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S u m m a r y  
The interleukin 2 receptor (IL-2K) is known to be comprised of at least three genetically distinct 
subunits termed c~, B, and 3/. These chains can be expressed individually or in various combinations 
resulting in distinct receptors with different affinities for IL-2. In contrast to a and/8, the cell 
surface expression of the 3' chain protein previously has not been well-characterized. To examine 
cell surface expresssion of IL-2R3, on hematopoietic cells, we developed two new monoclonal 
antibodies (mAbs) specific for this protein. Both 1All (immunoglobulin [IgG1]) and 3Gll (IgM) 
specifically reacted with murine cells transfected with IL-2K3" cDNA, and immunoprecipitation 
studies indicated that both antibodies precipitated a protein of approximately 62-65 kD. Scatchard 
analysis of IL-2 binding to murine cells transfected with cDNA-encoding combinations of IL- 
2R components demonstrated that neither B nor 3, chain bind IL-2 with measurable affinity, 
but coexpression of both/8 and 3' is sufficient to form an intermediate affinity receptor. In the 
absence of 3' chain,/8 chain interacts with ot chain to form a "pseudo-high" affinity receptor. 
In contrast, 3' chain does not appear capable of interacting with a chain in the absence of/8 
chain. Thus, 3' chain appears to interact only with/~, but ~ chain is capable of interacting with 
both ot and 3'. Using the newly developed mAbs to examine cell surface expression by 
immunofluorescence, resting T cells were found to express low levels of 3' chain without detectable 
a or/8. Early after mitogen stimulation, T cells expressed higher levels of oe,/~, and 3'. However, 
at later time points, T cells expressed ot and 3' in marked excess over/8. Thus, formation of 
high affinity IL-2R on activated T cells was primarily limited by/8 chain expression. In contrast, 
resting natural killer (NK) cells constitutively expressed IL-2RB without detectable cr or 3'. 
After activation with either IL-2 or IL-12, expression of both c~ and 3' transiently increased and 
then returned to very low levels. Expression of functional IL-2R on resting and activated NK 
cells, therefore, appeared to be primarily limited by the expression of 3' chain. IL-2 binding studies 
with resting NK cells confirmed the results ofimmunofluorescence studies indicating the presence 
of very low numbers of intermediate affinity (/~3') receptors for IL-2 on these cells. NK cells 
obtained from patients receiving IL-2 therapy were phenotypically similar to resting NK cells. 
These studies have identified marked differences in IL-2R composition in two different types 
of cytotoxic lymphocytes, further underscoring the complexity of this receptor/ligand system. 
With new reagents specific for IL-2R3", it will now be possible to examine further the functional 
significance of these differences. 

I L-2 has pleiotropic effects on lymphocytes, including T, 
B, and NK cells (1-4), as well as other hematopoietic cells 

(5-8). The effects of IL-2 on these various cells are mediated 
through specific cell surface receptors. Over the past several 
years, our understanding of the IL-2R complex has increased 

substantially. It is now known that the IL-2R comprises at 
least three subunits encoded by distinct genes. These subunits 
can be expressed individually or in various combinations, 
resulting in receptors that bind IL-2 with markedly different 
affinity. The first IL-2R component to be identified, IL-2Rc~ 
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(CD25, Tac antigen) (9) is a 55-kD protein that binds IL-2 
with an equilibrium dissociation constant (Ka) of ~10 riM. 
IL-2Rol has a very small intracellular domain and does not 
exhibit homology to other known cytokine receptors. The 
second IL-2R component, IL-2R3, is a 75-kD protein with 
a large intracellular segment and areas of well-defined ho- 
mology to other cytokine receptor superfamily members 
(10-12). IL-2R3 is known to play an important role in 
receptor-mediated signaling, in part through association with 
cytoplasmic protein tyrosine kinases (13, 14). The third and 
most recently identified IL-2R component, IL-2R 7, is a 64- 
kD protein that also has structural homology to other cytokine 
receptors (15, 16). Like IL-2R3, IL-2R7 by itself has a very 
low affinity for IL-2 (17). However, when expressed together, 
these two chains form an intermediate affnity receptor with 
a Kd of ",~1 riM. Expression of all three receptor components 
is required to form a high affinity IL-2 receptor (Kd, "10  
pM). 

