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Abstract

We compared urinary levels of cytokines in patients with and without albuminuria, proteinuria, 

and kidney disease (GFR < 60 ml/min/1.73m2) after hematopoietic cell transplant (HCT). Plasma 

and urine were collected at baseline and weekly through day-100 and monthly through year-1, for 

measurement of IL-6, gp130, sIL6r, IL10, IL15, MCP1 and urine albumin to creatinine ratios 

(ACR). Cox-proportional hazards modeling examined associations between urinary cytokine 

levels and development of these renal endpoints. The association of ACR with the hazard of 

overall mortality was assessed using Cox regression.

Increasing urinary IL-6 and IL-15 were associated with an increased risk of developing 

proteinuria. Urinary MCP-1 during the first 100 days post-HCT was associated with kidney 

disease at 1 year. The degree of albuminuria at any time point in the first 100 days post-transplant 

was related to the subsequent risk of death (for ACR 30-299, HR=1.91; 95%CI:1.27-2.87; for 

ACR >300, HR=2.82; 95%CI:1.60-4.98).

After HCT, elevated urinary levels of proinflammatory cytokines are associated with development 

of albuminuria and proteinuria, suggesting early intrarenal inflammation as an important 

pathogenetic mechanism. Albuminuria and proteinuria within the first 100 days post-HCT are 

associated with decreased overall survival.
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Introduction

Acute and chronic kidney disease (CKD) are common complications in long-term survivors 

of hematopoietic cell transplant (HCT). With the indications for and the number of 

transplants increasing and patient survival improving, so, too, will the burden of CKD on the 

health care system. The cumulative incidence of CKD varies from 23-60% in adult 
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studies 1, 2, 3 to as high as 62% in children 4. Mortality rates among patients with CKD in 

this setting are significantly higher than in transplant recipients who retain normal renal 

function, even when controlled for co-morbidity 5. Additionally, the presence of proteinuria 

at transplant day 100 is a significant risk factor for mortality from all causes. Little is known 

about the pathophysiology of proteinuria or CKD in transplant survivors. Our recent work 

has identified both acute and chronic graft-vs.-host disease (GVHD) as risk factors for post-

transplant kidney disease suggesting renal inflammation in its pathogenesis2. This finding 

challenges the prevailing view that renal injury in this setting results from either radiation 

nephropathy or toxic injury from drugs.

As a measure of renal inflammation, we analyzed urinary cytokines that are produced in the 

kidney, excreted in the urine, and their detection may offer insight into pathogenesis and 

progression of renal disease. Therefore, we sought to determine if increased urinary levels of 

cytokines in patients during their first 100 days after transplant were associated with the 

development of albuminuria and proteinuria. We also wanted to determine if elevations in 

urinary cytokine levels during this early time period were associated with development of 

chronic kidney disease and ultimately mortality.

Methods

Patient Selection

Patients over the age of 2 years undergoing their first HCT during the time period 

2003-2012 were eligible to enroll in an ongoing prospective study if they met the following 

eligibility criteria: a) a baseline creatinine at screening within the limits of normal for age in 

children, <1.3 mg/dL in women, and < 1.5 mg/dL in men and/or an estimated GFR of >80 

mL/min/1.73m2 by MDRD equation; b) not currently taking angiotensin receptor blockers 

or angiotensin converting enzyme inhibitors; c) no history of diabetes at time of enrollment 

into the study; and d) consented to a protocol approved by the Institutional Review Board of 

Seattle Children's Hospital (SCH). Urinary albumin to creatinine ratios were analyzed on 

311 patients and 206 of the patients were randomly chosen for analysis of urinary cytokines.

