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Abstract: Background: Chemopreventive agent (CPA) treatment is one of the main preventive
options for lung cancer. However, few studies have been done on pharmacodynamic biomarkers
of known CPAs for lung cancer. Materials and methods: In this study, we treated mouse models of
lung squamous cell carcinoma with three different CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor:
XL-147 and glucocorticoid: Budesonide) and examined circulating exosomal miRNAs in the plasma
of each mouse before and after treatment. Results: Compared to baselines, we found differentially
expressed exosomal miRNAs after AZD6244 treatment (n = 8, FDR < 0.05; n = 55, raw
p-values < 0.05), after XL-147 treatment (n = 4, FDR < 0.05; n = 26, raw p-values < 0.05) and after
Budesonide treatment (n = 1, FDR < 0.05; n = 36, raw p-values < 0.05). In co-expression analysis,
we found that modules of exosomal miRNAs reacted to CPA treatments differently. By variable
selection, we identified 11, 9 and nine exosomal miRNAs as predictors for AZD6244, XL-147
and Budesonide treatment, respectively. Integrating all the results, we highlighted 4 miRNAs
(mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) as the key for
AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment, and mmu-miR-125a-5p
and mmu-miR-16-5p as key for Budesonide treatment. Conclusions: This is the first study to use
circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.

Keywords: exosomal miRNAs; pharmacodynamic biomarkers; chemopreventive agent; lung
squamous cell carcinoma

1. Introduction

Lung cancer continues to be the primary cause of cancer death in the U.S. and worldwide [1].
Chemopreventive agent (CPA) treatment is one of the main options for lung cancer prevention.
The pharmacodynamic biomarkers of CPA treatments for lung cancers have been attracting
the attention of scientists. Although some progress has been made, there is an urgent need for
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effective chemopreventive interventions and noninvasive methods of measuring chemopreventive
efficacy (biomarkers) to eventually reduce lung cancer mortality. In this project, we aimed to examine
the use of circulating exosomal microRNAs (miRNAs) as biomarkers to reflect the effect of CPAs in
animal models of squamous cell carcinoma (SCC) of the lung.

miRNAs are small non-coding RNA molecules of 19–30 nucleotides in length that target
protein-coding mRNA genes; miRNAs can inhibit gene expression by binding to complementary
regions of mRNA and either block translation or degrade mRNA through the Argonaut complex [2,3].
Due to their influence on multiple genes involved in processes such as cell differentiation, development,
cell death and homeostasis and fine-tuning the regulation of these pathways, cellular miRNA regulation
has been implicated in malignant transformation. Subsequently, a set of miRNAs have been identified
which may have a tumor suppressive role and could be useful in regressing tumors [4,5].

Extracellular vesicles such as exosomes and micro-vesicles are present in multiple biological
fluids [6]. Exosomes are small (30–100 nm) membrane vesicles of endocytic origin that are released into
the extracellular environment through fusion of multivesicular bodies with the plasma membrane [7].
Many cells, including tumor cells [8], have the capacity to release exosomes. On the one hand,
these exosomes may enter the blood stream where their contents can be examined for diagnostic
and prognostic applications. On the other hand, the transport of RNAs from tumor cells to neighboring
cells and distant sites may have significant effects on tumorigenesis and metastasis. Tumor-derived
exosomes play a role in transporting functional mRNA into recipient cells, leading to glioma cell
proliferation, tumor growth and metastasis [9]. Release of let-7 miRNA via exosomes can deliver
oncogenic signals and promote metastasis [10]. Collectively, these studies demonstrate critical
role of exosomal miRNAs in cancer etiology and suggest exosomal miRNA as cancer diagnostic
and prognostic markers.

Tumor-derived exosomes are detectable in the serum and plasma of patients with various
tumor types [9,11–13]. For example, the circulating levels of tumor exosomes, exosomal small
RNA and specific exosomal miRNAs in patients with and without lung adenocarcinoma were
examined as biomarkers for diagnosis and prognosis in patients with adenocarcinoma of the lung [12].
Differences in exosomal miRNA levels were observed between lung cancer patients and controls
and a significant similarity between the circulating exosomal miRNA and the tumor-derived
miRNA patterns [12]. Thus, circulating exosomal miRNA may provide a powerful tool for noninvasive
diagnosis of lung cancer and be particularly relevant to chemoprevention.