Although each component of the IL-2R complex is likely 
to play an important role in regulating the cellular response 
to IL-2, the central role of the 7 chain is supported by the 
demonstration that X-linked SCID occurs as a direct result 
of T chain mutations (18, 19). In addition, recent studies 
(20-22) have provided compelling evidence that the IL-2R7 
chain is also a component of the receptors for IL-4 and IL-7. 
Moreover, it is likely that the 3/chain is a common compo- 
nent of additional cytokine receptors. However, in contrast 
to other IL-2R components, 3/chain mRNA appears to be 
constitutively expressed in all lymphoid cells. This finding 
is consistent with the demonstration that the IL-2R 7 pro- 
moter sequence is GC-rich and lacks TATA motifs, and sug- 
gests that surface expression of 3' chain is likely to be regu- 
lated primarily by posttranscriptional mechanisms (15, 23). 
However, lack of suitable reagents has previously prevented 
detailed examination of cell surface expression of IL-2R 7. 

In the present studies we developed two new murine mAbs 
specific for the IL-2R 7 chain. These mAbs have been used 
to examine IL-2R 7 expression by normal human lympho- 
cytes as well as hematopoietic cell lines. To elucidate the func- 
tional consequences of expression of distinct IL-2R subunits, 
the surface expression of each IL-2R component on resting 
and activated T and NK cells was determined. T and NK 
cells are known to respond very differently to IL-2, and these 
studies provide further insight into the mechanisms whereby 
a single cytokine can mediate distinct functional activities in 
different cell types. 

Materials and Methods 

Construction of Plasmids. A full-length cDNA for human IL- 
2R7 was isolated by RT-PCR using the following oligonucleo- 
tides: 5'-GAAGGCCTTCTGAACACGACAATTCTGACG (arti- 
ficial StuI site) or GCTCTAGAGCGAAGAGCAAGCGCCAT- 
GTTG (XbaI) and Y-GCTCTAGAGCCAAATGAAGGGGTG- 
CTTACA (XbaI) from YT cell line mRNA. An expression vector 
containing IL-2R7 cDNA (pMT2.UCHL1 +.IL-2RT.CD45) was 
derived from pMT2.LCA.1 (CD45 O-isoform) (24, 25), and syn- 
thetic oligonucleotides (5'-GCTTCCAAGGATCCGGAAG-3' and 
5'-CGCTTCCGGATCCTTGGAAGC-3') by ligating appropriate 

restriction fragments in frame. The resulting hybrid protein, 
UCHL1 +.IL-2RT.CD45, contains portions of several proteins in 
the following order: (a) CD45 leader sequence; (b) CD45 amino 
acids 1-8 and 202-218; (c) Ib2R 7 amino acids (L1-N232); (d) seven 
amino acids (RFQGSGS) arising from the synthetic oligonudeo- 
tides; and (e) CD45 amino acids 214-1281 (numbering of CD45 
and IL-2R7 amino acid residues according to Streuli et al. [26] and 
Noguchi et al. [23], respectively). 

The expression vector, pSR~2.IL-2R% was generated by in- 
serting fulMength ID2R7 cDNA into the XbaI multilinker site 
of a slightly modified version of the pSRcr expression vector (27). 
Structures ofplasmid constructs were confirmed by restriction map- 
ping and/or by nudeotide sequencing. FuU-length cDNA encoding 
Ib2Rc~ and IL-2RB, were also introduced into the pSRcr vector 
at the appropriate restriction enzyme sites, and designated as 
pSRcc2.1b2Rc~ and pSRc~2.IL-2R~, respectively. 

Transfection ofcDNA. The Abelson virus-transformed murine 
300-19 pre-B lymphocyte cell line was transfected with various con- 
structs by electroporation with plasmid DNA using the Cell Po- 
rator Electroporation System (Bethesda Research Laboratories, 
Gaithersburg, MD). pMT2.UCHL1 § .IL-2RT.CD45, pSRc~2.Ib 
2R7, and pSV2.neoSP (28) constructs were linearized before trans- 
fection with SspI, FspI, and PvuI, respectively. Transfected cells 
were monitored using available anti-CD45 mAbs, UCHL1 
(CD45RO) and GAP8.3 (CD45). UCHL1 binds to the NHa- 
terminal region of the 180-kD isoform, whereas GAP8.3 binds to 
a more COOH-terminal region of CD45. In subsequent experi- 
ments, cotransfection or sequential transfections were also performed 
as described above using various combinations of pSRoe2.Ib2Ra, 
pSRoe2.IL-2R3, and pSgoe2.IL-2RT, cr and/3 chain expression 
vectors were linearized with XmmI. pPGK.Hygro (Hygromycin 
B resistance gene) was used for sequential transfection. 

