transcriptional
program of AMLs and T-ALLs and identified an expression
program at the interface of these two diseases (73). Comparing
T-ALL to T-ALL-like AMLs and AML-like T-ALLs, it was found
that all T-ALLs with PHF6 mutations were accompanied by
NOTCH1 mutations, whereas 3/5 PHF6 mutated interface cases
lacked NOTCH1 mutations (73).

Interestingly, a study of acute undifferentiated leukemias
found PHF6 mutations in 7/16 cases of AUL, whereas only 1/
25 cases of minimally differentiated AML harbored these
mutations (74). Nevertheless, in the limited study, no clinical
outcome differences were seen between the two groups (74).
DISCUSSION

The last two decades have elucidated a role for PHF6 in
neurodevelopment and hematopoiesis, and revealed it as a
potent tumor suppressor with an exclusive tendency for
Frontiers in Oncology | www.frontiersin.org 5
hematologic malignancies (Figure 2). PHF6 mutations are
most common in T-ALL, and appear early in the disease
course yet appear insufficient for leukemia development. Given
the conflicting data regarding the prognostic significance of
PHF6 mutations in T-ALL, additional studies are necessary to
clarify the role of PHF6 inactivation in the disease course. It is
likely that appropriately powered studies will need to assess its
significance in specific patient cohorts.

In contrast to T-ALL, PHF6 mutations are less frequent in
myeloid malignancies. Of interest, these mutations are more
frequently found later in the disease course at points of disease
progression. Further work is therefore required to determine the
mechanism by which PHF6 pushes these neoplasms to a more
aggressive disease, as well as to determine the overall prognostic
significance of PHF6 mutations in myeloid malignancies in
general. If additional studies continue to show a role for PHF6
mutations in disease progression, laboratories may wish to offer
specific targeted analysis of PHF6 for the monitoring of
myeloid disease.

Finally, it is becoming clear that PHF6 plays a role in lineage
plasticity of hematopoietic malignancies, as PHF6 mutations
exist in T/Myeloid MPAL as well as MPAL, NOS (particularly
B/T MPAL) and is frequently associated with early T-ALL which
frequently shows myeloid marker expression. The underlying
contextual factors, including cell of origin and cooperative gene
mutations, remain to be elucidated to understand what drives a
PHF6-associated malignancy to be T-lineage, myeloid lineage, or
a combination of both.
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FIGURE 2 | Model of PHF6 in Hematopoietic Malignancies. The timing and context of the acquisition of PHF6 deletions/mutations appear to determine the fate of
the resulting malignancy. In T-ALL, PHF6 deletions/mutations arise early, but are insufficient for transformation into leukemia. In contrast, in myeloid neoplasms, PHF6
deletions/mutations tend to develop later possibly leading to disease progression. Finally, acquisition of inactivating mutations of PHF6 in myeloid or B-cell precursors
may promote T-cell gene expression and eventual development of mixed phenotype acute leukemias.
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36. Richter-Pechańska P, Kunz JB, Hof J, Zimmermann M, Rausch T, Bandapalli
OR, et al. Identification of a Genetically Defined Ultra-High-Risk Group in
Relapsed Pediatric T-Lymphoblastic Leukemia. Blood Cancer J (2017) 7:e523.
doi: 10.1038/bcj.2017.3

37. Li M, Xiao L, Xu J, Zhang R, Guo J, Olson J, et al. Co-Existence of PHF6 and
NOTCH1 Mutations in Adult T-Cell Acute Lymphoblastic Leukemia. Oncol
Lett (2016) 12:16–22. doi: 10.3892/ol.2016.4581

38. De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, et al.
Exome Sequencing Identifies Mutation in CNOT3 and Ribosomal Genes
July 2021 | Volume 11 | Article 704471

