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Although, protein aggregation and deposition are unifying features of various

neurodegenerative disorders, recent studies indicate that different mechanisms can lead

to the development of the same malady. Among these, failure in early protein folding

and maturation emerge as key mechanistic events that lead to the manifestation of a

myriad of illnesses including Alzheimer’s disease and prion disorders. Here we delineate

the cascade of maturation steps that nascent polypeptides undergo in the secretory

pathway to become functional proteins, and the chaperones that supervise and assist

this process, focusing on the subgroup of proline cis/trans isomerases. We also describe

the chaperones whose failure was found to be an underlying event that initiates the

run-up toward neurodegeneration as well as chaperones whose activity impairs protein

homeostasis (proteostasis) and thus, promotes the manifestation of these maladies.

Finally, we discuss the roles of aggregate deposition sites in the cellular attempt to

maintain proteostasis and point at potential targets for therapeutic interventions.
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The generation of a polypeptide by the ribosome is the first step of the long and complex process
that leads to the formation of a mature, functional protein. Cytosolic proteins maturate at the
cytosol (Hartl and Hayer-Hartl, 2002) while secreted and membrane proteins are processed at the
secretory pathway (Ellgaard and Helenius, 2003). Here we focus on protein folding and maturation
within the secretory pathway and delineate how failures in this process underlie the manifestation
of certain cases of late-onset neurodegenerative disorders.

PROTEIN MATURATION AND QUALITY CONTROL WITHIN THE
ENDOPLASMIC RETICULUM

The first domain of many nascent chains of a secretory proteins to exit the ribosome is
a hydrophobic signal sequence of 20–30 amino acids that targets the polypeptide into the
endoplasmic reticulum (ER; Hegde and Bernstein, 2006). The appearance of the signal peptide,
and its recognition by the signal recognition particle (SRP; Lauffer et al., 1985), leads to the
binding of the translating ribosome to the ER channel protein complex Sec61p (Sanders et al.,
1992) and to the co-translational insertion of the nascent polypeptide into the ER lumen. This
translocationmechanism is not exclusive as newly synthesized polypeptides can enter the ER lumen
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through alternative mechanisms that have been discovered
in recent years. A subgroup of “tail-anchored (TA) proteins”
bear a C-terminal hydrophobic trans-membrane domain that
interacts with the family of GET proteins (guided entry
of TA proteins). In yeast, the TA protein-GET interactions
promote the post-translational entry into the ER by a SRP-
independent mechanism (Schuldiner et al., 2008). Mammalian
TA proteins enter the ER through an analogous mechanism that
requires the GET orthologue Asna1/TRC40. Interestingly, under
certain circumstances, the TRC40-dependent ER translocation
mechanism cooperates with the canonical Sec61p apparatus to
orchestrate proper post-translational entry of polypeptides into
the ER (Johnson et al., 2012).

An additional ER translocation mechanism that functions
independently of SRP and GET proteins but depends upon the
activity of the Snd1, Snd2 and Snd3 proteins has been discovered
recently (Aviram et al., 2016).

Upon entry into the ER, the ER-localization signal is cleaved
(Haeuptle et al., 1989), and many of the newly synthesized
polypeptides are anchored to the ER membrane through their
transmembrane domains. Some other proteins, including the
prion protein (PrP), acquire a glycophosphatidylinositol (GPI)
lipid tail (Muñiz and Zurzolo, 2014). Oligosaccharides are
attached to asparagine residues of many newly synthesized
proteins. These modifications render the polypeptides
recognizable by lectin folding chaperones which play key
roles in the folding and maturation of glycosylated proteins
(Noack et al., 2014). These chaperones and folding-assisting
enzymes (foldases) catalyze the molecule’s maturation by a series
of sequential events that help it attain its desired spatial structure
(Figure 1). Examples of some well-characterized ER foldases
are Calnexin (CNX), Calreticulin (CRT), the protein disulfide
isomerase (PDI) ERp57 (Oliver et al., 1999), and cyclophilin B
(CypB) (Jansen et al., 2012; for a comprehensive overview on ER-
resident chaperones see (Gidalevitz et al., 2013). The interactions
of the nascent polypeptide with CNX, CRT, and additional
chaperones such as the Hsp70 family member BiP/GRP78 (Haas
and Wabl, 1983), initiate the folding process and can recruit
ERp57 (Kozlov et al., 2006) that catalyzes the formation of
disulfide bonds. CypB, a member of the peptidylprolyl cis/trans
isomerases (PPIases) family of chaperones, which utilizes
specific proline residues to convert the maturating polypeptide
from cis to trans position (Barik, 2006), emerges as a pivotal
coordinator of the folding process (Jansen et al., 2012). FKBP10,
a member of the FK506-binding proteins (FKBPs), an additional
subgroup of PPIase chaperones, is needed to mediate the
entry of certain nascent polypeptides into the ER (Stocki et al.,
2016).