The aim of this study is to identify the circulating exosomal miRNAs as pharmacodynamic
biomarkers of CPAs in mouse models of lung squamous cell carcinoma. To achieve the aim, we used
a mouse lung SCC model by painting inbred strains of mice with N-nitroso-tris-chloroethylurea
(NTCU) as previously described [14]. We treated the mice with three known CPAs (a MEK
inhibitor AZD6244 [15], a PI3K inhibitor XL-147 [16] and a glucocorticoid Budesonide [17]).
With the exosomal miRNA-seq data, we applied comprehensive methods to analyze the circulating
exosomal miRNA change in each mouse before and after treatment. The results will facilitate
understanding the complex chemopreventive mechanisms for lung cancer and applying specific
exosomal miRNA signatures to select an appropriate chemopreventive regimen to prevent lung cancer
and to regress the benign lesions.

2. Results

2.1. General Characteristics of Exosomal miRNA-seq Data

Figure 1 and Table 1 showed the pipeline and details of this study design. For each
exosomal miRNA library, we obtained an average of 10,089,414 raw reads (10,089,414 ± 2,357,990).
Approximately 50% raw reads (5 million reads) were mapped to known miRNA. We further
grouped the exosomal miRNA sequence data into different groups and found no obvious sequencing
read counts difference between control and treatment groups. For further analysis, we excluded
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those miRNAs with log2 transformed read counts <3. From the 72 exosomal miRNA sequencing
libraries, we detected 207 miRNAs with log2 transformed read counts >3. The five most
abundant miRNAs included mmu-miR-128-3p, mmu-miR-148a-3p, mmu-miR-99a-5p, mmu-let-7i-5p
and mmu-let-7b-5p (log2 transformed read counts were 18.0, 17.2, 16.1, 15.3 and 15.1, respectively,
and Table S1).
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Figure 1. Flowchart of the experimental design. Among 36 mice tested in the study, except for 6 mice
in absolute control group, the other 30 mice were painted with NTCU (N-nitroso-tris-chloroethylurea)
for two weeks. The 30 mice with NTCU painting were randomly divided into five groups. Plasma from
each mouse was collected before and 4 weeks after agent-specific treatment. Exosomal miRNAs
from plasma were isolated and sequenced. Comprehensive analysis was performed to find
the key exosomal miRNAs as novel pharmacodynamic biomarkers for cancer chemopreventive
agent early stage treatments in chemically induced mouse model of lung squamous cell carcinoma.
(EaA: early treatment after AZD6244; EaAB: early treatment after absolute control; EaB: early treatment
after budesonide; EaD: early treatment after diet control; EaG: early treatment after early gavage control;
EaX: early treatment after XL-147; EbA: early treatment before AZD6244; EbAB: early treatment before
absolute control; EbB: early treatment before budesonide; EbD: early treatment before diet control;
EbG: early treatment before early gavage control; EbX: early treatment before XL-147).

2.2. Differentially Expressed (DE) Exosomal miRNAs by CPA Treatments

Based on the high stringent p-values after adjustment by a false-discovery-rate (FDR) based
multiple-test correction (FDR < 0.05), eight exosomal miRNAs were differentially expressed after AZD6244
treatment of which four exosomal miRNAs were down-regulated and four exosomal miRNAs were
up-regulated (Table 2). At the same stringent differential expression criterion, only four exosomal
miRNAs were differentially expressed after XL-147 treatment (all up-regulated; Table 2) and one exosomal
miRNAs were differentially expressed after Budesonide treatment (up-regulated; Table 2). However, when
the criterion was relaxed to raw p-value < 0.05, 55 (AZD6244 treatment), 26 (XL-147 treatment)
and 36 (Budesonide treatment) exosomal miRNAs were differentially expressed (Tables S2–S4 and Figure 2).
In the comparison among these nominal DE exosomal miRNAs, 16 miRNAs were overlapped between
AZD6244 and XL-147 treatments and their fold change directions were the same. Between AZD6244
and Budesonide treatments, 13 miRNAs were overlapped, and the fold change directions were the same.
However, the fold changes after Budesonide treatment were relatively small (absolute log2 fold change less
than 1). There were no overlapped miRNAs between XL-147 and Budesonide treatments.
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Table 1. Groups of mice with different chemopreventive agent treatments.

Mouse NTCU Number of Mice/Group Treated Groups Group Symbol (Before Treatment) Group Symbol (After Treatment)

NIH Swiss − 6 AIN 76A diet EbAB EaAB
NIH Swiss + 6 AIN 76A diet EbD EaD
NIH Swiss + 6 AIN 76A diet-gavage control EbG EaG
NIH Swiss + 6 Budesonide (1.5 mg/kg diet) EbB EaB
NIH Swiss + 6 AZD6244 (40 mg/kg body weight-gavage) EbA EaA
NIH Swiss + 6 XL-147 (100 mg/kg body weight-gavage) EbX EaX

Table 2. Differentially expressed exosomal miRNAs affected by cancer chemopreventive agent treatment.

