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Abstract: The latest results in Deep Neural Networks (DNNs) have greatly improved the accuracy
and performance of a variety of intelligent applications. However, running such computation-
intensive DNN-based applications on resource-constrained mobile devices definitely leads to long
latency and huge energy consumption. The traditional way is performing DNNs in the central cloud,
but it requires significant amounts of data to be transferred to the cloud over the wireless network
and also results in long latency. To solve this problem, offloading partial DNN computation to edge
clouds has been proposed, to realize the collaborative execution between mobile devices and edge
clouds. In addition, the mobility of mobile devices is easily to cause the computation offloading
failure. In this paper, we develop a mobility-included DNN partition offloading algorithm (MDPO) to
adapt to user’s mobility. The objective of MDPO is minimizing the total latency of completing a DNN
job when the mobile user is moving. The MDPO algorithm is suitable for both DNNs with chain
topology and graphic topology. We evaluate the performance of our proposed MDPO compared to
local-only execution and edge-only execution, experiments show that MDPO significantly reduces
the total latency and improves the performance of DNN, and MDPO can adjust well to different
network conditions.

Keywords: partition offloading; deep neural networks; mobile edge computing; mobility management

1. Introduction

Recently, Deep Neural Networks (DNNs) have shown their excellent advantages
in some domains, such as image recognition [1], speech recognition [2] and natural lan-
guage processing [3]. Technological evolution of new mobile intelligent applications goes
hand-in-hand with evolution of DNNs, thus, a variety of new intelligent applications are
emerging. However, running such computation-intensive DNN-based applications on
resource-constrained mobile devices definitely results in long latency and huge energy con-
sumption, which will badly affect user’s quality of service (QoS). Furthermore, the topology
of DNN plays a crucial role on its accuracy and performance. The latest achievement of
DNN’s topology is no longer a chain, but a directed acyclic graph (DAG). For example,
the topologies of GoogLeNet [4] and ResNet [5], the champion of ImageNet Challenge
in 2014 and 2015 respectively, are both DAGs. Obviously, DAG topology increases the
complexity of DNN computation. DNN is so computation-intensive that user equipment
(UE) only to process is not realistic, especially for its limited battery.

To solve the problem of long latency and huge energy consumption in mobile device
processing, offloading the whole DNN computation to central clouds has been proposed [6].
Central clouds can provide enough computation and storage resources to UEs anytime
and anywhere [7]. Although mobile device’s processing latency and energy consumption
can decrease dramatically in this way, the transferring latency increases since significant
amounts of data need to be transferred to the cloud over wireless network and the central
clouds are always far from UEs, in terms of network topology. As a result, there still
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exists a big latency to process DNN jobs [8]. It’s not suitable for these services with extra
low-latency requirements.

In order to reduce the total latency, transferring latency must be reduced. Thus,
the computation and storage resources should be deployed at the edge of mobile network,
for example, cloud servers can be integrated into base stations [9], which are called edge
clouds. And UEs can offload DNN computation to edge clouds [10]. Furthermore, as the
resources in edge clouds are limited and the resources in mobile devices become more
powerful and energy efficient, we can leverage both resources in edge clouds and mobile
devices. The layer-constituted structure of DNN is suitable for partial offloading. In a word,
mobile devices process parts of DNN layers at local and edge clouds process the rest to
achieve the collaborative execution. Mobile users can process these DNN layers with light
computation while the edge clouds process other DNN layers with heavy computation,
which can minimize the total latency and reduce the energy consumption of the mobile
user [11].

Furthermore, UE’s mobility will bring some difficulties in service continuity. As we
know, two obvious obstacles in 5G network are the high propagation loss and low commu-
nication distance [12]. Thus, in the coming 5G era, the deployment of base stations will be
much more intensive. It will be frequent for UE to handover its serving base station when
the UE is moving. When the UE moves out of the coverage region of a base station, their
connection is broken, if the result generated at edge cloud hasn’t been transferred back to
the UE, the UE has to process the DNN job again. If the UE is continuously moving, connec-
tion failure may happen frequently, which will seriously affect the user’s QoS [13]. A stable
partition offloading decision should be made to ensure the UE’s service continuity [14].