Technique of HCT

All patients undergoing HCT received a preparative conditioning regimen followed by 

infusion of donor hematopoietic cells. The day of hematopoietic cell infusion is termed “day 

zero,” by convention. Myeloablative regimens were typically cyclophosphamide-based 

(with either total body irradiation (TBI) or targeted busulfan) for allogeneic transplants; 

autologous graft recipients received a number of different regimens. Reduced intensity 

conditioning regimens consisted of fludarabine and TBI at 2-4 Gy 6. The kidneys are not 

shielded during TBI. Allogeneic graft recipients received prophylaxis against acute GVHD 

with immunosuppressive drugs, usually cyclosporine or tacrolimus plus methotrexate or 

mycophenolate mofetil 7. Prophylaxis for infections included acyclovir to prevent herpes 

simplex virus and varicella zoster infection, trimethoprim/ sulfamethoxazole to prevent 

Pneumocystic jivecii infection, oral fluconazole or itraconazole for prophylaxis of fungal 

infection, and pre-emptive ganciclovir for cytomegalovirus disease among viremic 

patients 8-13. Prophylactic ursodiol was given routinely14.
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Specimen Collection and Analytical Methods

Urine samples were collected from patients at baseline, prior to any conditioning therapy, 

weekly through day 100, and monthly through the first year after transplant. Urine was also 

collected between the hours of 8-10 a.m., immediately placed on ice, separated into 2 mL 

aliquots and frozen at −80 degrees until time of analysis.

Blood was collected in a citrated tube between the hours of 8-10 a.m. at baseline, (prior to 

the conditioning regimen), and then weekly through day 100 post-HCT. Blood was 

centrifuged at 4 degrees Celsius for 15 minutes and plasma was aspirated and frozen 

(−80°C) in 2 mL aliquots until analysis.

Aliquots of urine and plasma were rapidly thawed and the concentrations of the following 

factors were determined using the Luminex microbead system: IL-6, gp130, sIL6r, IL10, 

IL15, and MCP1. The intra-assay and inter-assay coefficient of variation is ≤10% for these 

analytes. We chose these cytokines based on preliminary data from patients and 

hematopoietic cell donors suggesting that single nucleotide polymorphisms in genes coding 

for these cytokines were associated with the development of CKD (data not shown). Serum 

levels of C-reactive protein (CRP) were measured in those patients with overt proteinuria. 

Urinary albumin was determined using an immunoturbidimetric assay using a Cobas c 11 

analyzer in aliquots of untreated urine samples. The inter-assay coefficient of variation (CV) 

of the assay is 0.7-2.2% and intra-assay CV is 1.0-1.6%. A quantitative determination of 

urine creatinine was measured on Roche/Hitachi modular automated clinical chemistry 

analyzers. This enzymatic method is based on the conversion of creatinine with the aid of 

creatininase, creatinase, and sarcosine oxidase to glycine, formaldehyde and hydrogen 

peroxide. Catalyzed by peroxidase the liberated hydrogen peroxide reacts with 4-

aminophenazone and HTIBa to form a quinone imine chromogen. The color intensity of the 

quinone imine chromogen formed is directly proportional to the creatinine concentration in 

the reaction mixture. The inter-assay CV is 2.1-3.7% and the intra-assay CV is 0.8-1.0%.

Clinical Parameters

Clinical data included baseline patient characteristics: subject age, gender, race/ethnicity, 

indication for HCT, preparative regimen, total body irradiation, and use of busulfan or 

cyclophosphamide as part of the conditioning regimen. Primary indications for transplant 

were categorized as acute leukemia, chronic leukemia, myelodysplastic syndrome, and all 

other groups. The patient's blood pressure, medications, and temperature were recorded in 

the morning on the day samples were collected. Hypertension was defined as an elevated 

blood pressure ≥140/90 or use of antihypertensive medications. In children and adolescents 

we defined hypertension as a systolic or diastolic blood pressure >95th percentile based on 

gender, age, and height published in 200415. Severity of acute graft-versus-host disease 

(aGVHD) was categorized as grades 0-1 and grades 2-4. Presence of diabetes was recorded 

from the medical chart or use of insulin.

Cardiovascular endpoints were also recorded from the medical charts if listed or extracted 

from questionnaires related to history of myocardial infarction, angina, and/or congestive 

heart failure. Chronic kidney disease (CKD) was defined as a GFR <60 mL/min/1.73 m2 at 
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1 year post-transplant. The GFR was estimated using the MDRD equation in adults and the 

Schwartz formula in children and adolescents. The degree of albuminuria was expressed as a 

urinary albumin-to-creatinine ratio (ACR). Normal ACR was <30 mg/g creatinine; 

albuminuria was 30-299 mg/g creatinine; and proteinuria was defined as ≥ 300 mg/g 

creatinine. The adjustment variables included in each model were chosen a priori based on 

previous studies and knowledge of risk factors related to the clinical events.

