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Abstract

Brazilian-born British biologist Dr. Peter Medawar played an integral role in developing the 

concepts of immunologic rejection and tolerance, which led to him receiving the Nobel Prize “for 

the discovery of acquired immunologic tolerance” and eventually made organ transplantation a 

reality. However, at the time of his early work in tolerance, a paradox to his theories was brought 

to his attention; how was pregnancy possible? Pregnancy resembles organ transplantation in that 

the fetus, possessing paternal antigens, is a semi-allogeneic graft that can survive without 

immunosuppression for 9 months. To answer this question, Medawar proposed three hypotheses of 

how a mother supports her fetus in utero, now known as “Medawar’s Paradox.” The mechanisms 

that govern fetomaternal tolerance are still incompletely understood but may provide critical 

insight into how to achieve immune tolerance in organ transplantation. Here, we review current 

understanding of the immune factors responsible for fetomaternal tolerance during pregnancy and 

discuss the potential implications for advances in transplantation science.
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1. Introduction

Brazilian-born British biologist Dr. Peter Medawar began his exploration of immunology 

somewhat by chance. He initially studied nerve regeneration; however, his focus changed 

when he was enlisted after the start of World War II to study why skin grafts between 

different individuals were rapidly rejected [1, 2]. He used rabbit models of skin 

transplantation to develop the concept of the immunologic rejection of skin grafts. After 

demonstrating that skin autografts were successful, he performed a number of experiments 

with skin grafts clearly demonstrating that all allografts were rejected after a latent period of 

several days (Figure 1). The speed of graft rejection increased with larger amounts of skin 

grafted and when the recipient was previously exposure to a skin graft from the same rabbit. 

Additionally, he noted that variation in graft rejection between rabbit pairs was attributed to 

genetic differences.

With this change in research focus, he directed his time and energy to investigating immune 

tolerance and organ transplantation. He was asked to help differentiate monozygotic and 

dizygotic cattle twins using his skin grafting techniques, assuming that the similar genetic 

makeup of monozygotic twins would result in successful grafting as occurs with autografts 

while skin grafting between dizygotic twins would fail due to the genetic diversity 

essentially making this a homograft [3, 4]. However, in practice this was unsuccessful. 

Instead, they demonstrated that dizygotic twins (certain to be so because they were different 

sexes) to a high degree accepted skin grafts from the other, reflecting a type of 

“desensitization” had occurred. Medawar turned to earlier observations by Ray Owen to 

explain this phenomenon: that the majority of dizygotic bovine twins have identical red cell 

antigens [5, 6]. This reflected that a stem cell chimerism in many dizygotic twins exists 

starting in utero that allows tolerance of skin grafts between the twins later in life [4]. The 
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consideration that stem cells present in embryos could facilitate long-term tolerance led to 

Medawar’s landmark series of experiments on tolerance in mice initially reported in 1953 

and further detailed in his 1956 paper [7–9]. While skin graft survival from donor mice of 

strain A to CBA strain recipients had an average survival of 11 days, Medawar showed that 

injecting the fetuses of the mice, or newborn mice during a narrow window after birth, with 

adult tissue cells from strain A resulted in prolonged and sometimes permanent survival of 

future strain A skin grafts. Importantly, he also demonstrated that the tolerance was specific 

to strain A. The results were the same with cellular suspensions from a variety of adult 

tissues, including kidney, liver, testis and spleen. He also showed this tolerance phenomenon 

held for skin grafts in other animals (e.g. chickens, ducks, rats) and that injecting whole 

blood or concentrated leukocytes was also effective for tolerance induction.

2. Medawar’s Paradox and Human Pregnancy

Medewar’s work and collaborations eventually led to the ability to successfully transplant 

human organs. However, at the time of his early work in tolerance, a paradox to his theories 

was brought to his attention; how was pregnancy possible? Although organ transplantation 

and pregnancy are clearly different processes, pregnancy resembles organ transplantation in 

that the fetus, possessing paternal antigens, is a semi-allogeneic graft and immunologically 

foreign to the mother. For example, mothers cannot accept transplants from their children 

without immunosuppression. So how do they tolerate the fetus prior to birth? As Medawar 

stated, “The immunological problem of pregnancy may be formulated thus: how does the 

pregnant mother contrive to nourish within itself, for many weeks or months, a foetus that is 

an antigenically foreign body?”

To answer this paradox, Medawar proposed three hypotheses of how a mother supports her 

fetus in utero, (1) anatomical separation between mother and fetus by the placenta, (2) 

immaturity of fetal antigens, impairing their ability to elicit a maternal immune response, 

and (3) immunological inertness of the maternal immune system during pregnancy [7, 10]. 

The mystery of successful gestation is often referred to as “Medawar’s Paradox”.

In 1960 Medawar shared the Nobel Prize for Physiology or Medicine with Sir Macfarlane 

Burnet “for discovery of acquired immunological tolerance.” However, while Medawar’s 

original hypotheses have been proven incorrect, modern-day investigations have not 

completely resolved the paradox of fetomaternal immune tolerance. In essence, pregnancy 

involves a semi-allogeneic transplant that survives without immunosuppression for 9 

months. The mechanisms that govern fetomaternal tolerance are still incompletely 

understood but may provide critical insight into how to achieve immune tolerance in organ 

transplantation. Here, we review current understanding of the immune factors responsible 

for fetomaternal tolerance during human pregnancy using Medawar’s original hypotheses as 

a framework for discussion, and we discuss the potential implications for advances in 

transplantation science.

2.1 Anatomical Separation

Although the placenta does present a physical barrier between mother and fetus as Medawar 

initially proposed, it is not an impermeable barrier. Rather, fetal cells and DNA are detected 
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in the peripheral maternal circulation, and non-inherited maternal antigens (NIMAs) are 

present on cells detected in a child years after birth emphasizing there is an exchange that 

occurs across the interface. Additionally, allospecific maternal T cells proliferate during 

pregnancy, further indicating maternal recognition of fetal antigens does occur.