Differentially Expressed Exosomal miRNAs Affected by AZD6244 Treatment

Rank miRNA ID Mean EbA (log2) Mean EaA (log2) p-Value Fold Change (log2) False Discovery Rate (B&H)

1 mmu-miR-149-5p 8.586 6.707 0 −1.879 0.012
2 mmu-miR-24-2-5p 5.737 7.2 0 1.463 0.012
3 mmu-miR-27a-3p 9.493 10.636 0 1.143 0.012
4 mmu-miR-215-5p 9.917 11.846 0 1.929 0.023
5 mmu-miR-543-3p 12.329 11.283 0.001 −1.046 0.035
6 mmu-miR-92b-3p 11.735 11.56 0.001 −0.175 0.041
7 mmu-miR-192-5p 10.437 11.537 0.002 1.1 0.041
8 mmu-miR-744-5p 13.204 12.14 0.002 −1.064 0.041

Differentially expressed exosomal miRNAs affected by XL-147 treatment

Rank miRNA ID Mean EbX (log2) Mean EaX (log2) p-Value Fold Change (log2) False Discovery Rate (B&H)
1 mmu-miR-224-5p 4.676 6.227 0 1.551 0.023
2 mmu-miR-184-3p 9.728 13.554 0 3.826 0.025
3 mmu-miR-676-3p 4.068 5.608 0 1.539 0.031
4 mmu-miR-1198-5p 7.605 8.266 0.001 0.661 0.042

Differentially expressed exosomal miRNAs affected by Budesonide treatment

Rank miRNA ID Mean EbB (log2) Mean EaB (log2) p-Value Fold Change (log2) False Discovery Rate (B&H)
1 mmu-miR-378c 7.148 7.725 0 0.576 0.013

log2(Fold Change) = log2(mean read counts after treatment) − log2(mean read counts before treatment).
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were consistent with the differential expression analysis. The most shared DE miRNAs (total n = 16) 
between AZD6244 and XL-147 treatments were assigned into yellow (n = 8) module. Meanwhile, MEs 
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Similarly, the pink module was only up-regulated in the mice of XL-147 treatment. Responding to 
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Figure 2. Exosomal miRNA expression affected by chemopreventive agent treatments. (A) Heat map
showing differentially expressed exosomal miRNA affected by AZD6244 treatment. (B) Heat map
showing differentially expressed exosomal miRNA affected by Budesonide treatment. (C) Heat map
showing differentially expressed exosomal miRNA affected by XL-147 treatment. Expression values
are shown as log2 transformed read counts and the criterion is raw p-value < 0.05. The significant
differentially expressed miRNAs shown in Table 2 (FDR < 0.05) are labeled by arrows. Low expression
is indicated by blue, and high expression is indicated by red.

2.3. Exosomal miRNAs Co-expression Network Modules

From the heatmap of exosomal miRNA expression levels, we observed multiple patterns of
co-expression across the samples. Therefore, we applied Weighted Gene Co-expression Network
Analysis (WGCNA) to cluster the exosomal miRNAs into modules based on their paired correlation.
Figure 3 showed a total of nine modules that were labeled by different colors (exosomal miRNAs in
modules: black, 12; blue, 37; brown, 34; green, 19; grey, 4; pink, 11; red, 18; turquoise, 52; yellow, 20).
To further analyze the effect of each CPA on different module, module eigengenes (MEs) for each
sample were calculated. ME was the first principal component calculated via PCA to represent the all
miRNAs in a module. Figure 4 showed the ME profiles of each sample. In Figure 4, yellow module
exhibited common patterns of change in both AZD6244 treated and XL-147 treated mice. The results
were consistent with the differential expression analysis. The most shared DE miRNAs (total n = 16)
between AZD6244 and XL-147 treatments were assigned into yellow (n = 8) module. Meanwhile, MEs
of red module were up-regulated in all AZD6244 treated mice, suggesting that miRNAs in the red
module might be involved in the biological function that was specific to AZD6244 treatment. Similarly,
the pink module was only up-regulated in the mice of XL-147 treatment. Responding to Budesonide
treatment, turquoise module was unique and down-regulated in each treated mouse.
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of the corresponding module eigengene and spontaneous lung cancer susceptibility, with the p-value
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Figure 4. Module-sample relationships. Each bar corresponded to a module eigengene in a sample.
Module eigengenes (MEs) were defined as the first principal component calculated using PCA,
which can summarize modules’ behavior. Yellow module was up-regulated in all the mice in AZD6244
and XL-147 treatment groups. Red module was up-regulated in all the mice in AZD6244 treatment
group. Pink module was up-regulated in all the mice in XL-147 treatment group. Turquoise module
got down-regulated in all the mice in Budesonide treatment group.