As the cause of death in patients post-HCT is often multifactorial, a root cause of death was 

determined for each patient by (SH and GM) after review of the death certificates when 

available and review of the medical charts, notes and correspondence for each patient. Both 

SH and GM were blinded to urinary ACR and cytokine study results.

Statistical Methods

The association between ACR and the risk of overall mortality was examined using Cox 

regression, adjusting for severity of disease at time of transplant (categorized as low vs. 

intermediate vs. high), type of donor (categorized as matched sibling vs. non-sibling relative 

or mismatched sibling vs. unrelated vs. autologous), patient age at transplant, and baseline 

ACR, defined as the ACR value closest to but before day of HCT. In keeping with our 

previous work, ACR was restricted to day 100 and the association of this value with 

subsequent death was examined; day-100 ACR was defined as the ACR value closest to day 

100 in the window of day 80 to day 120 (if no value was available in this time, then day-100 

ACR was considered to be missing). Day-100 ACR was treated as both a continuous and 

categorical variable. When continuous, ACR was modeled as both a linear and non-linear 

variable (using a cubic spline with knots at the 5th, 25th, 50th, 75th, and 95th percentiles); 

when categorical, day-100 ACR was grouped as < 30, 30-299, or ≥ 300 mg/g creatinine. In 

addition, ACR values at any time following HCT were considered and treated as a time-

dependent covariate, both categorical and continuous as described above.

The association between cytokine levels and ACR was assessed by calculating the average 

value of all cytokine levels up to the time of the day-100 ACR for each patient. The means 

of these average values across patients were then compared among the three day-100 ACR 

groups using linear regression. In addition, a test for trend between the average cytokine 

values and ACR was performed, with the 3 ACR groups modeled as a continuous linear 

variable with integral values 1, 2, 3 for ACR groups < 30, 30-299, and ≥ 300 mg/g 

creatinine, respectively. We also modeled proteinuria as a time-to-event variable, with 

persistent proteinuria defined as the day on which the second of two consecutive ACR 

measurements exceeded 300 mg/g creatinine. Average cytokine levels up to a particular 

point in time were then modeled as time-dependent covariates to assess the association of 

cytokine level with the hazard of persistent proteinuria. The average cytokine levels were 

modeled as both linear and non-linear continuous variables as described above.

The association between cytokine levels and CKD at 1 year among patients who survived to 

one year was examined using linear regression, where the average cytokine levels through 

one year were compared among those with and those without CKD, as determined by their 

GFR at this time. These analyses were adjusted for the presence of diabetes and 

hypertension.
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The cytokines included in this study were: IL-10, IL-15, IL-6, sIL6r, gp130 and MCP1.

To assess whether urinary levels of selected cytokines were primarily a reflection of plasma 

levels, correlation coefficients and R-values were calculated between plasma and urine 

levels of the cytokines listed above in those patients with an ACR ≥ 300 mg/g creatinine at 

day 100 post-HCT.

Results

Patient demographic and clinical information are presented in Table 1. A total of 311 

patients had at least one ACR value; the median age of the 311 patients was 48 years. The 

majority (64%) of patients was male, and 76% of patients identified themselves as 

Caucasian. The most common diagnosis was AML, and nearly half of the patients were 

transplanted from an unrelated donor. The majority (75%) of patients received peripheral 

blood cells as their source of hematopoietic cells. For analysis of the relation of day 100 

ACR to mortality, the entire cohort (N=311) was examined. Of these 311, 206 patients were 

randomly chosen for analyses involving urinary cytokines. Table 2 provides a summary of 

median values with 5th and 95th percentiles for ACR and the cytokines examined. The 

median number of urinary samples per patient was 6 with a range of 1-21.