2.1.1 Human Placental Anatomy—In order to better understand the interaction 

between fetal and maternal immune systems, it is important to understand placental anatomy 

and function. During pregnancy the human placenta not only functions as the lungs, 

gastrointestinal system, kidneys and liver of the fetus, but it also undergoes continuous 

modifications as its purpose changes throughout trimesters [11, 12]. After fertilization, the 

uterine epithelium prepares to accept the implantation of the blastocyst, transforming into 

the specialized decidua as the blastocyst invades. The decidua is characterized by its 

decidual stromal cells, glandular epithelial cells, endothelial cells and maternal leukocytes. 

The blastocyst’s trophoectoderm cells become the placenta, which develops during the early 

first trimester. Fetal trophoblasts are the primary tissue in contact with the maternal decidua 

and therefore the maternal immune system (Figure 2A) [12, 13]. Chorionic villi form the 

outer edge of the placenta and are outpouchings of stroma and blood vessels surrounded by a 

layer of cytotrophoblasts, the undifferentiated progenitor trophoblasts, and an outer layer of 

syncytiotrophoblasts. The syncytiotrophoblast are fused multinucleated cells that form a 

barrier against the maternal decidual cells, participate in nutrient and oxygen transport from 

the surrounding maternal blood, and secrete hormones.

In addition to replenishing the syncytiotrophoblast layer, cytotrophoblasts also differentiate 

into cells termed extravillous trophoblasts (EVTs), which concentrate at the end of each 

chorionic villus and enter the maternal decidua and interact with maternal vascular and 

decidual cells, resulting in a remodeling of uterine spiral arteries that allows blood flow to 

the fetus for ongoing support and development [14, 15]. EVTs play an important role in 

communication with maternal cells as the dual placental function of immune protection and 

provisions of nutrients to the fetus continues throughout the duration of the pregnancy. At 

the 10th–12th week of pregnancy, the intervillous space around the chorionic villi becomes 

bathed in maternal blood, allowing continued nutrient supply to the developing fetus (Figure 

2).

This interface between the placenta and the decidua is certainly not an impermeable barrier. 

By design, nutrients and oxygen cross the placenta from the decidua. Additionally, various 

chemical toxins are able to transfer across the placenta, particularly when their molecular 

weight is <1 kDa, which is particularly relevant when considering pharmaceutical therapy 

for a pregnant woman or the susceptibility of the fetus to the exposure of the women to 

environmental or other toxins [16]. Apoptosis of syncyctiotrophoblasts in the chorionic villi 

causes the release of cellular components into the maternal circulation [17]. These apoptotic 

bodies contain genetic material from the placenta that the majority of the time mirrors the 

fetal genotype, which has now been isolated from maternal blood samples and termed “cell-

free DNA.” Analysis of this DNA has provided important information about the health of 

the fetus and the placenta. While very selective, the bi-directional exchange of cells and 

cellular materials across the fetomaternal interface has been demonstrated (Figure 2B). It is 
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important to remember the interface of the placenta with the maternal decidua is dynamic 

throughout the 9 months of gestation.

2.1.2 An Imperfect Barrier: Microchimerism—Microchimerism occurs when fetal 

cells are found in maternal tissues and circulation, and/or maternal cells are present in their 

offspring.[18]. In maternal-fetal cellular trafficking, the trophoblast allows bidirectional 

movement of stem cells and leukocytes. Fetal cells that have been detected in maternal 

circulation also include trophoblasts, granulocytes, lymphocytes, and nucleated red blood 

cells [19]. These cells and fetal DNA have been found in peripheral circulation and in 

maternal tissues decades following pregnancy. Additionally, maternal cells can be found in 

immunocompetent adult offspring [20–23].

Long-term microchimerism has several immunological implications serving both pathologic 

and protective functions. In parous women, long-term microchimerism has been associated 

with autoimmune disorders but has also been found to offer protection against certain 

cancers [24, 25]. Pediatric immune-mediated diseases such as neonatal lupus syndrome has 

been associated with microchimerism in immunocompetent offspring [23]. More 

importantly, maternal microchimerism has been identified as a mechanism for maternal 

tolerance towards fetal inherited paternal antigens (IPAs) whereas fetal microchimerism 

promotes tolerance towards NIMAs in the offspring [26, 27].The fetal tolerance towards 

NIMAs may be lifelong; however, maternal tolerance towards IPAs may be short-lived [28]. 

This tolerance has broader implications outside of pregnancy as seen in hematopoietic stem 

cell (HSC) transplantation, in which Ichinohe et al. demonstrated a lower incidence of graft-

versus-host disease with HLA-haploidentical HSC transplant from a microchimeric IPA/

NIMA-mismatched donor [26]. The mechanism behind this tolerance is thought to be related 

to a deletion of IPA/NIMA reactive T cells and an upregulation of Tregs [26].

As described above, the bi-directional nature of the placenta facilitates tolerance between 

mother and fetus. Similarly, violation of this barrier that occurs in pre-term labor or trauma 

results in a breakdown of fetomaternal tolerance. Pre-term labor frequently occurs after fetal 

surgery, which is performed with the goal of improving morbidity and mortality for severe 

or fatal congenital anomalies. Normally, maternal fetal cellular trafficking results in fetal 

cells in maternal circulation and maternal cells in the fetal circulation. Maternal cells in fetal 

circulation leads to generation of fetal Tregs, which then suppress fetal effector T cells from 

binding to maternal antigens [27, 29, 30]. However, murine models have indicated that when 

the placental membrane is interrupted during fetal intervention, trafficking of maternal T 

cells into the fetus increases [31]. When allogeneic fetuses were injected with saline in-

utero, an increase in maternal T cell migration to the myometrium and an increase in effector 

cytokines was noted. Lastly, murine fetuses were injected with foreign paternal allele and a 

specific loss in pups that were genetically different from the mother was seen whereas 

genetically identical pups were preserved. These findings demonstrate the significant change 

that occurs in fetomaternal tolerance when the placental membrane is disrupted in murine 

models [31]. These results seen in animal models cannot be directly extrapolated to human 

pregnancy; however the concept of changes in fetomaternal tolerance as a result of placental 

disruption is important to note.
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2.2 Immaturity of Fetal Antigens