Cancers 2019, 11, 477 7 of 17

2.4. Signatures of Exosomal miRNA Expression Change after CPA Treatments

In co-expression network analysis, several modules showed specific response to different
CPA treatments, like red module to AZD6244 treatment, pink module to XL-147 treatment
and turquoise module to Budesonide treatment. Least absolute shrinkage and selection operator
(Lasso) method was performed to determine whether the subset of exosomal miRNAs could be used
to predict particular CPA treatment. Using the fold change of each exosomal miRNA between before-
and after- treatment, we identified 11, 9 and 9 exosomal miRNAs as signatures for predicting AZD6244,
XL-147 and Budesonide treatment, respectively (Table S5). Then we combined the results from
differential expression analysis, co-expression analysis and signature selection analysis. We screened
the exosomal miRNAs to find key ones with following criterions: (1) Differentially expressed after
CPA treatment (raw p-value < 0.05); (2) Be included in the co-expression modules responding to specific
CPA treatment (red module for AZD6244 treatment, pink module for XL-147 treatment and turquoise
module for Budesonide treatment); (3) Be selected as predictors for specific CPA treatment by lasso
method. As a result, we detected that 4 DE exosomal miRNAs (mmu-miR-215-5p, mmu-miR-204-5p,
mmu-miR-708-3p and mmu-miR-1298-5p) distinguished the AZD6244 treatment group. For XL-147
treatment, we found one DE exosomal miRNA (mmu-miR-23a-3p) in pink module as a part of signature.
Meanwhile, two DE exosomal miRNAs (mmu-miR-125a-5p and mmu-miR-16-5p) in turquoise module
were considered as predictors for Budesonide treatment.

2.5. Pathway Enrichment Analysis

To further understand the function of exosomal miRNAs affected by CPA treatments, we used
mirPath to decipher these microRNA functions. The predicted target genes of four key exosomal
miRNAs for AZD6244 treatment were mostly enriched in Estrogen signaling pathway (mmu04915)
(Table 3). In this pathway, several predicted target genes, like Shc1, Sos1 and Atf2, were also
the essential genes of MAPK/ERK signaling pathway that was inhibited by AZD6244 treatment.
For XL-147 treatment, since there was only one key miRNA, we only screened the potential target genes
of mmu-miR-23a-3p. Pik3r3 was predicted to be the target of mmu-miR-23a-3p. Meanwhile, another
important gene in Pi3k signaling pathway, Pik3c2a, was proved to be regulated by mmu-miR-23a-3p
by immunoprecipitation experiment [18]. For Budesonide treatment, the most enriched pathway of
predicted target genes was Galactose metabolism (mmu00052) that was closely related to glucocorticoid
treatment (Table 4).

Table 3. Enrichment pathways of predicted target genes of four key exosomal miRNAs for
AZD6244 treatment.

KEGG Pathway Adjusted p-Value #Genes #miRNAs

Estrogen signaling pathway 4.30 × 10−5 12 3
Adrenergic signaling in cardiomyocytes 0.018869 15 3

Amphetamine addiction 0.04725 8 2
Lysine degradation 0.04725 4 3

AMPK signaling pathway 0.04725 12 4
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Table 4. Enrichment pathways of predicted target genes of two key exosomal miRNAs for
Budesonide treatment.

KEGG Pathway Adjusted p-Value #Genes #miRNAs

Galactose metabolism 0.005 2 1
Mucin type O-Glycan biosynthesis 0.005 3 2

Signaling pathways regulating pluripotency of stem cells 0.019 15 2
Glycosphingolipid biosynthesis - ganglio series 0.032 3 1

Protein processing in endoplasmic reticulum 0.032 16 2
Dorso-ventral axis formation 0.032 6 2

Other glycan degradation 0.049 1 1

2.6. Conservation Score Analysis

We compared the key exosomal miRNAs found above with the candidate homologs in
human beings. The sequences of five key mature miRNAs (mmu-miR-204-5p, mmu-miR-708-3p,
mmu-miR-23a-3p, mmu-miR-125a-5p and mmu-miR-16-5p) were same between mouse and human
beings. For mmu-miR-215-5p and mmu-miR-1298-5p, only one nucleic acid was mismatched between
the homologs in mouse and human beings.