Association between ACR and overall mortality

We previously showed that proteinuria at day 100 was associated with an increased risk of 

mortality unrelated to relapse of a malignant disorder (termed non-relapse mortality), 

relative to patients with a normal day-100 ACR (0-29 mg/g creatinine)(16). Since that report 

of 142 patients, we have accrued an additional 169 patients into our prospective study for a 

total of 311 patients with urinary ACR data. In the analysis of the entire study cohort to date, 

among 120 patients with normal ACR values at day 100 post-transplant, there were 29 

(24%) subsequent deaths from all causes. In contrast, among 97 patients with albuminuria at 

day 100, there were 44 (45%) subsequent deaths. And among 24 patients with proteinuria 

(ACR ≥ 300 mg/g creatinine) at day 100, there were 15 (63%) subsequent deaths. Seventy 

patients did not have an ACR value in the window of 80-120 days following HCT (and 

therefore were regarded as missing a day-100 ACR value); 27 (39%) of these patients died 

by last contact. Treating mortality as a time-to-event endpoint, the hazard of death was 74% 

higher among patients with albuminuria at day 100 compared to patients with a normal 

day-100 ACR value (HR=1.74, 95% CI 1.08-2.81, p=.02). Patients with proteinuria at day 

100 were at even greater risk of death compared to patients with normal ACR at this time 

(HR=3.62, 95% CI 1.91-6.87, p<.0001). These results were qualitatively the same after 

adjusting for baseline ACR.

These results are consistent with our previous work (16). In addition, however, we extended 

our previous results by taking a more general approach to examining the association 

between ACR and all-cause mortality. Instead of categorizing ACR as 0-29, 30-300, and 

≥300, we modeled day-100 ACR as a continuous non-linear function as described in 

Statistical Methods. Figure 1 shows the association of day-100 ACR and mortality using this 

approach. As seen from this figure, the risk of mortality increases steadily and somewhat 

linearly as day-100 ACR increases. Under the assumption of linearity, the risk of mortality 
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is increased by 10% for each increase in ACR of 100 mg/g creatinine (HR=1.10, 95% CI 

1.05-1.15, p<.0001). There was also no evidence to suggest that the association between 

day-100 ACR, modeled as a linear variable, and mortality was different in allogeneic vs. 

autologous patients (interaction test, p=.38). In other words, while autologous patients have 

a lower risk of mortality than allogeneic patients, the association between day-100 ACR and 

the risk of mortality in autologous patients appears to be similar to that among allogeneic 

patients.

We also examined the association of ACR at any time post-HCT with the risk of mortality, 

not just ACR at day 100, with ACR now modeled as a time-dependent covariate. Doing so 

yielded the same qualitative conclusions as those obtained by examining the association 

between day-100 ACR and mortality. In particular, patients with an ACR in the range 

defined as albuminuria had an increased risk of death relative to patients with an ACR in the 

normal range (HR=1.91, 95% CI 1.27-2.87, p=.002), while patients with an ACR in the 

range defined as proteinuria had an even higher relative risk of death (HR=2.82, 95% CI 

1.60-4.98, p=.0004). Modeling ACR as a continuous linear variable, there is a 5% increase 

in the hazard of death (HR=1.05; 95%CI 1.02-1.08) for each increase in ACR of 100 mg/g 

creatinine. Shown in Figure 2 is the association between ACR and mortality with ACR 

modeled as a continuous non-linear variable as described in Statistical Methods; this 

relationship is similar to that seen with day-100 ACR. As with day-100 ACR, there was no 

evidence to suggest that the association between ACR any time after HCT modeled as a 

linear variable and mortality was different in allogeneic vs. autologous patients (interaction 

test, p=.79).

The root cause of death in patients is shown in Table 3. As ACR increases, the percentage of 

deaths with GVHD as the underlying cause increases (17.9% to 29.4%).

Association between urinary cytokine levels and ACR

The mean cytokine levels to day 100 among the 3 ACR groups are summarized in Table 4. 