Medawar’s second hypothesis behind fetomaternal tolerance focuses on the immaturity of 

fetal antigens, which subsequently prevents the maternal immune system from mounting an 

attack against the fetus. EVTs do display unique major histocompatibility complex (MHC) 

antigens, including non-classical human leukocyte antigen-G (HLA-G) and are deficient in 

MHC class II antigens. However, the fetal immune system does not consist entirely of 

immature antigens, but rather is composed of antigens not recognized by the mother, which 

results in downstream effects on both innate and adaptive immune responses. Here we 

discuss fetal antigens and the immune changes that occur in the fetomaternal environment.

The fetal trophoblast is an immunologic barrier that promotes immuno-tolerance between 

mother and fetus through several mechanisms including absence of classical HLA class I 

and II expression in the fetus, altered natural killer (NK) cell and T cell populations and 

functions, low tryptophan levels, and high progesterone levels [32–35]. A summary of 

crucial first trimester maternal immune cell populations and cytokines are presented in Table 

1.

2.2.1 Altered MHC Expression And Fetal Immunogenicity—Human EVTs 

express the classical MHC class I antigen HLA-C, the non-classical class I antigens HLA-E, 

-F, and –G, and do not express MHC class II antigens (HLA-DP, -DQ, -DR) (Table 1). Due 

to lack of expression of classical antigens in the fetus, the maternal immune system cannot 

mount a response to paternal HLA present in the fetus, thereby preventing direct alloantigen 

recognition [38–41]. However, as described above, maternal antigen presenting cells (APCs) 

could potentially process and present conceptus-derived antigens on maternal MHC 

molecules, which would then activate maternal T cells (indirect alloantigen recognition) 

[42]. This indirect antigen presentation pathway does not occur, however, due to the fact that 

maternal APCs remain trapped in the decidua. Maternal APCs may be trapped due to lack of 

lymphatic vessels in the uterus or potentially due to changes in the decidual extracellular 

matrix, which then prevents maternal APCs from migrating to lymph nodes as seen in 

murine models [43]. Further studies are needed to determine if this phenomenon also occurs 

in humans. Additionally, human decidua has been found to have fewer DCs compared to 

human endometrium [44]. This paucity of maternal APCs and overall lack of functionality 

represents one possible mechanism for fetomaternal tolerance [43]. The altered fetal MHC 

antigen profile at the fetomaternal interface has several downstream effects as well on both 

innate and adaptive immune responses in this environment. MHC class I antigens HLA-A 

and HLA-B play a role in antigen presentation to T cells and NK cells. EVTs express HLA-

C, HLA-E, and HLA-G, but lack HLA-A and HLA-B. HLA-C expression at this interface 

prevents maternal NK cells from attacking the fetus [15, 45, 46]. At the same time, the 

presence of the non-classical MHC class I antigen HLA-G in soluble form has 

immunosuppressive effects through the downregulation of CD4+ T cell proliferation and the 

induction of activated CD8+ T cell to undergo apoptosis [47, 48]. Additionally, HLA-G 

expressed on cell surfaces binds to inhibitory cell surface receptors resulting decidual APCs 

and decidual natural killer cell (dNK) inhibition, which further prevents the attack of the 

maternal immune system against the fetus [12, 41, 49]. The lack of MHC class II antigens is 

also a key characteristic of the fetomaternal interface. MHC class II antigens are recognized 
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by CD4+ helper T (TH) cells, which in turn participate in antibody and cytotoxic T cell 

immune responses. By not having MHC class II expression in the fetus, the maternal 

immune system is not able to initiate the TH cell-mediated immune response that would 

occur from paternal foreign antigen recognition (Figure 2) [12]. Furthermore, the lack of 

functional maternal APCs at the feto-maternal interface is critical since APCs do express 

MHC class II and therefore would normally stimulate TH cells. As a result, violations of the 

fetomaternal interface could result in an escape of maternal APCs into the fetus and 

ultimately inciting an immune reaction [31, 43].

2.2.2 Inflammatory Mediators at the Fetomaternal Interface Preventing Fetal 
Destruction—Although fetal cells express some level of antigen immaturity displayed by 

altered MHC expression, fetal cells also actively play a role in cross-talk with maternal cells, 

which promotes a tolerogenic environment locally. At a cellular level, T cell dependent 

inflammatory responses are suppressed due to decreased levels of tryptophan seen in 

pregnancy. Tryptophan is degraded in syncytiotrophoblasts, invasive EVT and macrophages 

by the enzyme Indoleamine 2,3-dioxygenase (IDO). When IDO degrades tryptophan, cells 

are able to suppress T cell activity in vitro [50]. Conversely, when an IDO inhibitor is given, 

this suppressive effect is reversed. Similarly, when treatment with an IDO inhibitor is given, 

syngeneic fetuses are not rejected [51]. Therefore, it is thought that tryptophan metabolism 

in trophoblasts and APCs in the placenta protect the fetus by inhibiting T cell activation. 

Fetal EVT also contain a high concentration of IDO during the first trimester and at term, 

which are the fetal cells located closest to the maternal immune system. The close proximity 

of EVT to the maternal immune system demonstrates the critical role IDO likely plays in 

down-regulating maternal T cell responses [52]. Additional mechanisms of protection 

through tryptophan metabolism have been proposed including T cells apoptosis due to 

release of toxic tryptophan breakdown products such as kynurerine, 3-hydroxykynurenine, 

and 3-hydroxyanthranilic acid [50, 53]. Although macrophages primarily produce IDO, 

monocyte-derived DCs are also found to produce IDO. DCs are potent activators of T cells; 

however, DCs are also important regulators of the immune system and IDO production 

represents a mechanism for how DCs inhibit cellular immune responses [54].