3. Discussion

To our best knowledge, this is the first study to determine the effects on exosomal
miRNA expression of three known CPAs in mouse models of lung SCC and develop circulating
exosomal microRNAs as biomarkers for specific CPA treatment. We applied a series of analytical
approaches to select the most promising exosomal miRNAs which were detectable, representative
and distinguished for each agent. At least, when the threshold was relaxed to raw p-value < 0.05,
the differential expressions of key miRNAs were significant.

In differential expression analysis, 16 miRNAs (raw p-value < 0.05) were shared between DE
miRNA lists of AZD6244 and XL-147 treatment and most of these miRNAs (15 of 16 miRNAs) were
up-regulated after agents’ treatment. Interestingly, a study has shown that MAPK/ERK (inhibited
by AZD6244) and PI3K (inhibited by XL-147) signaling pathways had cross-talk with each other [19].
Multiple downstream genes, like Bcl-2-associated death promoter (BAD) and glycogen synthase kinase
3 (GSK3) were regulated by both MAPK/ERK and PI3K signaling pathways [19]. Turke et al. also found
that MEK inhibition led to PI3K/AKT activation via ERBB receptors [20]. Meanwhile, 13 miRNAs were
found to be differentially expressed for both AZD6244 and Budesonide treatment and the regulation
directions were same. Budesonide is a glucocorticoid used as an anti-inflammatory agent and one of
mechanisms that glucocorticoid exert anti-inflammatory effects is to inhibit MAPK/ERK pathway [21,
22]. However, although there were evidences showing that glucocorticoid was associated with PI3K
pathway [23–25], we did not find overlapping DE miRNAs between XL-147 and Budesonide treatment.
These results suggested unique co-expressed exosomal miRNA networks when mice were treated by
different CPAs. It was supported by our WGCNA results. In cluster analysis, yellow module was
up-regulated in each mouse after treated with AZD6244 or XL-147 and contained eight of 16 shared
DE miRNAs between AZD6244 and XL-147 treatment. As expected, the target genes of these eight
miRNAs were mostly enriched in Thyroid hormone signaling pathway (mmu04919) that included
the major parts of MAPK/ERK and PI3K signaling pathways.

However, when we tried to analyze the functions of these modules, we met a challenge that
each module included tens of miRNAs and many miRNAs had hundreds of predict target genes.
Either the pathway analysis or function analysis, like gene ontology terms, generated too many
false positive results. To address this issue, we applied a feature selection method, Lasso, to further
determine the exosomal miRNAs distinguishing different CPA treatments. Then, we compared
the selected features with DE list and WGCNA results. We found that 4 DE exosomal miRNAs
(mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p and mmu-miR-1298-5p) in red module
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were selected to be the predictors for AZD6244 treatment. miR-215 was reported to be a tumor
suppressor in human non-small cell lung cancer by targeting ZEB2 [26] that could be regulated
via MAPK/ERK pathway [27]. For miR-204-5p, Ye et al. found that in cancers of respiratory
system miR-204-5p level was significantly decreased in lung cancer tissues compared with normal
tissues (both p < 0.05) [28] via a comprehensive exploration based on RNA-seq high-throughput
data and bioinformatics. miR-204 might also inhibit STAT3 and favor the MAPK signaling pathway
in cutaneous squamous cell carcinoma progression [29]; miR-708-3p was found to inhibit breast
cancer cell epithelial-to-mesenchymal transition (EMT) by directly binding to ZEB1 [30] which
was also the downstream gene of MAPK/ERK pathway [31]; miR-1298 was also found to inhibit
mutant KRAS-driven tumor growth [32]. MAPK signaling was downstream pathway of KRAS
activation. These evidences supported our results for AZD6244 treatment. AZD6244 was a CPA
and the four exosomal miRNAs which were tumor suppressors were up-regulated after treatment.
The target genes of these four exosomal miRNAs were also associated with MAPK/ERK pathway.

For Budesonide treatment, mmu-miR-125a-5p and mmu-miR-16-5p were down-regulated.
The previous studies showed that miR-125a-5p and miR-16-5p would induce apoptosis via
activating p53 [33,34]. Glucocorticoid receptor activation might inhibit p53-induced apoptosis [35,36].
These results agreed with the negative association between mmu-miR-125a-5p/mmu-miR-16-5p
and Budesonide (Glucocorticoid) treatment. However, the results were puzzled for XL-147. XL-147
was also a CPA for lung cancer and mmu-miR-23a-3p was overexpressed after XL-147 treatment.
But miR-23a-3p was up-regulated in non–small cell lung cancer [37] and promote tumor growth
and suppress apoptosis in gastric cancer [38]. A further investigation is required to clarify
the relationship between XL-147 and mmu-miR-23a-3p.