Despite the assistance of the intricate nexus of expert folding
chaperones, subsets of newly synthesized proteins fail to fold
properly and expose hydrophobic domains that lead to the
aggregation of the protein. These terminally misfolded molecules
are recognized by specialized ER-chaperones which impede their
shuttling to the Golgi (Ellgaard andHelenius, 2003), and promote
their destruction by the ER-associated degradation (ERAD). This
process is executed by a conserved set of ERAD components,
including the membrane integral, ERAD E3 ubiquitin ligase

HRD1 (Bordallo et al., 1998) and the ATPase VCP/p97 that
mediate the retro-translocation of unfolded polypeptides to the
cytosol (Ye et al., 2004), and confer their degradation by the
proteasome (Ruggiano et al., 2014). It is important to note
that macro-autophagy emerges as an additional mechanism that
play roles in the degradation of ERAD substrates (Lipatova
and Segev, 2015). Under regular conditions the orchestrated
activities of protein folding, quality control, and degradation
mechanisms maintain proper protein homeostasis (proteostasis;
Balch et al., 2008) however, in the face of stress, mutations or
aging, subsets of proteins that bear the propensity to misfold,
escape the cellular surveillance system, and form aggregates
within the ER.

ER STRESS RESPONSES

The accumulation of protein aggregates within the crowded
environment of the ER lumen impairs its functionality and has
the potential to be hazardous to the cell. Thus, highly conserved
cellular mechanisms that refold unfolded polypeptides, clear
aggregates, and restore functional proteostasis have been
developed. One such well-defined mechanism is the unfolded
protein response (UPRER), a signaling cascade which has at
least four arms that have similar principles of activity. When
specialized ER proteins sense an accumulation of misfolded
proteins, a sequence of events activates the UPRER which
initiates the migration of transcription factors to the nucleus.
The ATF6(N) fragment is cleaved from ATF and enter the
nucleus, XBP1 is activated by IRE1 and modulates gene
expression and ATF4 is shuttled to the nucleus by the PERK
downstream mechanism. These transcription factors elevate the
expression of genes that encode for ER chaperones (such as
BiP) to enhance folding capacity and reduce the expression of
genes that encode proteins that require the assistance of ER
chaperones to fold properly, aiming to lower the aggregation
challenge within the ER lumen (reviewed in Walter and Ron,
2011).

Nevertheless, under certain circumstances, typically in late
stages of life, the aggregation challenge exceeds the ER’s protein
folding and clearance capacities hindering the restoration of
proteostasis. When potentially hazardous aggregates accumulate
within the ER, they are actively convoyed to designated
deposition sites (Figure 2). Such aggregated proteins are
deposited next to the nucleus when proteasomes are inhibited.
The formation of these cellular deposition foci was impeded
by the inhibition of protein synthesis (Wójcik et al., 1996).
These findings proposed that the juxta-nuclear, cellular foci are
quality control compartments, where aggregates are temporarily
stored to enable their degradation when conditions allow.
A similar phenomenon of protein deposition in a cytosolic,
nucleus-adjacent location was later reported. These sites, which
were termed “aggresomes” (Johnston et al., 1998), contain
aggregated membrane proteins and are positioned at the
Micro Tubule Organizing Center (MTOC). We discovered that
aggresomes which contain aggregated PrP are dynamic quality
control compartments that attract molecular chaperones and
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FIGURE 1 | Protein folding within the ER lumen. Newly synthesized polypeptides are co-translationally translocated into the ER through the translocon Sec61p

complex. Targeting and insertion of the signal peptide is mediated by signal recognition particle (SRP) and at least in the case of PrP, is assisted by FKBP10 (I). In

some cases post translational insertion of secretory proteins occurs in an SRP-independent manner, as in case of the GET-mediated insertion of tail-anchored proteins

or by the SND mechanism in other cases (II). As the nascent polypeptide exits the translocon, the signal peptide is cleaved and N-linked glycans are added

co-translationally by oligosaccharyltransferase (OST) (III). Transmembrane proteins are inserted into the ER membrane and some proteins get anchored to the

membrane through the addition of glycophosphatidylinositol (GPI) lipid tail by the transamidase complex (IV). The highly conserved chaperone BiP binds nascent

polypeptides as they are translocated into the ER, and maintains them in a state competent for subsequent folding and oligomerization. (V). The peptide undergoes

further processing with the help of additional chaperones and folding enzymes, among them the calnexin/calreticulin lectin chaperones, protein disulfide isomerase