Production of mAb to the Ib2R T Chain. BALB/c mice were 
immunized with 300-19(UCHLl§ transfectant 
cells expressing human IL-2R 7 and CD45 epitopes. Fusions were 
carried out as previously described (29), and hybridoma superna- 
tants were screened by indirect immunofluorescence for binding 
to 300-19(UCHL1 + .IL-2RT.CD45) and lack of binding to 300- 
19(LCA.1) transfectants expressing only human CD45 (25, 30). 
Based on this screening, two hybridomas, designated 1All (IgG1) 
and 3Gll (IgM), were selected and subcloned by limiting dilution. 
These antibodies also react with 300-19(IL-2RT) cells expressing 
IL-2R7 protein alone (data not shown), confirming that these an- 
tibodies react specifically with IL-2R7 rather than with CD45RO 
or CD45 epitopes. 

Immunoprecipitation. The 300-19(Ib2RT) transfectant cells were 
surface 125I-labeled by the lactoperoxidase method or were meta- 
bolically labeled with [3SS]methionine (New England Nuclear, 
Cambridge, MA). Radiolabeled cells were washed and solubilized 
in 1 ml lysis buffer (1% NP-40, 50 mM Tris, pH 8.15, 150 mM 
NaC1, 1 mM EDTA, I mM PMSF, 2/xg/ml PepstatinA, 10/zg/ml 
leupeptin, and 10 #g/ml aprotinin). Lysates were preincubated with 
rabbit anti-mouse Ig (RoeM)-coupled protein A beads, followed 
by incubation overnight with specific antibodies and RoeM-coupled 
protein A beads. Immunoprecipitates were washed extensively, 
followed by addition of sample buffer (60 mM Tris, pH 6.8, 5% 
3-MER, and 2% SDS) and subsequently subjected to SDS-PAGE 
(7.5% gel). 

Cell Lines and lsolation of Normal Lymphocytes. T cell lines MT1, 
Jurkat, Molt4, H9, HPB-ALL, and Rex; B cell lines Daudi, 
SKW6.4, Nalm6, and CESS; NK cell lines NK3.3, YT-N17, and 
YT-2C2; myeloid cell lines K562, HL60, U937, KG1, TF1, and 
Mo7; colon cancer cell line Colo205; cervical cancer cell line HeLa; 
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small cell lung carcinoma cell line SW2; and melanoma cell line 
SKMEL were maintained in RPMI 1640 with 10% FBS. NK3.3 
cells (31) were supplemented with 5-10% leukocyte-conditioned 
medium (LCM). TF1 and Mo7 were supplemented with 10 ng/ml 
GM-CSF or 20 ng/ml IIr The preparation of LCM was described 
previously (32). 

PBMC were isolated on Ficoll-diatrizoate gradients from 
heparinized blood or from cytophoresis buffy coat cells obtained 
from normal volunteer donors. Adherent mononuclear cells were 
depleted by incubation on plastic petri dishes for 1 h at 37~ En- 
riched NK cells were obtained by incubating PBL with a mixture 
of T1 (CD5), B1 (CD20), and My4 (CD14) mAb, and then 
separating antibody-bound cells using immunomagnetic beads (Ad- 
vanced Magnetics, Inc., Cambridge, MA). In some experiments, 
enriched NK cells cultured in medium with 100 U/ml I1.-2 or PBL 
cultured in medium with 1 /xg/ml PHA were used for im- 
munofluorescence experiments. PBMC obtained from patients 
receiving prolonged treatment with low dose rlL-2 (Amgen, Thou- 
sand Oaks, CA) were also examined (33, 34). Chronic administra- 
tion of low dose II.-2 by either continuous i.v. infusion or daily 
subcutaneous injection has previously been shown to expand the 
total number of circulating NK cells and increase cytolytic activity 
against both NK-sensitive and -resistant target cells. 

mAbs. FITC- or PE-conjugated murine mAbs were obtained 
from Coulter Immunology (Hialeah, FL), including T3 (CD3, 
IgG1), NKH1 (CD56, IgG1), IL-2Pd (CD25, IgG2a), B4 (CD19, 
IgG1), Mo2 (CD14, IgM), and isotype-matched control mAbs. T1 
(CD5, IgG2a), B1 (CD20, IgG2a), My4 (CD14, IgG2b), N901 
(CD56, IgG1), 3B8 (CD56, IgM), RW2 (CD3, IgG1), 2ad2 (CD3, 
IgM), UCHL1 (CD45RO), and GAP8.3 (CD45) were used as di- 
lutions of ascites. Purified routine mAbs (FITC conjugated or un- 
conjugated) directed against the p75 subunit (IL-2RB) (35) were 
kindly provided by Coulter Immunology. Purified 1All (IgG1) and 
3Gli (IgM) antibodies were isolated from ascites by affinity chro- 
matography on an Affi-Gel Protein A MAPS II Kit (Bio-Rad, Her- 
cules, CA) or Immunopure IgM Purification Kit (Pierce, Rock- 
ford, IL), and were dialyzed against PBS. 