Statistically significant differences were found in the mean levels of IL-6, IL-15, IL-10, and 

MCP-1 between patients with an ACR < 30 mg/g creatinine and those with an ACR ≥ 300 

mg/g creatinine. Looking instead at log-transformed cytokine levels, the same conclusion 

was found for IL-6 and IL-15, but the differences for MCP-1 and IL-10 were no longer 

statistically significant between the two extreme ACR groups. In addition, the trend test 

yielded statistically significant associations for both IL-6 and IL-15, each increasing as ACR 

group increases, with both the log-transformed data and the actual data. There was no 

suggestion that these associations were different among allogeneic HCT recipients as 

compared to autologous recipients.

There were 52 cases of persistent proteinuria as defined above, with the time of persistent 

proteinuria ranging from day 7 to day 273 (median time of proteinuria among all patients 

who met this definition was 48 days (25th and 75th percentiles, 25 and 72 days, 

respectively). Average urinary cytokine level was modeled as a time-dependent covariate, 

and in addition to examining the actual cytokine levels, we also log-transformed the levels 

as described above. Similar to the conclusions drawn when restricting ACR to day 100, 
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increasing mean levels of urinary IL-6 and IL-15 were associated with an increased risk of 

development of persistent proteinuria (Table 5).

Association between urinary cytokine levels and CKD

Among patients who survived to one year, the association of mean urinary cytokine levels 

with CKD, as defined by one-year GFR < 60 mL/min/1.73m2, is summarized in Table 6. We 

similarly compared the mean of the average urinary cytokine levels before day 100 

according to 1 year GFR as summarized in Table 5. Urinary cytokine levels before day 100 

bore no statistically significant relationship to development of CKD at 1-year, with the 

possible exception of MCP1 (Table 5).

Blood and urinary cytokine levels in patients with proteinuria at day 100

Cytokine levels in the blood were analyzed in 51 patients with proteinuria at day 100 post-

HCT. When levels in blood were assessed for correlation with the corresponding levels in 

urine on the same day, the associations were relatively weak (IL-10, R2 = .03; IL-15, R2 = 

0.34; IL-6, R2 = 0.009; MCP-1 R2 = 0.01; gp130, R2 = 0.005; sIL6R, R2 = 0.007).

Association between urinary cytokine levels and mortality

Consistent with the association of increasing IL-15 with increased ACR and persistent 

proteinuria, we also saw an increased risk of overall mortality with increasing average 

urinary IL-15 (p<.0001 for average IL-15, p=.12 for average log-transformed IL-15). An 

increased risk of overall mortality was also seen with increasing IL-6, although the 

association was not statistically significant (p=.08 for average IL-6, p=.12 for average log-

transformed IL-6). Suggestive positive associations were also seen for gp130 (p=.03 for 

average gp130, p=.07 for average log-transformed gp130) and sIL6r (p=.06 for average 

sIL6r, p=.03 for average log-transformed sIL6r). Increasing average MCP-1 was associated 

with an increased risk of mortality (p=.001), but this association was reduced when the 

values were log-transformed (p=.30).

Discussion

We found increased urinary levels of IL-6, IL-15 and to a lesser extent MCP-1 to be 

associated with the development of proteinuria in the first 100 days post-transplant. The lack 

of correlation between these urinary cytokines and simultaneously collected plasma 

cytokines suggest that intra-renal inflammation and not merely clearance underlies these 

results. Interleukin-6 is considered a prototypic proinflammatory cytokine. It has an unique 

receptor system involving 2 functional proteins, IL-6R (which is specific for IL-6) and a 

common signal transducer of cytokines, gp130 16. In proliferative glomerular diseases such 

as IgA nephropathy, urinary IL-6 excretion has also been reported to predict worse kidney 

outcomes 17. In patients with diabetes, the data are mixed as to the associations with urinary 

and serum IL-6 levels and albuminuria and decline in renal function 18. Though we found an 

association with urinary IL-6 levels and development of albuminuria and proteinuria, we did 

not find an association between urinary IL-6 levels or its receptors and development or 

progression of CKD at 1 year in this patient population.
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IL-15 is a pro-inflammatory cytokine produced by multiple tissues including kidney 

epithelial and proximal tubular cells. It has both paracrine and autocrine effects in the kidney 

and IL-15 plays an important role in the cross talk between activated macrophages and 

natural killer cells and establishment of an innate immune response19. In a mouse model of 

nephrotoxic serum nephritis, mice deficient in IL-15 had an increase in tubular epithelial cell 

apoptosis and an increase in MCP-1 expression compared to wild-type IL-15+ mice and 

normal control mice. In addition, renal interstitial macrophage and CD4+ T-cell infiltrates 

were more prominent in the IL-15 deficient mice with nephritis compared to wild-type mice. 