(PDI) that oxidizes cysteine residues to induce disulfide-bond formation, and the ER resident cyclophilin B (CypB) that catalyzes cis/trans isomerization on the axis of

certain proline residues (VI). Properly folded proteins are shipped for further processing in the Golgi (VII). Terminally misfolded proteins are retro-translocated to the

cytosol to be degraded by the proteasomes through the ER-associated protein degradation (ERAD), often mediated by the E3 ubiquitin ligase HRD1 and the ATPase

VCP/p97 (VIII). Sometimes, ERAD substrates and excess membranes and membrane proteins are shuttles for degradation in the lysosome via macro-ER-phagy (IX).

proteasomes to mediate the degradation of their content (Ben-
Gedalya et al., 2011). Additional types of cytosolic deposition
sites where characterized in yeast and mammalian cells including
the aggresomes-like, Juxta Nuclear Quality control compartment
(JUNQ), and Insoluble Protein Deposit (IPOD) (Kaganovich
et al., 2008). It is not entirely clear whether the JUNQ is
cytosolic or nuclear, as a recent study claimed that the aggregates
that were previously reported to accumulate in the cytosol
are deposited within the nucleus (Miller et al., 2015). An
additional type of deposition site is the “ER quality control
compartment” (ERQC) which accumulates protein aggregates
within the ER lumen (Kamhi-Nesher et al., 2001). Why
certain protein aggregates accumulate in cytosolic sites while

others are deposited within the ER is not known however,
it is plausible that the cell fails to retro-translocate certain
molecules to the cytosol and thus, deposits them in the
ERQC.

In the face of aging-associated decline in protein quality
control capabilities (Carvalhal Marques et al., 2015), or due
to mutations that severely destabilize the three dimensional
structures of aggregation-prone proteins, the cell fails to
maintain proteostasis, and protein aggregates accumulate.
Such uncontrolled protein aggregation can be toxic and
underlie the development of proteinopathies (Paulson, 1999).
Neurodegenerative maladies including Alzheimer’s disease,
Parkinson’s disease (Selkoe, 2003), and prion disorders (Aguzzi
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FIGURE 2 | Cellular deposition sites. When the burden of misfolded proteins exceeds the cell’s clearance and refolding capacity, potentially hazardous aggregates

accumulate within the ER. Under certain circumstances, these aggregates are actively convoyed to designated deposition sites. Aggresomes or aggresome

like-structures (I) are cytosolic juxta-nuclear inclusion bodies that serve as quality-control centers. Another type of a cytosolic deposition site is the insoluble protein

deposit (IPOD) (II) where terminally aggregated proteins tend to accumulate. Intra-nuclear quality control compartment (INQ) (III) resides in the nucleus next to the

nucleolus and harbors nuclear as well as cytosolic misfolded proteins. Some proteins that aggregate within the ER are deposited in the ER-derived quality-control

compartment (ERQC) (IV).

and Calella, 2009) are a subgroup of proteinopathies. Late onset
(Amaducci and Tesco, 1994) and the deposition of aggregated
proteins in the brain are common features of these illnesses
(Soto, 2003).

ALZHEIMER’S DISEASE AND PRION
DISORDERS

Alzheimer’s disease (AD), the most common type of dementia,
is characterized by two pathological hallmarks; the deposition
of small hydrophobic peptides known as β amyloid (Aβ) in
plaques and the formation of Neurofibrillary Tangles (NFTs)
of aggregated, hyper-phosphorylated microtubule-associated
protein tau in the brain (Selkoe, 2011). According to the
amyloid hypothesis (Hardy and Higgins, 1992), AD develops as
a result of a dual cleavage of the Amyloid Precursor Protein
(APP) by two proteases, the β and γ secretases. This digestion
releases the family of Aβ peptides which form various types
of oligomers and high molecular weight aggregates. Oligomers
were found to be the most toxic Aβ species (Cohen et al.,
2006; Shankar et al., 2008). The amyloid hypothesis proposes
hyper Aβ production as a key mechanistic condition for the

development of this devastating disorder (Hardy and Higgins,
1992). Similarly to other neurodegenerative disorders AD
exhibits more than one pattern of occurrence. While most AD
cases onset sporadically, individuals who carry mutations in the
sequence of APP or of Presenilin 1 or 2 (both are components
of the γ secretase complex) develop early-onset familial
AD (fAD).