The importance of IDO and tryptophan metabolism has been demonstrated in murine 

allogeneic pregnancy models. Pregnant mice carrying allogeneic or syngeneic concepti were 

treated with IDO inhibitor, which resulted in a significant loss of concepti in the allogeneic 

but not syngeneic pregnancies. To determine the importance of maternal lymphocytes in 

rejection, RAG-1−/− mice, which prevents the development of lymphocytes, with allogeneic 

or syngeneic pregnancies were again given an IDO inhibitor. Both syngeneic and allogeneic 

pregnant females delivered healthy litters. However, when given a reconstituted T cell 

population, allogeneic, but not syngeneic, pregnant mice lost all their concepti. This study 

by Munn et al. demonstrates that not only is tryptophan metabolism crucial in the inhibition 

of T cells, but when not inhibited, maternal T cells are responsible for rejection. Moreover, 

this experiment indicates that the fetomaternal interface is not an anatomical barrier and is 

not antigenically immature, but rather survival of allogeneic fetuses results from 

immunomodulation at this interface [55]. The IDO inhibitor used was Munn et al. has been 

found to have an inhibitory effect on human placental IDO, suggesting that this murine 
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model may also be applicable to human pregnancy [56]. This enzyme has been localized to 

the cytoplasm of syncytiotrophoblasts (and not expressed at the brush border membrane) 

indicating that tryptophan must enter the cell in order to be metabolized. Tryptophan 

metabolism may therefore be regulated by transmembrane transport, which in turn may 

represent the mechanism for maternal immune suppression to the fetus [55, 56]. Other 

studies have demonstrated normal-sized litters in matings involving IDO-deficient males and 

females. This finding suggests that although IDO may play a role in maintaining allogeneic 

pregnancies, other compensatory immunosuppressive mechanisms likely exist to prevent 

rejection [57].

2.2.3 Promoters of Apoptosis—paraAs seen in the tryptophan degradation pathway, 

apoptosis is an important mechanism utilized by cells in the placenta to facilitate 

fetomaternal tolerance during implantation and throughout pregnancy [58]. Fas ligand 

(FasL) and TNF-related apoptosis-inducing ligand (TRAIL) are both members of the TNF 

superfamily and play crucial roles in apoptotic cell death [59, 60]. FasL is expressed not 

only on activated immune cells, but is also expressed on the surface of other cells in immune 

privileged sites including the eye, brain, testis, and placenta [61]. TRAIL has previously 

been established as playing a role in apoptotic cell death in tumor cells, but has recently 

been found to be involved in immune surveillance, intra-thymic negative selection, and 

suppression of autoimmunity [62]. Together, FasL and TRAIL are intracellularly expressed 

in syncytiotrophoblasts and secreted as part of placental exosomes. Once secreted, these 

death messengers form a complex that are then able to induce apoptosis in activated 

lymphocytes that could pose a threat to the fetus [63, 64].

2.3 Immunological Inertness of the Maternal Immune System

Medawar initially hypothesized that maternal immune system inertness during pregnancy 

would help explain tolerance of the fetus. While pregnant women do have increased 

susceptibility to infection and demonstrate alterations in their immune profiles, these 

modifications are nuanced and do not lead to a state of immunological inertness 

demonstrated by the ability of pregnant women to still mount an immune response and 

respond robustly to various pathogens [65]. During pregnancy, maternal immune cell 

populations and functions are altered both locally—at the fetomaternal interface—and 

systemically. In this section, we review these alterations and how they contribute to tolerance 

of the fetus.

2.3.1 Maternal Immune Cells at the Fetomaternal Interface—The presence of 

maternal immune cells at the fetomaternal interface is important for establishing a functional 

exchange, and the cross-talk between trophoblasts and maternal immune cells helps direct 

normal placentation. A variety of maternal immune cells are present at the interface and 

participate in this role; however, the characteristics of the cell population are unique in this 

environment (Figure 2C).

Although the changes in immune cell populations and MHC expression differences seen on 

fetal cells help to shed light on why a fetus is not “rejected,” this phenomenon is still not 

completely understood. Immature MHC and the lack of classical MHC expression (except 
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for HLA-C) does not exclude rejection. This finding is similar to what is seen in an HLA 

identical transplant, in which rejection may still occur due to minor (non-MHC) antigens 

contributing to rejection [66].

The Role of Adaptive Immune Cells at the Fetomaternal Interface.: The principal 

driving force of why mother and fetus are able to co-exist is the establishment of immuno-

tolerance [32]. Multiple adaptive immune cell types play a role in establishing this balance, 

but key cell mediators are Tregs and TH cells. In addition to differences in antigens present at 

the fetomaternal interface, it is also important to note the composition of immune cells and 

their unique functions at this junction.

CD4+CD25+FoxP3+ Tregs play a significant role in facilitating fetomaternal immuno-

tolerance, which begins before pregnancy during the menstrual cycle. Female Treg 

population increases just prior to ovulation, a time when the female could potentially be 

exposed to foreign paternal-fetal antigens [67, 68]. As seen in murine models, this Treg 

expansion correlates with a peak in serum estradiol levels; additionally, progesterone levels 

continue to rise after ovulation and together with cytokines IL-2 and TGF-b, have increased 

ability to induce Foxp3 expression, and therefore, increase the Treg population [69]. Due to 

the fact that Tregs are present in the uterus in increased numbers even prior to implantation, 

their expansion is likely stimulated by estrogens and trophoblastic cytokines [70]. 

Correspondingly, women who experience recurrent miscarriages have been observed to 

possess a smaller Treg population [71].