Immunofluorescence Analysis. Samples of cells were stained 
directly or indirectly with FITC- or PE-conjugated mAb, washed, 
fixed in 1% formaldehyde, and analyzed by flow cytometry as de- 

scribed previously (36). Goat anti-mouse IgM-FITC (Southern Bio- 
technology Associates, Birmingham, AL) was used as secondary 
antibody for staining of 3Gll (IgM). NK3.3 and 1I.-2 activated 
NK ceUs were stained after the incubation in IL-2-free medium 
for 2 h at 37~ 

RT-PCR and Hybridization. RT-PCtk and hybridization were 
performed as described elsewhere (37, 38). Primers specific for 
IL-2K')" were the same as described above. Primers specific for 
/32-microglobulin were: (nucleotide 1543) 5'-ACCCCCACTGAA- 
AAAGATGA and (nucleotide 3317) 3'-ATCTTCAAACCTCCA- 
TGATG. 3,-[32p]ATP-labeled oligomer probes, IL-2R? 5'-TCACAT- 
CCCTCTTATTCCTGC-3', and B2-microglobulin, 5'-GCCCAA- 
GATAGTTAAGTGGG-3', were used for hybridization. 

~2sI-IL2 Binding Assay. The 12SI-labeled IL-2 was obtained 
from New England Nuclear or made in one of our laboratories 
(T. L. Ciardelli) and had a sp act of 1.2-1.5 x 106 or 1.3-1.8 x 
106 dpm/pmol, respectively. II.-2 binding was analyzed by 
scatchard plot (39). Briefly, cells (1-3 x 1@ cells per aliquot) were 
incubated at 4~ for 120 min with 125I-IL-2 at serial dilutions 
ranging from 1 pM to 64 nM in binding medium containing 1% 
BSA, 0.1% sodium azide, and 25 mM Hepes in RPMI 1640 
medium, pH 7.4, in the presence or absence of a 500-fold excess 
of unlabeled rlL-2. The inhibitory effects of p75 (Ib2R~ antibody), 
and 1All and 3Gll (IL-2R3, antibodies) on 1I.-2 binding were also 
examined in the presence of excess amount of antibodies (50/xg/ml). 

Results 

Immunoprecipitation of Antigens Identified by Anti-IL-2Rg/ 
mAb. To confirm the specificity of the newly generated mAb, 
immunoprecipitations were performed using 300-19(IL-2R'y) 
transfectant ceils. 1All  and 3Gl l  precipitate a protein of 
~62-65  kD from lysates of cells surface labeled with 125I 
(Fig. 1 A) or metabolically labeled with [35S]methionine 
(Fig. 1 B). Immunoprecipitation of  surface-labeled transfec- 
tants also revealed an intense band at ~90  kD (see Fig. 3 
A). This 90-kD band is also identified in immunoprecipi- 
tates of  125I-labeled YT cells (data not shown). This protein 

Figure 1. Immunoprecipitation of 300-19(IL-2R3, ) 
cell lysate with 1All and 3Gll mAb. (.4) Cells were 
surface labeled with Na12Sl or (B) metabolically la- 
beled with [3sS]methionine. Cell lysates were precipi- 
tated with either specific mAb or negative control mAb 
and analyzed in 7.5% SDS-PAGE gel. 
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Figure 2. (A) Surface expression of IL-2R compo- 
nents in 300-19 transfectant cell lines. Five 300-19 sub- 
lines designated c~, 3,  3", or3', and/93' were established 
by transfection with various combinations of expres- 
sion vectors. (Dotted lines) Immunofluorescenee reac- 
tivity with isotype-matched negative control mAb; 
(solid lines) cell surface binding of specific IL-2R anti- 
bodies indicated on the x-axis. (B) Scatchard plot anal- 
yses of t2sI-IL-2 binding on the same transfectant cell 
lines. Bound Ib2 (molecules/cell)/free Ib2 (pM) on the 
y-axis are plotted against bound molecules/call on the 
x-axis. 
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does not appear to be either p75 or p55, but has not yet been 
further characterized. 