The misfolding and aggregation of the prion protein (PrP)
underlies the development of several conformational diseases.
Creutzfeldt-Jakob disease (CJD) is a fatal prion disorder that
can onset sporadically, as a familial, mutation-linked malady
as well as an infectious disease. It is well-documented that
individuals who consumed contaminated beef developed CJD
(Prusiner, 1998). Similarly to the case of Aβ, small oligomeric
PrP structures are the most infectious prion species (Silveira
et al., 2005). Interestingly, different mutations in the sequence of
PrP lead to the development of distinct disorders. While certain
mutations are accountable for the development of CJD, others
underlie the manifestation of Gerstmann-Straussler-Scheinker
disease (GSS; Salmona et al., 2003) or of Fatal Familial Insomnia
(FFI;Medori et al., 1992). Unlike CJD, GSS, and FFI solely emerge
as mutation-linked, familial disorders and exhibit much slower
etiology.
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FAILURE OF EARLY MATURATION EVENTS
UNDERLIE THE ONSET OF CERTAIN
CASES OF NEURODEGENERATION

Recent studies challenge the amyloid hypothesis suggesting
that at least some fAD cases emanate from the attenuation
of γ secretase activity that is inflicted by mutations in the
sequence of presenilin 1. Analysis of γ secretase activity in
brain samples of individuals who carried various fAD-associated
mutations or developed sporadic AD (sAD) unveiled that
in most cases the total levels of Aβ were lower than those
observed in brains of individuals who showed no signs of
dementia. Unexpectedly, no significant difference in total Aβ

levels was detected among brains of individuals who had sAD
and those of unaffected people (Szaruga et al., 2015). Another
interesting avenue of research unveiled that in some cases, the
loss of γ secretase endopeptidase function is associated with
fAD. For instance, transgenic mice that harbor two copies of
mutated presenilin 1 carrying either the L435F or C410Y fAD-
linked mutations, exhibit near complete loss of γ secretase
function but develop neurodegeneration (Xia et al., 2015).
These findings clearly show that increased Aβ production is
not a prerequisite for AD development and raise the question
of what the mechanisms that underlie fAD are. Why these
and other mutations lead to the loss of the γ secretase
proteolytic function and whether protein maturation within the
secretory pathway plays any role in the pathogenic process
that leads to the development of fAD are largely unanswered
questions.

To identify common mechanisms that initiate the
development of neurodegenerative maladies, we searched
for similar mutational patterns in different proteins which
cause distinct neurodegenerative illnesses. This approach is
based on the rationale that since folding chaperones of the
secretion pathway assist the maturation process of many
nascent polypeptides, it is probable that analogous mutations
which impede chaperone-client interactions can lead to the
development of distinct maladies. We identified similar PXXP
motifs in the sequences of PrP and of presenilin 1. Previous
reports indicated that the substitution of either proline in
these motifs of PrP (Hsiao et al., 1989; Yamazaki et al., 1999)
and presenilin 1 (Campion et al., 1995) cause GSS or fAD,
respectively. To explore why the substitution of these prolines
leads to misfolding and disease we used cultured cells and the
cyclophilin-specific inhibitor cyclosporin-A (CsA) and found
that when CypB is prevented from assisting presenilin 1 to fold
properly, the nascent polypeptide misfolds, and forms aggregates
that accumulate in the ERQC. This leads to severe impairment
of γ secretase activity and to aberrant mitochondrial distribution
and function. Similarly, the expression of presenilin 1 molecules
carrying the fAD-linked mutations, P264L or P267L/S, resulted
in the same phenotypes (Ben-Gedalya et al., 2015).

A similar mechanism triggers the pathogenic process that
causes GSS. The inhibition of CypB by CsA or by the substitution
of proline 102 or of 105 in the sequence of PrP resulted in the
protein’s aggregation and deposition in aggresomes (Cohen and
Taraboulos, 2003).