In addition to Tregs, the PD1-PDL1 negative costimulatory pathway plays an important role 

in developing and maintaining tolerance by regulating the balance between Tregs and 

pathogenic T cells [72]. PDL1 blockade in a murine fetomaternal tolerance model resulted 

in an inhibition of apoptosis of alloreactive T cells, an increase in Treg apoptosis, and an 

increase in TH17 cells. The loss of regulatory function seen with PDL1 blockade has been 

shown to result in expansion of effector cells TH1 and TH17, which leads to fetal rejection 

and a reduction in litter size [72, 73]. These studies demonstrate that PDL1 inhibition leads 

to a breakdown of fetomaternal tolerance due to an increase in TH17 cells and decrease in 

Tregs. This balance between TH17 cells and Tregs is crucial to maintaining fetomaternal 

tolerance.

The PD1-PDL1 checkpoint also plays a significant role in the ability of cancer cells to evade 

immune system detection. Human trophoblastic cells are similar to malignant cells in that 

they are both able to invade normal tissue including blood vessels and they are able to avoid 

destruction by the host immune system. Veras et al. investigated PDL1 expression in order to 

determine if PDL1 contributed to immune system evasion in pregnancy and in gestational 

trophoblastic diseases. PDL1 was upregulated in syncytiotrophoblast and in intermediate 

trophoblastic cells located at the implantation site, which suggests that the PD1-PDL1 

checkpoint may be an additional mechanism used to establish fetomaternal tolerance [74].

Fetal-specific CD8+ cytotoxic T cells have been detected in women with a previous 

pregnancy, and in order to maintain tolerance, it was thought that these cells underwent Fas/

FasL-mediated apoptosis during early pregnancy. [75]. However, a human study by Lissauer 
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et al. demonstrated that fetal-specific CD8+ T cells were present in half of all pregnancies 

with fetal-specific cell populations increasing throughout pregnancy and remaining in the 

post-natal period. Not only were these effector T cells still present, but were still able to 

proliferate, secrete Interferon gamma (IFN-γ), and lyse target cells in vitro [76]. This 

finding suggests that other mechanisms aside from apoptosis must occur in order for fetal 

cells to avoid being targeted by maternal T cells. Although fetal-specific T cells were 

functional in vitro, these cells may be functionally attenuated or anergic in vivo. Tregs may 

suppress the activity of these fetal-specific T cells in vivo. Fetal cells may evade the 

maternal immune system through HLA down-regulation on trophoblasts and 

syncytiotrophoblasts. [77]. Additionally, lack of CD8+ T cell infiltration into the decidua has 

been associated with pre-eclampsia demonstrating that alloreactive T cells confer a survival 

advantage during pregnancy [78].

The Role of the Innate Immune System at Fetomaternal Interface.: In addition to 

adaptive immune system changes throughout pregnancy, the innate immune system plays a 

significant role, namely through decidual macrophages and dNK cells. These maternal 

leukocytes, recruited by decidual stromal cells and trophoblasts, are present in the decidua 

throughout pregnancy with the highest concentrations seen during the first trimester [79–81]. 

dNK cells comprise 70% of the leukocytes present in decidual tissue during the first 

trimester where they are the critical mediators of trophoblast invasion and the remodeling of 

spiral arteries during decidualization and implantation. dNK cells are modulated by 

placental EVT to promote fetomaternal tolerance and to prevent destruction of the 

fetomaternal inferface. A tolerogenic environment is created through the binding of KIR, 

CD94/NKG2A, and ILT2 receptors located on dNK cells to HLA-C, -E, and –G, 

respectively [82]. Placental EVTs express the non-classical MHC molecule HLA-G, which 

can bind to dNK killer cell immunoglobulin (Ig)-like receptors (KIR) KIR2DL4 and LILRB 

[12]. These interactions protect trophoblasts from dNK cytotoxicity in the setting of low-

level expression of conventional MHC molecules [83–85]. Upon binding to HLA-C, KIR 

inhibits the cytotoxic activity of dNK cells thereby preventing trophoblastic lysis. HLA-E is 

located on trophoblasts and maternal cells; therefore, the destruction of these cells is 

prevented when HLA-E binds to the inhibitory receptor CD94/NKG2A. ILT2 binding results 

in the secretion of inflammatory and pro-angiogenic factors including IL-1B, IL-2, IL-8, and 

TNF-a [82, 86].

However, unlike peripheral NK cells which are low producers of cytokines and have potent 

cytotoxic capabilities, dNK produce high levels of cytokines, growth factors, and angiogenic 

factors and display low NK cytotoxicity [87]. Cytokines secreted by dNK cells include 

macrophage inflammatory protein (MIP), granulocyte-macrophage colony-stimulating factor 

(GM-CSF), vascular endothelial cell-C (VEGF-C), and placental growth factor [88, 89]. 

These secretions aid in the remodeling of the decidua and spiral arteries, recruit trophoblasts 

to invade via IL-8, and increase maternal blood at the site of implantation [85, 90, 91]. As 

evidence of the importance of dNK cells, endometrial biopsies of patients with unexplained 

infertility display a paucity of dNK cells compared to fertile counterparts [92]. Interestingly, 

recent data points to a subset of dNK cells expressing high levels of NKG2C and LILRB1 

receptors and present in much higher levels in multigravid women compared to primigravid 
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women. This subpopulation of dNKs secretes higher levels of IFN-γ and VEGFα, which 

enhance performance for angiogenesis and vascular remodeling during placentation in 

subsequent pregnancies [93].

Additionally, decidual macrophages play an integral role as the primary APC at the 

fetomaternal interface during early pregnancy. Decidual macrophages act as regulatory cells 

and have an anti-inflammatory phenotype [82]. They aid in spiral artery and trophoblast 

remodeling and in angiogenesis via the production of VEGF and matrix metallopeptidase 9 

(MMP9). By phagocytosing apoptotic trophoblasts, decidual macrophages prevent the 

activation of decidual pro-inflammatory pathways. With the production of IDO, decidual 

macrophages are able to inhibit T cell activation [94, 95].