Expression of lL-2R Components and IL-2 Binding to Trans- 
fectant Cell Lines�9 Fig. 2 A demonstrates the surface expres- 
sion of the three different human IL-2IL chains on a series 
of murine 300-19 cell lines transfected with cDNA encoding 
individual IL-2R components and a combination of IL-2R 
components. The reactivity of 1All and 3Gll antibodies are 
almost identical, but these antibodies appear to recognize dis- 
tinct epitopes of IL-2R.3( (data not shown). Scatchard plots 
of IL-2 binding to the same transfectants are shown in Fig. 
2 B. Although the IL-2R3( and IL-2R~ transfectants do not 
show detectable IL-2 binding, IL-2RB3( transfectant cells dem- 
onstrate intermediate affinity binding (Ka, 1.06 riM). IL- 
2Ro~B transfectant cells demonstrate both pseudo-high affinity 
binding (Kd, 0.13 riM) mediated by the c~/3 complex and 
low affinity binding (Kd, 24.8 riM) mediated by excess free 
c~ chains. Since the affinity of IL-2 binding to IL-2Ro~ and 
to IL-2Rc~3( transfectant cells is almost identical (Ko, 15.3 
and 13.9 nM, respectively), expression of the IL-2R3( chain 
does not appear to significantly affect IL-2 binding to IL-2ILol. 

Expression of lL-2R Chains on Y T  Cells and Effects of Anti- 
IL-2Ry mAb on IL-2 Binding. We next examined surface 
expression of IL-2R3( by immunofluorescence on cell lines 
known to express high levels of intermediate affinity receptors 
for IL-2. As shown in Fig. 3 A, YT-2C2 cells express both 
IL-2RB and IL-2R3(, but not IL-2Rc~. YT-N17 cells express 
all 3 IL-2R components (data not shown). The fluorescence 
intensity of staining with 3Gll was slightly higher than with 
1All (data not shown). As shown in Fig. 3 B, YT-2C2 cells 
express a relatively high number of intermediate affinity 
receptors for IL-2 (Kd, 1.47 riM, 13,900 sites/cell). The ad- 
dition of excess mAb specific for IL-2RB completely inhibited 
binding of 12SI-labeled IL-2. In contrast, IL-2 binding was 
not significantly affected by addition of either mAb specific 
for IL-2R3( (Ka after addition of 1All and 3Gll was 1.81 
and 1.63 nM, respectively). 

Expression Of lL-2R'y by Hematopoietic and Nonhematopoietic 
Cell Lines. Table 1 summarizes the surface expression of 
different IL-2R chains detected by flow cytometry and IL- 
2R3( chain message detected by RT-PCR in a large number 
of hematopoietic and nonhematopoietic cell lines. Although 
most lymphoid cell lines revealed levels of IL-2R3( chain ex- 
pression detectable both by immunofluorescence and RT- 
PCR, surface expression of IL-2R3( chain was generally at 
relatively low levels. Of  all cell lines tested, surface expres- 
sion of IL-2R3( was highest in the YT cell lines. Four non- 
hematopoietic cell lines were not found to express IL-2R3( 
by either immunofluorescence or RT-PCR. 

Expression of IL-2R3( by myeloid cell lines has not been 
previously reported�9 Although all six myeloid cell lines that 
we tested expressed IL-2R3( mRNA by RT-PCR, relatively 
low surface expression of y chain was detected by flow cytom- 
etrv in two cell lines (Table 1). 

Expression of IL-2R Components after Activation of T and 
NK Cells. We also examined changes in surface expression 
of the three IL-2R components on PHA-activated T cells 
(CD3 + cells) and IL-2-activated NK cells (CD56 + cells). As 
shown in Fig. 4, almost no ~ or B chain was detectable by 
flow cytometry on resting T cells, but 3' chain was present 
at low levels. After PHA stimulation (48 h), surface expres- 
sion of ol chain increased markedly while ~ and 3( chain ex- 
pression increased to a smaller extent. By 5 d after activation, 
both ~ and/3 chain expression had declined. Although 
chain expression remained increased compared with resting 
T cells,/3 chain expression had almost returned to very low 
baseline levels. In contrast, 3( chain expression appeared to 
be increased compared with resting T cells and exceeded that 
of/3 chain. 

Fig. 5 A shows the surface expression of the three IL-2R 
components on enriched NK cells after IL-2 activation. As 
previously shown,/~ chain was constitutively expressed by 
resting NK cells. Both CD56 ~m and CD56b'ig ht NK popu- 
lations expressed IL-2R/3, but neither population expressed 
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Figure 3. (.4) Immunofluorescence reactivity of anti-p64 mAb with YT cell line. YT cells were stained directly with anti-p55-FlTC (lgG1) and 
anti-p75-FITC (IgG2a) or indirectly with 1All and 3Gll. Immunofluorescence reactivity was compared with negative controls. (Dotted lines) MslgG1- 
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Table 1. Expression of IL-2 Receptor Components 