Our studies show that hindering the interaction of CypB,
a key ER-resident folding chaperone, with PrP and presenilin
1, results in the manifestation of certain cases of fAD or
GSS. It is important to note that additional studies illustrate
failures in other stages of protein maturation as the source
of neurodegenerative disorders. The levels of CNX and CRT
were found to be reduced in Parkinson’s disease cellular model
(Kuang et al., 2014) and ER stress response was found to be
activated in amyotrophic lateral sclerosis (ALS)-model mice
that express an ALS-linked mutated SOD 1 in their muscles
(Chen et al., 2015). In addition, one of the early modifications
that PrP undergoes upon entry to the ER is the attachment
of GPI. Individuals who carry mutations, such as Q227Stop,
that prevent GPI attachment to the newly synthesized molecule,
express anchorless PrP and develop GSS (Jansen et al., 2010). It
is plausible that anchorless PrP molecules cannot be recognized
by ER chaperones and thus form aggregates within this organelle.
This possibility may be supported by the report that similarly to
CypB, CNX interacts with PrP and reduces PrP-mediated toxicity
(Wang et al., 2010). Nevertheless, further research is needed to
examine this hypothesis.

The accumulation in aggresomes of molecules that failed
to fold properly within the ER, raises the question of
whether these deposition sites (Ben-Gedalya et al., 2011) are
cytosolic components of an ER-resident protein quality control
mechanism or whether they also serve other cellular organelles
as aggregate disposal centers.

AGGRESOMES ARE CYTOSOLIC
COMPONENTS OF THE ER PROTEIN
QUALITY CONTROL MECHANISM

The association of aggresomes with neurodegenerative maladies
was first demonstrated by the accumulation of the fAD-causing,
presenilin-1 which carries the A246Emutation in these structures
(Johnston et al., 1998). Toxic PrP species (Kristiansen et al.,
2005), disease causing PrP mutants (Cohen and Taraboulos,
2003; Mishra et al., 2003), and Parkinson’s disease-associated,
aggregated α-synuclein (Tanaka et al., 2004; Wong et al., 2008)
were also shown to be deposited in aggresomes of mammalian
cells, further linking these sites with a myriad of human
neurodegenerative illnesses. To test whether aggresomes are
mechanistically linked to the ER quality control machinery we
created fluorescently-tagged PrP constructs that either efficiently
enter the ER or stay entirely cytosolic and tested whether these
molecules are deposited in aggresomes upon exposing the cell
to CsA treatment. We found that PrP must enter the ER in
order to be deposited in the aggresome (Dubnikov et al., 2016)
defining these sites as remote cytosolic components of the ER.
Interestingly, the attachment of a GPI anchor is needed for the
direction of PrP to the aggresome but the Golgi apparatus appears
to have no role in shuttling aggregated PrP to this structure.
This insight further associates the ER protein folding mechanism
with deposition sites, a key hallmark of neurodegenerative
diseases, and shows that proper activity of folding chaperones
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protects from these disorders. However, is foldase activity always
protective?

Recent studies have shown that counter-intuitively, knocking
down the activity of certain chaperones protects from
neurodegeneration. The PPIase FKBP51 acts in collaboration
with Hsp90 to prevent the clearance of aggregated tau enhancing
the protein’s oligomerization. Accordingly, mice over-expressing
FKBP51 suffered from neurotoxicity (Blair et al., 2013). Recently,
it was shown that reducing the rate of PrP entry into the ER by
the inhibition of the ER-resident PPIase FKBP10, reduces toxicity
in mammalian cell systems (Stocki et al., 2016), suggesting that
under these specific circumstances this foldase enhances PrP
toxicity. It is possible that FKBP51 and FKBP10 enhance
proteotoxicity not by the modulation of protein folding but
by exhibiting other functions and that the activities of certain
chaperones may be protective in the face of certain proteotoxic
challenges but deleterious in the face of others.

THERAPEUTIC OPPORTUNITIES

Accumulating information point at the ER lumen as an
important arena where neurodegenerative-causing events occur.
Accordingly, interventions that modulate the activity of ER
components can help cells maintain functional proteostasis,
prevent the accumulation of hazardous aggregates within

the lumen and delay the manifestation of neurodegenerative
maladies. Nevertheless, the emerging understanding that
various mechanisms can underlie the development of the
same malady and the apparent damaging functions of certain
folding chaperones requires a careful characterization and
classification of neurodegeneration-causing mechanisms. The
approval of proteostasis-enhancing compounds and their
high efficacy for the treatment of Cystic Fibrosis (Van Goor
et al., 2009; Carter et al., 2015) and the counter-proteotoxic
effects of aging-modulating compounds (El-Ami et al., 2014)
are very encouraging developments which indicate that
a comprehensive understanding of the mechanisms that
underlie proteinopathies is the basis for the development
of novel therapies for hitherto incurable, devastating
disorders.
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