In this paper, considering UE’s mobility included, we develop a mobility-included
DNN partition offloading algorithm (MDPO) in a mobile-edge system. The objective of
MDPO is minimizing the total latency by developing the optimal partition offloading
decision without loss of DNN accuracy. MDPO is suitable for both DNNs with chain
topology and DAG topology. MDPO is divided into two steps: (1) The first step is just
for these DAG-topology DNNs, we convert the DAG topology to a chain topology by
a DAG-to-Chain algorithm; (2) In the second step, we construct a DAG from a chain
topology to represent the collaborative execution paths by the mobile device and the edge
cloud for a DNN query at the layer level, using a Chain-to-DAG algorithm. We can find
the shortest path in the new constructed DAG using a shortest path algorithm, and it’s the
optimal partition offloading decision in static environment, we can easily get the optimal
partition offloading decision taking the UE’s mobility into account from the shortest path.

The rest of this paper is organized as follows. In Section 2, we review some related
works. Section 3 describes the system model and system architecture of a mobile-edge
dynamic system. In Section 4, we explain the MDPO algorithm in detail. We evaluate our
work in Section 5 and conclude in Section 6.

2. Related Work

MDPO is built on previous studies in edge computing. In 2009, the first edge comput-
ing concept bringing the computation storage closer to the UEs, is cloudlet [15]. Cloudlet
is a decentralized system placing computers with high computation power at strategic
locations in order to provide both computation and storage resources for the UEs in
vicinity [16]. A more general concept of edge computing, compared to cloudlets, is fog
computing. Fog computing has been introduced in 2012 to enable a processing of the
applications on billions of connected devices at the edge of network [17]. Consequently, fog
computing is considered as one of key enablers of Internet of Things (IoT) [18]. Another
concept integrating the edge computing into the mobile network architecture is developed
in 2014. The solution outlined is known as Mobile Edge Computing (MEC). In this paper,
the system we discussed is a MEC system.

With the advent of MEC, a critical use case regarding the MEC is the computation of-
floading as this can save energy and speed up the process of computation. Lots of researches
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have been performed about partial computation offloading from resource-constrained mo-
bile devices to powerful central clouds or edge clouds. Eduardo Cuervo et al. [19] proposed
a system that enables energy-aware offloading of mobile code to the infrastructure, it
supports fine-grained code offloading to maximize energy savings with minimal burden
on the programmer. It partitions the application processing with static program analysis
and dynamic profiling, and it can determine where (edge cloud or central cloud) to pro-
cess functions of a program. Juan Liu et al. [20] formulated a power-constrained delay
minimization problem, they use a Markov decision process approach to determine where
(local or edge) to execute each data package to adapt to the channel side information. Lei
Yang et al. [21] considered the partitioning of multiple users’ computations together with
the scheduling of offloaded computations on the cloud resources, to achieve minimum
average completion time for all the users. They model an application as a sequence of mod-
ules and determine where (client or cloud) to execute each module by solving a recursive
formula. The shortest path algorithm used in MDPO is similar to the recursive algorithm
proposed in [21], however, MDPO is more complex.

DNN is a common application in MEC and accelerating the DNN execution in MEC
is a hot topic. Modifying DNN models is a popular approach discussed in many recent
researches. Seungyeop Han et al. [22] proposed a method generating alternative DNN
models for a given task to trade off accuracy and performance or energy and choosing to
execute either at cloud or at local. Ehsan Variani et al. [23] proposed a deep model which
become much smaller and can be processed at local at the frame-level. Ben Taylor et al. [24]
proposed a strategy which allowed to select the most effective DNN from a pool of DNNs
at runtime, in terms of the desired accuracy and inference time. All above papers didn’t
take DNN partitioning into account at all. In this paper, we don’t change the DNN model
at all, the high prediction accuracy of DNN is not sacrificed.