https://doi.org/10.1093/nar/gkr613
https://doi.org/10.1038/ng1040
https://doi.org/10.3390/genes6020325
https://doi.org/10.1038/ng.542
https://doi.org/10.1074/jbc.M112.414839
https://doi.org/10.1021/pr3004369
https://doi.org/10.1016/j.modgep.2007.06.007
https://doi.org/10.3389/fcell.2020.599472
https://doi.org/10.3389/fcell.2020.599472
https://doi.org/10.1016/j.celrep.2018.10.043
https://doi.org/10.1182/blood-2018-07-860726
https://doi.org/10.1158/2159-8290.CD-18-1005
https://doi.org/10.1182/blood.2019000468
https://doi.org/10.1182/blood.2019000468
https://doi.org/10.1182/bloodadvances.2019000391
https://doi.org/10.1182/bloodadvances.2019000391
https://doi.org/10.1074/jbc.M113.535351
https://doi.org/10.1074/jbc.M113.535351
https://doi.org/10.1074/jbc.M114.610196
https://doi.org/10.1074/jbc.M114.610196
https://doi.org/10.1016/j.trsl.2014.05.003
https://doi.org/10.1016/j.neuron.2013.04.021
https://doi.org/10.1038/ejhg.2016.40
https://doi.org/10.15252/embr.201948460
https://doi.org/10.15252/embr.201948460
https://doi.org/10.1038/ncomms4630
https://doi.org/10.1038/leu.2010.247
https://doi.org/10.1056/NEJMoa1414799
https://doi.org/10.1038/s41586-018-0317-6
https://doi.org/10.1038/leu.2016.212
https://doi.org/10.1002/pbc.22574
https://doi.org/10.1002/gcc.22039
https://doi.org/10.3324/haematol.2011.043083
https://doi.org/10.3109/0284186X.2011.592148
https://doi.org/10.3109/0284186X.2011.592148
https://doi.org/10.1007/s00277-012-1664-2
https://doi.org/10.1007/s00277-012-1664-2
https://doi.org/10.1038/s41598-020-80613-6
https://doi.org/10.1186/s13059-020-02192-z
https://doi.org/10.1038/ng.3909
https://doi.org/10.18632/oncotarget.11796
https://doi.org/10.3324/haematol.2015.130179
https://doi.org/10.21037/atm.2019.04.80
https://doi.org/10.1038/bcj.2017.3
https://doi.org/10.3892/ol.2016.4581
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kurzer and Weinberg PHF6 Mutations in Hematologic Malignancies
RPL5 and RPL10 in T-Cell Acute Lymphoblastic Leukemia. Nat Genet (2013)
45:186–90. doi: 10.1038/ng.2508

39. Teachey DT, Pui C-H. Comparative Features and Outcomes Between
Paediatric T-Cell and B-Cell Acute Lymphoblastic Leukaemia. Lancet Oncol
(2019) 20:e142–54. doi: 10.1016/S1470-2045(19)30031-2

40. LejmanM,Włodarczyk M, Styka B, Pastorczak A, Zawitkowska J, Taha J, et al.
Advantages and Limitations of SNP Array in the Molecular Characterization
of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol (2020)
10:1184. doi: 10.3389/fonc.2020.01184

41. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The
Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia.
Nature (2012) 481:157–63. doi: 10.1038/nature10725

42. Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E,
Pombo-de-Oliveira MS, et al. The Profile of Immunophenotype and Genotype
Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia.
Front Oncol (2019) 9:316. doi: 10.3389/fonc.2019.00316

43. Loontiens S, Vanhauwaert S, Depestel L, Dewyn G, Van LoockeW, Moore FE,
et al. A Novel TLX1-Driven T-ALL Zebrafish Model: Comparative Genomic
Analysis With Other Leukemia Models. Leukemia (2020) 34:3398–403. doi:
10.1038/s41375-020-0938-2

44. Yeh T-C, Liang D-C, Liu H-C, Jaing T-H, Chen S-H, Hou J-Y, et al. Clinical
and Biological Relevance of Genetic Alterations in Pediatric T-Cell Acute
Lymphoblastic Leukemia in Taiwan. Pediatr Blood Cancer (2019) 66:e27496.
doi: 10.1002/pbc.27496

45. Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, et al.
Recurrent SPI1 (PU.1) Fusions in High-Risk Pediatric T Cell Acute
Lymphoblastic Leukemia. Nat Genet (2017) 49:1274–81. doi: 10.1038/ng.3900

46. Alcantara M, Simonin M, Lhermitte L, Touzart A, Dourthe ME, Latiri M, et al.
Clinical and Biological Features of PTPN2-Deleted Adult and Pediatric T-Cell
Acute Lymphoblastic Leukemia. Blood Adv (2019) 3:1981–8. doi: 10.1182/
bloodadvances.2018028993

47. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A
Cooperative Microrna-Tumor Suppressor Gene Network in Acute T-Cell
Lymphoblastic Leukemia (T-ALL). Nat Genet (2011) 43:673–8. doi: 10.1038/
ng.858
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