Together, decidual macrophages and NK cells contribute to maternal tolerance through the 

modulation of effector T cell populations and the promotion of regulatory phenotypes of 

leukocytes that are present at the interface. At the beginning of pregnancy, effector T cell 

populations are small in comparison to decidual macrophages and dNK cells potentially due 

to silencing of T cell chemokines in stromal cells. Decidual leukocytes, EVT and stromal 

cells promote the differentiation of monocytes and T cells into M2 macrophages and Tregs 

through the production of granulocyte colony-stimulating factor (G-CSF), IL-10, and TGF-β 
[96–98].

2.3.2 Systemic Immunomodulatory Changes in the Mother—While we know 

that a variety of immune factors at the fetomaternal interface permit tolerance to the semi-

allogeneic fetus, there is also evidence of systemic immune alterations in the mother during 

pregnancy. For example, pregnant women with autoimmune diseases tend to have either 

improvement or worsening of their autoimmune disease during pregnancy depending on the 

nature of the disease, and pregnant women are more susceptible to morbidity and mortality 

as a result of infection by certain pathogens, such as influenza, Listeria monocytogenes, and 

Varicella zoster [99].

An initial more simplistic theory for systemic changes in immunity of the mother related to a 

thought that the immune cell distribution and cytokine production shifted the TH1/TH2 

balance towards a more tolerogenic TH2 profile [100–103]. Although the TH2 bias of the 

uterine environment has been demonstrated, but the extension of this observation from the 

fetal maternal interface to the systemic maternal immune system is controversial and has not 

been supported by the most recent studies of maternal immune profiles during pregnancy 

[99]. Indeed, throughout pregnancy shifts in maternal immune cell populations are observed, 

including some inhibition of immune activity but also immune activation [104]. The Viral 

Immunity in Pregnancy (VIP) Project provided longitudinal assessments of peripheral 

immune cell populations and cytokine production in women throughout pregnancy with a 

comparison to two postpartum time points: 5–6 weeks and 6 months postpartum [105, 106]. 

Through their analysis of maternal peripheral blood, they demonstrated an overall peripheral 

immune cell population profile that reflects an increase in innate immune cell populations, 

such as DCs, monocytes, and neutrophils combined with a decrease in T cells, NK cells and 

B cells overall. They additionally demonstrated alterations in immune cell function reflected 

by levels of cytokine production in response to various stimuli. They demonstrated an 
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overall decrease in CD4+ and CD8+ T cells as well as a decrease in toxic shock syndrome 

toxin (TSST)-stimulated production of both TH1 and TH2 cytokines in CD45RA+ (naïve) T 

cells. Peripheral NK cell populations were highest in the first trimester and decreased after 

the 20th week of pregnancy, reflecting the early need for uterine NK cells during 

placentation. Similarly, there was a decrease in CD19+ cells B cells later in pregnancy. In 

the analysis of cytokine expression throughout pregnancy, they demonstrated variation in 

cytokine profiles between individual women. However, when comparing the cytokine levels 

for the same woman at the 6 week and 6 month postpartum time points, they found high 

concordance of the cytokine profiles, suggesting distinct patterns of baseline serum cytokine 

expression exist at the individual level. Even with this individual-level variation, they 

demonstrated clear trends in peripheral cytokine profiles throughout pregnancy compared to 

postpartum levels. TNF-α and the growth factor G-CSF were all elevated throughout the 

three trimesters. IFNγ, MCP-1, VEGF, and Eotaxin were all decreased throughout 

pregnancy with the exception of INFγ, which was only decreased in the 2nd and 3rd 

trimesters. These findings support a more complex systemic immune response to pregnancy 

in women than a simple overall shift towards TH2 profiles and reflects the need for a 

pregnant woman to be able to defend against infection. The results of the VIP project 

suggest that in pregnancy there is a shift towards bolstering the innate immune system while 

sacrificing some protection to viral infections.

Continued work in this area has provided additional information regarding the complex 

immune shifts in pregnancy. Aghaeepour et al. recently helped to shed additional light on the 

temporal variations in systemic immune responses in pregnant women, using a mass 

cytometry technique to create a high parameter functional profile of the peripheral immune 

cells and cell signaling throughout normal pregnancy [107]. In this study, 21 pregnant 

women had serial blood samples obtained (early, mid and late pregnancy) along with a 

control sample at 6 weeks postpartum. Mass cytometry assays were run to simultaneously 

interrogate multiple signaling pathways in distinct cell subsets spanning the entire immune 

system at each time point to understand the systemic “immune clock” of pregnancy. A cell 

signaling based algorithm Elastic Net (csEN) was used to create a model of the immune 

features at all time points to predict the timing of immune changes during a pregnancy, and 

the model was tested on an additional 10 enrolled pregnant women with good performance 

demonstrated. Through these analyses, Aghaeepour et al. confirmed and further delineated 

the initial observations of the VIP study related to temporal immune changes in pregnant 

women with more information about cell signaling pathways in immune cell populations. 

They also demonstrated increased immune cell populations, such as increased levels of 

circulating neutrophils in pregnancy with enhanced responses to stimuli. They also found 

circulating maternal DCs to have a higher expression of tolerogenic surface proteins (such as 

PD-L1) and decreased TLR4 signaling in response to LPS stimuli. With regards to T cell 

function, they actually found some endogenous signaling pathways to be increased in 

response to certain stimuli rather than the overall consistent decrease in function seen in 

earlier studies. Most intriguing was the progressive increase in STAT5ab signaling in 

multiple T cell subsets and the observation of an increase in circulating IL-2 levels in 

pregnancy. It is known that STAT5ab activity dependent on IL-2 is essential for the 

development of Tregs, which implicates this pathway in a potential role for increased 
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presence of Tregs in pregnancy. Maternal peripheral immune cell population alterations and 

cytokine production throughout gestation are summarized in Table 2.