Recently, in order to ensure the DNN accuracy, more and more researches are focused
on partial DNN computation offloading, to realize the collabrative execution of the UE and
the edge clouds. NeuroSurgeon [25] investigated the compute and data characteristics of
8 DNN architectures, and proposed a light-weight scheduler to automatically partition
DNN computation between mobile devices and datacenters at the granularity of DNN
layers. It adapts to various DNN architectures, and chooses the partition point for best
latency or best mobile energy consumption. Surat Teerapittayanon et al. [26] proposed a
distributed DNN (DDNN) architecture that is over distributed computing hierarchies, con-
sisting of central clouds, edge clouds and end devices. The objective of DDNN is reducing
the communication data size among devices for the given DNN. Chuang Hu et al. [27]
proposed a system partitioned DNN to be processed at both the edge cloud and the central
cloud while limiting the data transmission, and it can optimally partition the DNN under
the lightly loaded condition and heavily loaded condition, respectively. However, all above
papers allow only fixed partitioning (partitioning the DNN into two or three partitions and
processing in the order of local, edge cloud, and central cloud), while MDPO can make
more flexible partitioning.

Hyuk-Jin Jeong et al. [28] took the DNN model into account and proposed a partition-
based DNN offloading technique for edge computing, which divides a UE’s DNN model
into a few partitions and uploads them to the edge server one by one. However, IONN
is not suitable for DAG topology DNN. MDPO is suitable for both chain topology and
DAG topology DNNs. Huitian Wang et al. [29] proposed an adaptive distributed DNN
inference acceleration framework for edge computing environment, where DNN com-
putation path optimization and DNN computation partition optimization are taken into
consideration. Pei Ren et al. [30] proposed an edge-based collaborative object recognition
solution for mobile Web AR in the 5G era, which is a differentiated DNN computation
scheduling approach specially designed for the edge platform. Yinhao Huang et al. [31]
proposed an offloading strategy based on Discrete Particle Swarm Optimization with Ge-
netic Operators(DPSO-GO) to effectively reduce the cost of edge computing for offloading
DNN-based applications. Zheyi Chen [32] et al. proposed a greedy and genetic algorithms
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based method to solve the problem of computation offloading and task scheduling for
DNN-based applications in cloud-edge computing. However, all above researches do
not take UE’s mobility into account, MDPO can handle the DNN computation offloading
problem with mobility management in a dynamic mobile-edge system.

3. System Model
3.1. System Description

In a mobile-edge network system, every base station integrates an edge cloud server.
We assume that a UE is continuously moving and passing through a series of base stations.
The UE’s movement pattern and base stations’ geographical distribution are known in
advance. Thus, we can compute the accurate time when the UE enters the communication
region of every passed base station and the time when the UE leaves. As shown in
Figure 1, the UE is moving in an arbitrary route and there is a time line recording the
UE’s entering time and leaving time of every passed base station. For example, the UE
enters the communication region of Base Station1 at τ1, and leaves the communication
region of Base Station1 at τ2, at the same time, the UE enters the communication region of
Base Station2, and so on.

Time Line

Moving Track
DNN query 

occurs

DNN job 

completed

Base Station1

Edge Cloud

Base Station2

Edge Cloud

Base Station3

Edge Cloud

Figure 1. A mobile-edge dynamic system with a UE offloading DNN partition to realize the collabra-
tive execution of mobile device and edge clouds.

We define BS = {b1, b2, · · · , bi, · · · } as the set of base stations ordered by the sequence
of the UE passing by, every element bi = (τi, τi+1), in which τi and τi+1 denote UE’s
entering time and leaving time of the ith base station coverage region, respectively.