In pathway analysis, the target genes of the key exosomal miRNAs were found to be enriched in
several pathways. And the results were consistent with the findings of previous studies. For the top
three enriched pathways of AZD6244 treatment, there was a strong cross-talk effect between MEK
and estrogen receptor signaling pathway [39] and the AZD6244 treatment was verified to reverse
antiestrogen resistance in ovarian cancer [40,41]. Although there was no study showing the AZD6244
treatment effect on adrenergic signaling in cardiomyocytes, another MEK inhibitor, TAK733, was just
reported to attenuates adrenergic receptor-mediated cardiomyocyte hypertrophy via inhibiting
ErkThr188 phosphorylation [42]. The AMP-activated protein kinase (AMPK) could be activated by
the combined usage of the MEK inhibitor selumetinib (AZD6244) and the AKT inhibitor MK2206 [43].
For the top three enriched pathways of Budesonide treatment, Budesonide treatment would induce
upregulation of Mucin 1 and Mucin 4 [44] which carry up to five and six O-glycans, respectively [45].
Glucocorticoid treatment would also affect galactose metabolism [46] and enhance induced pluripotent
stem cell reprogramming [47]. Nevertheless, we realized that the limited number of miRNAs in
enrichment analysis may generate false positive interpretation. Future analysis is needed to validate
the finding.

There were some limitations of our study. First, since our research was a pilot study using
exosomal miRNAs as novel pharmacodynamic biomarkers for cancer chemopreventive agent, we could
not find similar studies in human beings. Second, the function studies on these key exosomal
miRNAs were mainly using human cells and xenograft mice model. To demonstrate the potential
function of these key exosomal miRNAs, we screened these miRNAs for the conservation scores using
miRviewer [48]. All the scores in mouse were over 0.8. It suggested that these exosomal miRNAs might
have similar function in mouse and human. The chemopreventive agents used in this study were
not specific for the mouse. The chemopreventive agents used in this study were not specific for
the mouse. Edmund Poon et al. [49] showed that AZD6244 could inhibit the MEK pathway in CT26
mouse syngeneic model and Hung Huynh et al. [50] reported the same function of AZD6244 in human
tumor cell lines and Xenograft model. Benedikt Bosbach et al. [51] treated tumor lysates from KitV558∆/+

mice with XL147 for 4 h and found decreased PI3K signaling with reduced pAKT, pS6, and p4EBP1.
Similar effects of XL147 were also identified in human tumor cell lines and Xenograft model [16].
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For budesonide, it has been clinically used in the treatment of skin and respiratory disease [52,53]
and S Edsbäcker et al. found that rates and routes of budesonide metabolism were most similar in
mouse and human livers [54].

In summary, this is the first study to use exosomal miRNAs as pharmacodynamic biomarkers for
three CPAs (AZD6244, XL-147 and Budesonide). In this study, we used lung SCC mice model and found
that differentially expressed exosomal miRNAs after CPA treatments were partially co-expressed.
We also found that several co-expressed modules were specifically responding to unique CPA treatment.
By further feature selection, we highlighted mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p
and mmu-miR-1298-5p as the key exosomal miRNAs for AZD6244 treatment, mmu-miR-23a-3p as key
for XL-147 treatment and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment.
These results may facilitate understanding the complex chemopreventive mechanisms for lung cancer.

4. Materials and Methods

4.1. Reagents and Animals

Animal procedures were in accordance with the Medical College of Wisconsin Institutional Animal
Care and Use Committee. In order to establish the lung SCC model, N-nitroso-tris-chloroethylurea (NTCU)
was used. The NTCU was purchased from Toronto Research Chemicals, Inc. (Toronto, ON, Canada).
Eight-week-old NIH Swiss mice received NTCU treatment through repeated skin painting as described
previously in our publications [14,55–58]. Specifically, NTCU treatment was started when mice were
~8 weeks of age. The dorsal skin of each mouse was shaved prior to NTCU treatment. The NTCU
was applied to the shaved dorsal skin of each mouse in 100-microliter (µL) drops of 0.04 M NTCU
with a Gilson 200 µL micro-pipette. This process was repeated twice a week with a 3.5-day interval
during the whole study (6 weeks). The body weight of each mouse was taken weekly for the duration
of treatments.