The main known drivers of these systemic immune changes in pregnant women include the 

hormones produced during pregnancy that are known to alter immune response-related 

transcription signaling at many levels. Estrogen and progesterone receptors are present on a 

wide variety of cell types, including lymphocytes and APCs. During pregnancy, human 

chorionic gonadotropin (hCG), first produced by the blastocyst and later by trophoblasts, 

plays a major role early in pregnancy by promoting implantation and placentation and then 

stimulating progesterone production [108]. The fetus plays an important role in tolerance 

through the production of hCG. hCG has been shown to stimulate the production of IL-10+ 

Breg (B10) and IL-35+ Breg cells, which are known tolerogenic cells that function to 

downregulate effector cells.[109] Progesterone and estrogen levels increase through 

gestation while hCG levels peak around the 11th week of pregnancy.

Estrogen is present in pregnant women in two forms, estradiol (E2) or the classic form of 

estrogen present in all pre-menopausal women and estriol (E3), which is produced by the 

fetoplacental unit and represents 90% of all estrogens produced in pregnancy [110]. 

Estrogens are implicated in multiple immune changes known to occur during pregnancy, 

particularly the later changes in the third trimester when the estrogen levels are highest. 

Centrally, estrogen causes thymic involution, leading to decrease in T cell development 

[111]. Additionally, estrogen suppresses B cell lymphopoiesis [112]. In addition to 

regulation of immune cell production, estrogen has been shown to drive bone marrow 

precursor cells to formation of CD11c+ DCs and decrease antiviral responses in addition to 

augmenting TH2 responses including IFNγ production and expand Treg populations [110].

Progesterone is mainly produced by the corpus lutea of the ovaries as well as the placenta 

during pregnancy and has a largely anti-inflammatory role during pregnancy, inhibiting 

TLR-induced cytokine production and promoting TH2 immune responses while inhibiting 

TH1 immune responses [113–115]. These effects of progesterone on T cells are mediated by 

inhibition of the NF-κβ pathway as well as progesterone-induced blocking factor (PIBF) 

[116]. Progesterone has been shown to have varied effects on Treg populations in humans 

versus mice. Progesterone stimulates the release of CXCL10, a chemokine implicated in the 

localization of TH2 cells to the placenta and is also responsible for upregulation of HLA-G 

expression [115].

3. Implications of Immune Changes of Pregnancy for Future Maternal 

Pathology

The interactions between maternal and fetal immune systems that occur during pregnancy 

have significant clinical implications. Autoimmune diseases occur more commonly in 

women following their reproductive years, which is thought to be due to maternal fetal cell 

trafficking during pregnancy. Specifically, women with systemic sclerosis have increased 

rates of fetal microchimerism, and fetal cells are commonly detected in women diagnosed 

with Hashimoto’s thyroiditis, Graves’ disease, and scleroderma [18, 117–119]. Conversely, 

maternal cells have been detected in higher frequency in children with neonatal lupus 
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syndrome, type I diabetes, juvenile dermatomyositis, biliary atresia, and Hirschsprung’s 

disease [18]. However, it has not been determined if the presence of maternal or fetal cells 

contribute to autoimmunity or to tissue regeneration. Fetal cells found in mothers have stem-

cell like properties as they are capable of differentiating into various cell types including 

blood and skin, and are found to contribute to tissue regeneration in maternal liver and 

kidneys after injury [120, 121]. Alterations in immune cell populations during pregnancy 

have been linked to maternal disease, including low postpartum T cell levels in mothers who 

develop postpartum psychosis and high CD4/CD8 T cell ratios with higher levels of 

activated T cells in women who develop postpartum thyroiditis [122, 123].

Maternal microchimerism has clinical significance as seen in liver transplantation between 

mother and child for biliary atresia. As previously mentioned, maternal cells in fetal 

circulation result in the development of fetal Tregs, which promote tolerance to NIMAs [30]. 

Increased maternal microchimerism is seen in livers of neonates affected by biliary atresia 

[29]. In a retrospective review by Nijagal et al., pediatric patients who received a liver 

transplant from their mother for biliary atresia had significantly lower rates of graft failure 

and need for retransplantation compared to those who received liver transplants from their 

father. This finding indicates that maternal microchimerism likely plays a long-term role in 

the development of tolerance [29, 124]. Conversely, human transplantation studies have 

demonstrated that maternal microchimerism may result in sensitization and subsequent 

rejection as seen in the higher rates of acute rejection in kidney and stem cell NIMA 

mismatched grafts [125, 126]. Lastly, fetal microchimerism has been identified in maternal 

cancers including breast, papillary thyroid, and lung cancer. However, the function of fetal 

cells in these cancers are not clearly defined and may include tumorigenesis, immune 

surveillance and tissue repair [18].

4. Lessons Learned from Fetomaternal Tolerance for Transplantation

Understanding the mechanisms of fetomaternal tolerance may provide new insights into 

developing methods of preventing transplant allograft rejection. For the translation of 

fetomaternal tolerance to the field of transplantation, we can parallel the hypotheses of 

Medawar. Anatomical separation between mother and fetus by the placenta. Anatomic 

separation of allograft is under study in the field of islet transplantation using incapsulated 

islets to physically block host immunity from interacting with transplanted islets [127]. 