The authors conclude that the decrease in IL-15 expression in tubular epithelial cells after 

injury suggests a protective role against immunologic insults for IL-15 to the kidney in 

normal conditions. This loss of protection by IL-15 at time of injury is mediated by a lack of 

induction of anti-apoptotic molecules and a lack of inhibition of MCP-1 expression in the 

kidney20. Increased expression of IL-15 has been found in renal allografts with rejection 

compared to grafts without rejection 19. Tubular epithelial cells produce IL-15 in response to 

injury21. The increased levels of urinary IL-15 in the HCT population may reflect increased 

inflammation within the kidney and subsequent tubular injury.

Urinary MCP-1 is also found to be increased in acute kidney injury in both humans and 

animal models (28). Progressive increases in serum MCP-1 and renal cortical expression of 

MCP-1 along with a lack of response from anti-inflammatory cytokines such as IL-10 are 

thought to lead to progression to CKD in animal models(28). In studies of patients with 

diabetic nephropathy, increased urinary levels of MCP-1 were found in diabetic patients 

with nephrotic range proteinuria and advanced tubulointerstitial lesions. Increased 

expression of MCP-1 was observed in the interstitium and in tubular epithelial cells, 

endothelial cells and mononuclear infiltrates in patients with more advanced lesions. In this 

study, patient with minimal change nephrotic syndrome and membranous nephropathy had 

lower levels of MCP-1 suggesting that proteinuria in and of itself was not associated with 

increased urinary MCP-1 levels and that activation of resident tubular or endothelial cells 

and interstitial infiltrates is needed for MCP-1 expression (29). We found elevations in 

urinary MCP-1 associated with the development of CKD at 1 year in this patient population. 

Perhaps the injury that occurs post-transplant leads to an early increase in IL-15 in the 

kidney but as tubular epithelial cells die, IL-15 is lost allowing for the uninhibited activity of 

MCP-1 which leads to ongoing inflammation and progression to CKD.

Increased serum cytokine levels have also been described in patients with complications 

after HCT and specifically in patients who develop GVHD after HCT. The inflammatory 

and cytokine cascades that are activated by GVHD can also affect the kidney without 

invoking the direct T-cell mediated epithelial cell injury that is implicated in GVHD 

involving skin, gut and liver 22, 23. In support of the hypothesis that GVHD-related organ 

damage can result from exposure to pro-inflammatory cytokines, increased plasma cytokine 

levels correlate with post-transplant complications and organ dysfunction in the HCT 

population 24, 25. In animal models of GVHD, tissue destruction by acute GVHD does not 

require alloantigen expression on target epithelium for cellular cytotoxicity; injury can be 

mediated by inflammatory cytokines 26.

Hingorani Page 8

Bone Marrow Transplant. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This study confirms the strong association between elevated urinary ACR levels at day-100 

and mortality 27, a relationship that appears to be proportional to the degree of albuminuria 

(see Figures 1 and 2). Development of proteinuria and albuminuria at any time point after 

HCT, not just at day 100, also showed a significant increase in the risk of mortality and non-

relapse mortality following HCT. We also found an association of mortality with levels of 

MCP-1 and the IL6 receptors gp130 and sIL6r before day 100, suggesting that stimulation of 

multiple cytokines may be involved in the increased risk of mortality in patients with 

albuminuria post-HCT. Another possible explanation for these findings is that a shift in the 

cytokine profile may occur from the early inflammatory injury to the kidney causing 

albuminuria to a more chronic pathway.

In summary, elevated urinary levels of IL-6, IL-15 and MCP-1 are associated with 

development of albuminuria and proteinuria in the months following transplant, suggesting 

early intrarenal inflammation as an important pathogenetic mechanism. Albuminuria and 

proteinuria are associated with an increased risk of overall mortality in patients post-HCT. 