IL-2Rt~ 
p55 

Surface immunofluorescence 

IL-2RB 
p75 

IL-R3, 
p64 

RT-PCR 

IL-R3' 
p64 

T cell lines 
MT1 

Jurkat 
Molt4 
H9 
HPB-ALL 
REX 

B cell lines 
Daudi 
SKW6.4 
Nalm6 
CESS 

NK cell lines 
YT N17 
YT 2C2 
NK3.3 

Myeloid cell lines 
K562 
HL60 
U937 
KG1 
TF1 
Mo7 

Nonhematopoietic cell lines 
Colo205 
HeLa 
SW2 
SKMEL 

++ 
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++ 

++ 

+ +  

+ +  

+ +  
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Cells were stained directly with p55-FITC or p75-FITC, or indirectly with 3Gll ascites and goat anti-mouse IgM-FITC. Fluorescence intensity for 
each antibody was compared with isotype-matched negative control antibody. (-) <5% reactivity above negative control fluorescence; (+) 5-30% 
reactivity; (+ +) >30% reactivity. 

detectable ot or 3' chain. 5 d after activation, NK cells demon- 
strated enhanced expression of both c~ and 3' chain. How- 
ever, expression of both ot and 3" chain remained at a lower 
level compared with IL-2RB. By 15 d after stimulation, ex- 
pression of both ot and 3' chains had decreased to the baseline 
level of resting NK cells but/3 chain expression remained 
stable. Analysis of NK cells after activation with IL-12 gave 
similar results (data not shown). Thus, NK cells also demon- 
strated a discordance between expression of the/3 and 3" chains 

but, in contrast to T cells, expression of/3 chain was always 
in excess and surface expression of 3" chain appeared to repre- 
sent the limiting component. 

We also examined the expression of IL-2R components 
on PBMC obtained from patients receiving prolonged con- 
tinuous infusions of low dose IL-2. Previous studies have 
demonstrated that such therapy results in the gradual expan- 
sion of circulating CD56 § CD3- NK cells, which become 
the predominant lymphocytes in peripheral blood after 4-6 
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Figure 4. Surface expression of IL-2R subunits on resting and mitogen- 
stimulated T (CD3 +) cells. T cells were examined after 2 and 5 d of cul- 
ture with 1 #g/ml PHA. Ib2R3~ expression was determined by staining 
cells indirectly with 1All/anti-mouse IgG1-FITC or 3G11/anti-mouse 
IgM-FITC followed by CD3-PE. Ib2Kol and IL-2RB were examined 
directly with anti-p55-FITC and anti-P75-FITC in combination with CD3- 
PE. Quadrant settings distinguishing positive immunofluorescence from 
background fluorescence were determined by staining with isotype-matched 
control mAb (not shown). 
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wk of treatment (33, 34). As shown in Fig. 5 B, in vivo- 
expanded NK cells in such patients express IL-2R~ but little 
IL-2Rc~ and IL-2R% The pattern of  expression of IL-2R 
components in in vivo expanded NK cells is thus similar to 
that seen in normal resting NK cells. 

IL-2 Binding to Resting N K  Cells. To confirm the low level 
of expression of  y chain on resting NK cells, we conducted 
three independent IL-2 binding experiments on enriched 
resting NK cells to determine the number of intermediate 
affinity IL-2 binding sites (Table 2). The percentage of NK 
cells (CD56 +) in these experiments was between 56 and 
64%. Further analysis of these populations indicated that they 
contained 15-26% CD3 § cells and '~20% other cells which 
were not identified. Scatchard analysis of  IL-2 binding sites 
revealed the presence of both high and intermediate affinity 
IL-2 receptors. However, calculation of the number of  IL-2 
binding sites in these populations revealed only ",~180-280 
intermediate affinity binding sites and 10-35 high affinity 
binding sites per cell. These findings are consistent with very 
low levels of expression of both IL-2Rot and IL-2R% de- 
spite relatively high expression of  IL-2RB. Assuming that 
contaminating cells in this analysis have no IL-2 binding capa- 
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Figure 5. (A) Surface expression 
of IL-2R subunits on Ib2-activated 
enriched NK cells and (B) in 
vivo-expanded NK cells from pa- 
tients receiving prolonged Ib2 in- 
fusion. Enriched NK cells were ex- 
amined after 5 and 15 d of culture 
with 100 U/ml Ib2. NK calls from 
patients receiving Ib2 were exam- 
ined without in vitro cuhure. Ib 
2R',/expression was determined by 
staining cells indirectly with 
1All/anti-mouse IgG1-FITC or 
3G11/anti-mouse IgM-FITC fol- 
lowed by CD56-PE. lI:2Rc~ and IL- 
2Pq8 were examined directly with 
anti-p55-FITC and anti-P75-FITC 
in combination with CD56-PE. 
Quadrant settings distinguishing 
positive immunoftuorescence from 
background fluorescence were de- 
termined by staining with isotype- 
matched control mAb (not shown). 
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bility, the true number of IL-2 binding sites on resting NK 
cells may increase from one- to twofold. Nevertheless, these 
results remain consistent with our flow cytometric results 
indicating very low levels of expression of both ot and 3, chain 
in resting NK cells. 