Hypothetically, islets could also be placed in areas of “immune privilege”, such as in the 

cerebral spinal fluid, testis, or uterus. Such methods may work for other smaller allograft, 

such as islets or parathyroid tissue, but may be difficult to achieve for larger, solid organ 

allografts. Immaturity of fetal antigens relates to impairing the ability of the graft to present 

antigen and to elicit an immune response. To some degree this has been achieved by 

decreasing effective allograft antigen presented by blocking costimulation signals with 

CTLA4-Ig [128]. Graft depletion of donor leukocytes is another method that will decrease 

donor antigen presentation and is currently in clinical use for small bowel transplantation 

where transplant donors are treated with thymoglobulin prior to organ procurement [129, 

130]. New research is targeting graft MHC with small interfering RNAs (siRNAs) to down-

regulate donor MHC [131]. Of course, a caveat to MHC depletion is that it can stimulate a 

natural killer cell mediated immune response against the graft. Immunological inertness of 
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the maternal immune system during pregnancy. This is our current method of 

immunosuppression, inhibiting recipient immune responses through the use of 

immunosuppressive medications (e.g. prednisone, calcineurin inhibitors, mTOR inhibitors, 

cell cycle inhibitors and recipient lymphocyte depletion). Methods are being developed that 

may allow specific inhibition of immune responses against donor tissue, rather than global 

immunosuppression. For example, methods of central tolerance are being tested that use 

donor bone marrow transplantation to produce donor-recipient chimerism [132], and also 

donor thymus co-transplantation [133]. In addition, methods for obtaining peripheral 

tolerance through donor leukocyte infusions [134] and Treg infusions [135, 136] have been 

studied with some success. Recently, mesenchymal cell transplantation has emerged as a 

promising strategy for tolerance induction [137].

Fetomaternal interactions at the placenta and cell trafficking that occurs through the placenta 

have significant clinical implications that extend outside of transplantation. As indicated 

above, fetal and maternal microchimerism may promote either tolerance or immunogenicity 

in autoimmune disease, transplantation, and cancer. The balance between tolerance and 

immunogenicity represents a mechanism, which can be further harnessed to promote clinical 

advances in autoimmunity, transplantation, and oncology.

5. Summary

Despite significant advances in operative technique, organ storage, and immunosuppressive 

medications, we continue to suffer persistent graft losses due to acute and chronic immune-

medicated rejection. Developing methods that produce donor-specific immune tolerance or 

create effective immune barriers to the alloimmune response would provide alternate 

modalities for improving the longevity of donor organs. The fetomaternal barrier has 

evolved to achieve immune tolerance to foreign tissue using multiple layers of protection. 

New approached capable of leveraging the mechanisms of fetomaternal tolerance may lead 

to improved methods of immunosuppression and could ultimately produce a tolerant 

interface between the recipient immune system and donor organs.
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Figure 1. 
Medawar’s model of allogeneic differences leading to skin graft rejection in rabbits. 

Medawar grafted skin from one rabbit (rabbit D-1) to another (rabbit R). All grafts were 

destroyed by days 12–15. Following this, skin grafting was performed from the D-1 rabbit as 

well as a different rabbit (rabbit D-2) to rabbit R. Cell division was inhibited and graft loss 

was observed at day 6 for this second grafting that was not observed with the D-2 to R graft. 

Through these experiments and others, Medawar established that the intensity of homograft 

rejection was mediated by 1) graft dosage (i.e. amount of skin grafted), 2) previous exposure 

to grafts from the same donor, and 3) genetic diversity of the rabbits.
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Figure 2. 
The fetomaternal interface of the placenta is the primary site of maternal and fetal immune 

interaction. A) As a part of implantation, the fetal trophoblasts of the human placenta invade 

the maternal decidua to form chorionic villi, which are in direct contact with maternal blood 

and permit nutrient and oxygen exchange to nourish the growing fetus. Cell turnover is a 

hallmark of the chorionic villi as the undifferentiated cytotrophoblasts replenish the external 

fused syncytiotrophoblast layer and differentiate into extravillous trophoblasts, which are 

known to play key roles in driving maternal spiral artery remodeling and communicating 

with maternal cells throughout the pregnancy. B) The placenta acts as a semi-permeable 

membrane, fulfilling its primary function of extracting nutrients and oxygen from the 

maternal blood supply and permitting the return of waste. Apoptosis of the 
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syncyctiotrophoblasts results in apoptotic bodies containing fetal genetic material to be 

returned to the maternal circulation as “cell-free DNA”. There is also a small amount of 

transfer of fetal cells to the maternal circulation as well as maternal cells to the fetus, known 

as microchimerism. C) Key crosstalk between fetus and mother involves several immune 

cells. Maternal APCs are trapped in decidua due to lack of lymphatic vessels, which 

prevents activation of maternal T cells and destruction of the fetus. Decidual macrophages 

and decidual NK cells are key regulatory cells at the interface. CD4+ T cell proliferation is 

downregulated and activated CD8+ T cells undergo apoptosis due to the presence of soluble 

non-classical MHC class I HLA-G, and regulatory T cells (Tregs) play a key role in 

establishing feto-maternal tolerance at the placental interface as well.

Rendell et al. Page 25

OBM Transplant. Author manuscript; available in PMC 2020 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rendell et al. Page 26

Table 1

Summary of HLA expression, immune cells, and cytokines.

HLA

Class I (fetus) HLA-C, HLA-E, HLA-F, HLA-G

Class II (fetus) None

Cells

Regulatory T cells High

Effector T cells Low
1

CD8+ cytotoxic T cells Low
1

NK cells High

Macrophages High

Cytokines

IL-10 High

TGF-3 High

VEGF High

IDO High

MMP9 High

MIP High

GM-CSF High

Fas-L High

TRAIL High

1
Increase in third trimester [36, 37]. MMP9: matrix metallopeptidase 9.
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Table 2

Summary of maternal hormone, immune cell, and cytokine changes during pregnancy.

First Trimester Second Trimester Third Trimester

Hormones

Estrogens Low Increasing High

Progesterone Low Increasing High

HCG High Decreasing Low

Immune Cell Populations vs Postpartum Profile

CD4+ and CD8+ T cells Low Low Low

Th Cells Low Low Low

B Cells Normal Normal Low

NK cells High Decreasing Low

pDCs and mDCs High High High

Cytokine Levels vs Postpartum Levels

TNF-α High High High

G-CSF High High High

IL-15 High High High

IFN-γ Normal Low Low

VEGF Low Low Low

MCP-1 Low Low Low

Eotaxin Low Low Low

IL-2 High Normal Normal
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