One week after the first dose of NTCU treatment, mice were divided into the various groups
listed in Table 1. The mice were treated with the indicated agent beginning two weeks after the first
dose of NTCU and the treatments continued for four consecutive weeks. The treatment groups
included budesonide, AZD6244, and XL-147. The dosage for budesonide was 1.5 mg/kg in diet.
The dosage for AZD6244 was 40 mg/kg body weight. The dose for XL-147 was 100 mg/kg body
weight. AZD6244 and XL-147 were freshly prepared in Mazola corn oil. Mice were treated once a day,
5 days a week via oral gavage with an 18-gauge gavage needle, 0.2 mL per mouse. Gavage Control
animals were treated with 0.2 mL corn oil throughout the study. Diet control mice were feed with
AIN-76A Purified Diet #100000 (Dyets Inc., Bethlechem, PA, USA) for the duration of the study, with
or without oral gavage with vehicle. Mice were euthanized by CO2 asphyxiation at the indicated
time points. Plasma was collected by retro-orbital bleeding before CPAs’ treatment as “pre-treated”
or after CPAs’ treatment as “after-treated” plasma. Plasma was stored in a −80 ◦C freezer until use.
The detailed time points are showed in Figure 1.

4.2. Exosome Precipitation and RNA Isolation

After collecting all the plasma samples, we thawed plasma and centrifuged at 3000× g for 15 min
to remove remaining cells and cell debris. We then mixed 120 µL plasma with appropriate volume
of ExoQuick reagents for overnight at 4 ◦C. The mixture was centrifuged at 1500× g for 30 min.
The exosome pellet was dissolved in 25 µL 1× PBS (pipetting up and down multiple times, to make
sure the pellet was suspended completely). The 25 µL of exosome suspension was mixed with 700 µL
QIAzol lysis buffer, mixed well by pipetting and vertexing until there were no more white clumps.
RNA was extracted according to the manufacturer’s standard protocol with DNase I treatment on
column (miRNeasy Micro Kit, QIAGEN, Valencia, CA, USA). The extracted RNA was eluted with 15 µL
of RNase-free water. The quantity and quality of the RNAs were checked by Agilent Bioanalyzer 2100
with a Small RNA Chip (Agilent Technologies, Santa Clara, CA, USA).
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4.3. RNA Library Preparation and Sequencing

The RNA libraries were prepared following the instructions of the standard protocol [59]
(NEBNext Multiplex Small RNA Library Prep Set, NEB, Ipswich, MA, USA). For each library,
about 3–6 µL of miRNA was used as input RNA. Each library was prepared with a unique indexed
primer (Index set1 and set2, NEB) and amplified for 15 cycles. The amplified libraries (DNA) were
purified by using 1.8× AMPure beads, diluted into 27 µL ddH20, and qualified by Agilent High
Sensitivity DNA Chips (Agilent Technologies, Santa Clara, CA, USA).

A total of 18–24 RNA libraries were pooled with equal molar concentration of the target band.
Pooled libraries were resolved on 5% Mini-Protean Precast Gels (Bio-Rad, Hercules, CA, USA).
DNA fragments from 146–164 bp (the length of miRNA inserts plus the 3′ and 5′ adaptors)
were recovered in 12 µL of elution buffer (QIAGEN, Valencia, CA, USA). The indexed library pools
were checked for quality and quantified by Agilent High Sensitivity DNA Chip; 10 µL of eight library
pools (one flow cell) at a final concentration of 2 nM were sent to the Core Facility at Medical College
of Wisconsin for 50 bp single read sequencing using Illumina HiSeq2000 DNA sequence analyzer
(Illumina, Inc., San Diego, CA, USA).

4.4. Sequencing Data Analysis

4.4.1. Differential Expression Analysis

The RNA-seq data (fastq files) were mapped by using DNASTAR SeqMan against the mouse
miRNA sequences downloaded from miRBase 21 (http://www.mirbase.org/) [60–64]. The sequence
counts that mapped to miRNAs were normalized as read count per million (read counts of
an individual miRNA/sum of read counts of all mappable miRNAs × 106). The miRNAs with log2

transformed read counts <3 were excluded. Since we collected the “pre-treated” and “after-treated”
plasma from each mouse, paired t-test was used to detect if there were significantly differential
expression levels of exosomal miRNAs after the CPA treatments. The Benjamini-Hochberg procedure
was used to calculate the false discovery rate.

4.4.2. Weighted Gene Co-expression Network Analysis

In differential expression analysis, we found that exosomal miRNAs exhibit multiple patterns of
co-expression across the samples. We then used WGCNA R package to cluster exosomal miRNAs into
modules with correlated patterns of variation [65]. First, we calculated Pearson correlation coefficients
for all miRNA–miRNA comparisons across mouse plasma samples. Then, the matrix of correlations
was converted to an adjacency matrix of connection strengths. Based on the adjacency matrix, modules
were defined as sets of miRNAs with high topological overlap using the methods previously outlined
by Zhang and Horvath [65,66]. Module eigengenes (MEs) were defined as the first principal component
calculated using principal component analysis (PCA), which could summarize modules’ behavior.