Discussion 

The IL-2R is a complex receptor that includes at least three 
distinct subunits. Depending on the expression of these 
subunits, cells can possess receptors with markedly different 
affinities for IL-2 as well as different functional attributes. 
The B and 3, chains are members of a large cytokine receptor 
family characterized by four conserved cysteine residues and 
a Trp-Ser-X-Trp-Ser (WSXWS) motif in two fibronectin type 
III modules. Both IL-2RB and IL-2R3, possess large cyto- 
plasmic domains that presumably contribute to signal trans- 
duction upon IL-2 binding (13, 14, 18, 40). In contrast, IL- 
2Rol has a very small cytoplasmic segment and has not been 
shown to mediate IL-2 internalization or signal transduction 
by itself. Nevertheless, IL-2Rct appears to facilitate IL-2 
delivery to other IL-2R subunits and promotes the forma- 
tion of high affinity receptors (41). 

Previous studies have demonstrated that the gene encoding 
the IL-2R3, chain appears to be constitutively transcribed by 
a variety of lymphoid and myeloid cells. This is compatible 
with data indicating that the 3, chain gene does not include 
c/s-acting elements typically associated with inducible expres- 
sion. Thus, surface expression of the 3, chain is probably regu- 
lated posttranscriptionally. However, studies of 3, chain pro- 
tein expression have heretofore been impeded by a lack of 
suitable reagents. In the present studies we describe two new 

Table 2. Immunofluorescence Analysis and 12sI-IL-2 
Binding to Enriched Resting NK Cells 

12sI-IL2 binding 

CD56 CD3 CD19 CD14 Ka Sites/cell 

% eM 

1. 62.7 15.9 ND 0.42 5.1 10 
236 277 

2. 64.2 16.8 ND 0.97 6.9 27 
349 281 

3. 56.4 26.1 0.1 4.2 3.2 34 
308 187 

Enriched resting NK cells obtained after immunomagnetic bead deple- 
tion of T cells, B cells, and monocytes were stained directly with CD56-PE, 
CD3-FITC, CD19-FITC, CD14-PE, and isotype-matched control anti- 
bodies. Gates were set to include all mononuclear cells and percent posi- 
tive cells represent percent total mononuclear cells. IL-2 binding assay 
was performed as described in Materials and Methods. ND, not detected. 

murine mAbs, 1All and 3Gll, specific for the human IL- 
2R3, subunit, and have used these new reagents to examine 
expression of the 3' chain in a variety of cell lines transfected 
with different IL-2R components as well as a large number 
of other hematopoietic cells. 

Examination of surface expression of IL-2R components 
in a murine pre-B cell line transfected with different combi- 
nations of human cDNA encoding IL-2Rot, IL-2R~, and 
IL-2R3, confirmed the specificity of the new mAbs. Immune 
precipitation studies also confirmed the reactivity of these 
mAbs with a cell surface protein with molecular mass of 
",~62-65 kD. It is interesting to note that further analysis of 
IL-2 binding to these transfectant cell lines demonstrated that 
neither/8 nor 3, chain bind IL-2 with measurable affinity and 
that coexpression of these two chains is sufficient to form 
an intermediate affinity receptor. In the absence of 3, chain, 
/8 chain clearly interacts with ot chain to form a pseudo-high 
affinity receptor. In contrast, 3, chain does not appear capable 
of interacting with ot chain in the absence of/3 chain. In the 
formation of various IL-2R, these results indicate the 3, chain 
only interacts with/8, but that/3 chain interacts with both 
ot and 3,. 

Despite the ubiquitous presence of 3, chain message in the 
hematopoietic cells we examined, cell surface 3, chain was 
detected primarily on lymphoid cells. We undertook detailed 
studies of IL-2R subunit expression on T and NK cells be- 
cause these lymphocytes exhibit distinct functional responses 
to IL-2. Resting T lymphocytes were found to express very 
low levels of IL-2R3, chain, whereas both ot and/3 chains 
were essentially undetectable. After stimulation with PHA, 
virtually all T cells expressed IL-2Rot at high levels; IL-2R/8 
and 3, were more modestly upregulated. Thus, activated T 
cells appear to express a small number of heterotrimeric high 
affinity IL-2R that are limited by the number of/8 and 3, 
chains on the cell surface. The expression of an excess of ot 
chain appears to promote the formation of high affinity 
receptors capable of responding to very low concentrations 
of IL-2. Subsequently, ~ chain expression returns to unde- 
tectable levels and the number of or chains also declines, whereas 
3, chain expression remains elevated. Since ot and 3, do not 
appear to interact with each other, the downregulation of 