We speculate that pro-inflammatory cytokines in the urine are a reflection of the 

inflammatory milieu of GVHD in the kidney which might be mediated by two different 

mechanisms: the kidney could be a direct target of T-cell mediated renal damage or the 

chronic systemic inflammatory state of GVHD could lead secondarily to cytokine-mediated 

nephropathy. Renal biopsies are needed to clarify these findings and guide therapy, 

especially in patients with proteinuria around day 80 post-HCT. Biopsies may help to 

determine if increased urinary cytokine levels correlate with increased expression of these 

cytokines in renal tissue and to determine potential etiologies for the increase in cytokine 

levels such as tubulitis, interstitial inflammation , endothelial and/or glomerular injury that 

might also be suggestive of GVHD in the kidney.
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Figure 1. 
Association of day-100 ACR with the risk of overall mortality. Day-100 ACR is modeled as 

a cubic spline, and each point on the solid curve represents the hazard of death for the 

associated ACR value relative to the hazard of death at an ACR level of 2.6, which is the 5th 

percentile of day-100 ACR values. The dotted curve represents point-wise lower 95% 

confidence limits. The 5th, 25th, 50th, 75th, and 95th percentiles (the knots for the cubic 

spline) are 2.6, 10, 30.4, 95.6, and 715.7, respectively.
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Figure 2. 
Association of ACR beyond day of HCT with overall mortality. ACR is modeled as a cubic 

spline, and each point on the solid curve represents the hazard of death for the associated 

ACR value relative to the hazard of death at an ACR level of 3.2, which is the 5th percentile 

of all ACR values beyond day of HCT. The dotted curve represents point-wise lower 95% 

confidence limits. The 5th, 25th, 50th, 75th, and 95th percentiles (the knots for the cubic 

spline) are 3.2, 12.7, 38.1, 117.3, and 667, respectively.
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Table 1

Patient demographic data and clinical characteristics

Patient Characteristic Frequency (%)

Age at transplantation <20 32 (10)

20-39 63 (20)

40-59 151 (49)

>60 65 (21)

Median age = 48

Gender: Female 112 (36)

Male 199 (64)

Race: African American 10 (3)

Caucasian 236 (76)

Hispanic 15 (5)

Other 37 (12)

Not available 13 (4)

Diagnosis
ANL

* 103 (33)

MDS 55 (18)

CML 29 (9)

NHL 31 (10)

ALL 26 (8)

MM 19 (6)

CLL 12 (4)

AA 11 (4)

Other 25 (8)

Donor type Allogeneic 107 (34)

Autologous 53 (17)

Unrelated donor 151 (49)

Conditioning regimen Reduced intensity regimens (200cGy) 56 (18)

Myeloablative: CY/TBI 12-13.5 cGy 60 (19)
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Patient Characteristic Frequency (%)

Myeloablative: BU, CY only 91 (29)

Other myeloablative regimens 104 (33)

Baseline serum creatinine (mg/dL) Median (5th to 95th percentile) 0.9 (0.5-1.3)

Baseline ACR (mg/g) Median: 11.10

5th percentile 1.80

95th percentile 165.70

Patient CMV serostatus Positive 171 (55)

Negative 139 (45)

Missing 1

Source of Stem Cells
+ BM 56 (18)

PBSC 234 (75)

Cord 21 (7)

*
Acute non-lymphocytic leukemia

+
bone marrow, peripheral blood stem cell, cord blood

Bone Marrow Transplant. Author manuscript; available in PMC 2014 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hingorani Page 16

Table 2

Summary of median values of ACR and analyte levels

Analyte Median # samples/patient (range) Median Value pg/mL (range) 5th; 95th Percentiles

ACR mg/g creatinine 8 (1-21) 38.1 (1.6-3000) 3.2; 667

IL6 pg/mL 6 (1-21) 7.9 (2.2-1603) 3.6; 96.1

gp130 pg/mL 6 (1-21) 7811 (30-109,580) 412; 24,887

sIL6r pg/mL 6 (1-21) 456 (30-15,390) 67.4; 2370

IL-15 pg/mL 10 (1-21) 3.6 (1-179.5) 1; 15.1

MCP-1 pg/mL 6 (1-21) 661 (15-91,600) 105; 3810

IL-10 pg/mL 6 (1-21) 2 (1-14.5) 1; 4.4
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Table 3

Root causes of death in patients by ACR values.