4.4.3. Least Absolute Shrinkage and Selection Operator

Glmnet R package [67] was used to identify the miRNA signature for CPA treatments. Glmnet was
a package that fits a generalized linear model via penalized maximum likelihood [67]. The basic concept
of generalized linear model was to assign a coefficient (β) to each independent variable (x) to predict
the dependent variable (y). In our case, x was the fold change of each miRNA after CPA treatments
and y was binary trait for each CPA treatment. For example, when we select signatures for AZD6244
treatment, the 6 AZD6244 treated mice were labelled as “y = 1” and the other 30 mice were labelled
as “y = 0”. We used least absolute shrinkage and selection operator (Lasso) [68] regression implemented
in Glmnet package to generate the prediction signature. We used the Glmnet package to randomly
divide the sample dataset into 10 folds and performed cross-validation to generate the optimal λ for
the prediction model which gave minimum mean cross-validated error.

http://www.mirbase.org/
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4.4.4. Molecular Pathway Analysis

For miRNA-based molecular pathway analysis of important chemoprevention associated
miRNAs, we used DIANA-mirPath V.3 [69], a web-based application to perform an enrichment
analysis of the predicted target mouse genes. The combinatorial effect of co-expressed miRNAs in
the modulation of a given pathway were also addressed by DIANA-mirPath V.3 through
the simultaneous analysis of multiple miRNAs. miRNA target genes implicated in a given pathway
were graphically annotated on the pathway map providing a direct overview of the miRNA modulated
parts, facilitating the interpretation and presentation of miRNA-dependent regulation of biological
pathways. After supplying DIANA-mirPath V.3 with a list of miRNA names that we were interested in,
it retrieved those miRNA target genes by using the miRNA target prediction programs: DIANA-microT
V5.0 [70–72]. DIANA-mirPath V.3 performed an enrichment analysis of the input datasets by
comparing each set of miRNA-target genes to all available biological pathways provided by the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [73]. All the default parameters were applied
and adjusted p-value (FDR) less than 0.05 was used as threshold.

4.4.5. Conservation Analysis

To compare the key exosomal miRNAs we found in mouse model with the homologous ones in
human beings. We screened these miRNAs for the conservation scores using miRviewer [48].

5. Conclusions

In this study, we treated mouse models of lung squamous cell carcinoma with three different
CPAs (MEK inhibitor: AZD6244, PI-3K inhibitor: XL-147 and glucocorticoid: Budesonide) and screened
the expression level changes of exosomal miRNAs responding to CPAs treatment. Using comprehensive
analysis methods, we highlighted four miRNAs (mmu-miR-215-5p, mmu-miR-204-5p, mmu-miR-708-3p
and mmu-miR-1298-5p) as the key for AZD6244 treatment, mmu-miR-23a-3p as key for XL-147 treatment,
and mmu-miR-125a-5p and mmu-miR-16-5p as key for Budesonide treatment. This is the first study to
use circulating exosomal miRNAs as pharmacodynamic biomarkers for CPA treatment in lung cancer.
Our results not only reveal key exosomal miRNAs as predictive biomarkers for CPAs but also facilitate
understanding the complex chemopreventive mechanisms for lung cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/4/
477/s1, Table S1: Mapped reads of the top 100 miRNAs (log2), Table S2: Differentially expressed exosomal
miRNAs affected by AZD6244 treatment, Table S3: Differentially expressed exosomal miRNAs affected by XL-147
treatment, Table S4: Differentially expressed exosomal miRNAs affected by Budesonide treatment, Table S5:
Selected predictors for AZD6244, Budesonide and XL-147 treatment.
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Abbreviations and Definitions

CPA Chemopreventive agent
DE Differential expression
EaA Early treatment after AZD6244
EaAB Early treatment after absolute control
EaB Early treatment after budesonide
EaD Early treatment after diet control
EaG Early treatment after early gavage control
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EaX Early treatment after XL-147
EbA Early treatment before AZD6244
EbAB Early treatment before absolute control
EbB Early treatment before budesonide
EbD Early treatment before diet control
EbG Early treatment before early gavage control
EbX Early treatment before XL-147
FDR False discovery rate
Lasso Least absolute shrinkage and selection operator
MEK Mitogen-activated protein kinase kinase
miRNA MicroRNA
mRNA Messenger RNA
NTCU N-nitroso-tris-chloroethylurea
PCA Principal component analysis
PI3K Phosphoinositide 3-kinase
Read Count A term to represent the number of the RNA molecules in the RNA-sequencing libraries.
SCC Squamous cell carcinoma
WGCNA Weighted Gene Co-expression Network Analysis
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