expression appears to be an important mechanism for lim- 
iting the T cell response to IL-2 in the absence of further 
stimulation. In this setting, it seems likely that 3, chains that 
persist after T cell activation are associated with other cytokine 
receptors, such as IL-4R and IL-7R. In fact, the selective down- 
regulation of B chain may directly promote the interaction 
of the 3, chain with other cytokine receptors, thus providing 
a mechanism for directing a sequential response to different 
cytokines. Similarly, the selective low level expression of 3, 
chain without either o~ or B on resting T cells may indicate 
that 3, chain is complexed with receptors for other cytokines 
before T cell activation. 

Resting NK cells incubated with nanomolar concentra- 
tions of IL-2 exhibit augmented cytolytic activity and up- 
regulation of cell surface adhesion molecules (4). These data 
imply that NK cells constitutively express intermediate affinity 
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IL-2R, and it has been established that virtually all resting 
NK cells express IL-2R/3 (39, 42), Although the/3 chain was 
dearly detected on resting NK cells, our immunofluorescence 
studies revealed almost no surface staining for the 3" chain. 
Furthermore, our radiolabeled IL-2 binding studies detected 
only 'o300 intermediate affinity IL-2R on resting NK cells, 
which is compatible with the immunofluorescence data. In 
this regard, normal NK cells resemble the expanded NK cell 
population in the peripheral blood of cancer patients receiving 
low dose IL-2 therapy. We found that such expanded NK 
cells also express IL-2R/3 in excess of IL-2ot and IL-2Ry by 
immunofluorescence analysis. Voss et al. (43) have previously 
shown that NK cells expanded in vivo after high dose IL-2 
express abundant IL-2R/3, but only a small fraction of the 
/3 chains appear to be associated with 3' chains. Although 
Nagler et al. (42) have reported that NK cells express a rela- 
tively high number of intermediate affinity binding sites per 
cell, our results are more consistent with those of Voss et 
al. (43), indicating only a relatively low number of inter- 
mediate affinity IL-2R on resting NK cells. 

After in vitro activation, expression of the/3 chain on NK 
cells remains relatively unchanged whereas both IL-2Rot and 
IL-2R3" are upregulated. Thus, activated NK cells express 
a relatively low number of high affinity heterotrimers and 
intermediate affinity/33' heterodimers together with an excess 
of presumably nonfunctional/3 chains. With more prolonged 
culture, ot and 3, chain expression declines to background levels, 
leaving only/3 chain detectable on the cell surface. In con- 
trast to T cells, we did not find persistent y chain on long- 
term activated NK cells. The very low expression of 3" chain 
on either resting or activated NK cells also suggests that these 
cells would not be responsive to other cytokines that use the 
3' chain to facilitate cell surface interactions. 

The differences in IL-2R subunit expression by T and NK 
cells underscore the distinct role of IL-2 in the biology of 
these lymphocytes. Naive, resting T cells do not express func- 
tional IL-2R. After stimulation with antigen or mitogen, 
T cells secrete IL-2 and express high affinity IL-2R heter- 
otrimers. Furthermore, autocrine stimulation via the IL-2/ 
IL-2R pathway supports the proliferation and functional 
differentiation of effector T cells. Upon withdrawal or clear- 
ance of antigen, T cells downregulate both IL-2Rc~ and/3 
but appear to become unresponsive to exogenous IL-2 pri- 
marily because of the marked decrease in expression of/3 chain. 
In contrast to T cells, resting NK cells express intermediate 
affinity IL-2R and can respond to IL-2 in the absence of other 
stimuli. We have demonstrated that resting NK cells con- 
stitutively express a very small number of functional/33" het- 
erodimers and a large excess of isolated/3 chains. The iso- 
lated/3 chains would only bind IL-2 with extremely low 
affinity and may not be functional under physiologic condi- 
tions. Thus the IL-2 response of resting NK ceils appears 
to be regulated primarily by the limited expression of both 
oe and 3' chain. 

Despite constitutive expression of 3' chain message by lym- 
phoid cells, we have demonstrated that 3' chain protein ex- 
pression is tightly and differentially regulated on distinct lym- 
phocyte subsets. It is likely that the precise composition of 
the IL-2R and of other multi-chain receptors that include 
the 3' chain will be different on various other hematopoietic 
cells. In conjunction with mAbs specific for other IL-2R com- 
ponents, mAbs specific for IL-2R3" should be useful reagents 
to elucidate the biology of complex hematopoietic cytokine 
receptors. 
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