ACR group Total deaths Relapse GVHD Other
*

ACR < 30 39 24 (61.5%) 7 (17.9%) 5 (12.8%)

ACR 30-299 50 33 (66%) 11 (22%) 6 (12%)

ACR >/= 300 17 8 (47.1%) 5 (29.4%) 3 (17.6%)

*
Other causes of death include, multiorgan failure, pulmonary embolus, cardiac, CNS bleed and infection. ACR data at day 100 was not available 

on 4 patients.
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Table 4

Summary statistics for average urinary cytokine levels in pg/mL up to day 100 after transplant and their 

association with ACR at day 100.

Cytokine N ACR Group Mean Level Median Level p-value
1

trend p-value
1

p-value
2

trend p-value
2

IL6 88 0-29 18.90 10.56 · 0.0005 · <0.0001

48 30-299 35.97 17.92 0.14 0.02

23 ≥300 73.68 27.44 .0004 .0002

gp130 88 0-29 10614.66 9680.83 0.43 0.68

48 30-299 11203.42 10628.43 0.56 0.45

23 ≥300 11507.27 9261.42 0.49 0.89

sIL6r 88 0-29 763.29 615.11 0.48 0.36

48 30-299 796.15 650.98 0.73 0.86

23 ≥300 849.53 741.61 0.49 0.30

IL10 88 0-29 2.00 2.00 0.02 0.07

48 30-299 2.12 2.00 0.39 0.47

23 ≥300 2.41 2.00 0.02 0.06

IL15 86 0-29 5.80 3.60 0.0008 0.002

50 30-299 8.63 5.62 0.04 0.09

24 ≥300 11.43 7.87 0.002 0.004

MCP1 88 0-29 1046.16 840.77 0.02 0.06

48 30-299 1616.26 1365.40 0.09 0.003

23 ≥300 1979.55 908.23 0.03 0.38

1
p-value derived from linear regression; trend p-value derived from treating ACR groups as linear variable with values 1, 2, and 3

2
log-transformed data; p-value derived from linear regression; trend p-value derived from treating ACR groups as linear variable with values 1, 2, 

and 3
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Table 5

Association between mean cytokine level and the risk of persistent proteinuria at any time post-HCT.

Cytokine Direction of association, p-value
1

Direction of association, p-value
2

IL6 Positive, 0.01 Positive, .002

gp130 Negative, 0.92 Negative, 0.99

sIL6r Negative, 0.84 Positive, 0.63

IL10 Positive, 0.69 Positive, 0.35

IL15 Positive, 0.003 Positive, 0.002

MCP1 Positive, 0.51 Positive, 0.12

1
p-value from Wald test, Cox regression, Mean cytokine level modeled as a time-dependent covariate based on actual cytokine value

2
p-value from Wald test, Cox regression, Mean cytokine level modeled as a time-dependent covariate based on log-transformed cytokine value
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Table 6

Average urinary cytokine levels in pg/mL during the first 100 days and association with CKD at one-year 

post-HCT among one year survivors.

Cytokine GFR Group N Mean Level Median Level p-value
1

p-value
2

IL6 < 60 27 20.36 10.55 0.56 0.86

≥ 60 89 25.50 11.42

gp130 < 60 27 10385.89 11483.15 0.99 0.68

≥ 60 89 10388.12 9395.90

sIL6r < 60 27 809.05 548.14 0.81 0.54

≥ 60 89 846.21 573.76

IL10 < 60 27 2.09 2.00 0.84 0.74

≥ 60 89 2.06 2.00

IL15 < 60 27 6.29 3.92 0.16 0.18

≥ 60 91 9.80 4.85

MCP1 < 60 27 1290.87 1168.96 0.21 0.02

≥ 60 89 1041.93 705.32

1
p-value from linear regression, based on cytokine values

2
p-value from linear regression, based on log-transformed cytokine values
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