With the movement of the UE, DNN query will occur at any time. The DNN job
will be processed by the collaborative execution of the UE and some edge cloud servers,
it may need more than one edge servers to complete because the UE maybe move fast
and the time staying in one base station is too short to complete the DNN job, and these
base stations can communicate with each other. We define the time DNN query occurs
as tstart, the time when the DNN job is completed as tend. We define the time that the
UE spends at the same base station to process the DNN job as a time period, and the
number of time periods needed to complete the DNN job as m. We define the set of time
periods as P = {p1, p2, · · · , pm}. The length of each time period is different. The first time
period p1 starts from the time that DNN query occurs and ends with the time that UE
leaves the communication region of the base station, the last time period pm starts from
the time that UE enters the communication region of base station and ends with the time
that the DNN job is completed, other time periods between p1 and pm all start from the
time that the UE enters the communication region of base station and end with the time
that the UE leaves the same base station. For example, if DNN query occurs at tstart as
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shown in Figure 1, and the job will be completed at tend, then the job needs three time
periods to finish, i.e., m = 3, the first time period is from tstart to τ2, i.e., p1 = τ2 − tstart,
the second time period is from τ2 to τ3, i.e., p2 = τ3 − τ2, the last time period is from τ3 to
tend, i.e., p3 = tend − τ3.

The DNN model topology is modeled as a DAG, such as GoogLeNet shown in [4] and
ResNet shown in [5]. The DNN model is embedded in the mobile device and edge clouds
in advance, and the number of DNN layers is n. Every vertex vj (j from 1 to n) in DAG
represents a layer of the DNN, which must be processed either at local or at edge. Our
objective is to minimize the total latency of the DNN computation. Let tl

j and te
j be the time

needed to process the jth layer at local and at edge respectively, which can be recorded
at runtime. Let dt

j denote the data size of the output of the jth layer. The bandwidth is
defined as B, so we can get the transferring time of the output of the jth layer tt

j = dt
j/B. We

define the set of above mentioned constants as Fl = {tl
1, tl

2, · · · , tl
n}, Fe = {te

1, te
2, · · · , te

n},
Dt = {dt

1, dt
2, · · · , dt

n}, Ft = {tt
1, tt

2, · · · , tt
n}. In different hardware platforms, these values

are different, obviously. For the same DNN job, we just need run once at a type of hardware
platform to get these values.

3.2. System Architecture

Figure 2 illustrates the overall architecture of MDPO, working in two phases. We
think all MEC servers have the same computing power in the mobile-edge system. In the
deployment phase, MDPO collects the execution files of DNN layers, including Fl , Fe and Ft,
and MDPO creats SDAG with these execution files. In the runtime phase, the UE can make
DNN partitions according to the SDAG and complete the DNN job with MEC servers.

Job queue

incoming 

jobs

MEC ServerMobile User

Processing 

Unit
Processing 

Unit

Transimission 

Unit

Transimission 

Unit

Data-local Data-edge

Data-up

Data-down

runtime

deployment

SDAG

run DNN to get Fl , Dt  
run DNN to 

get Fe  

get Ft 

Figure 2. The mobile-edge partition offloading system architecture explains how the system works.

In details, when a DNN job being retrieved from the job queue (there may ex-
ist a waiting delay from DNN query occuring to the DNN job being retrieved from
the queue, we don’t consider it in this paper), it needs m time periods to complete
(for different DNN jobs, m is different and it is generated from our proposed MDPO).
MDPO divides the DNN model DAG into m parts and only one part is processed in a
time period, as shown in Figure 3. Let define the set of DNN partitions as SDAG =
{SDAG1, SDAG2, · · · , SDAGm}. In the pi time period, SDAGi is processed by the col-
laborative execution of UE and edge server integrated into UE’s connected base station,
MDPO further divides the SDAGi into two parts, SDAGl

i and SDAGe
i . SDAGl

i is the set
of these DNN layers in SDAGi which are processed at local, such as the blue layers in
Figure 3, and the SDAGe

i is the set of these DNN layers which are sent to the edge cloud
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to process, such as the orange layers in Figure 3. The layers in SDAGl
i and SDAGe

i can
be discontinuous. We define these layers whose outputs need to be transferred over the
network in the ith time period as a set Vt

i , for example, in SDAG1, the output of V0 should
be transferred from local to edge and the output of V1 should be transferred from edge to
local. The layer output can be transferred from user to edge, from edge to user and from
edge to edge. The edge clouds can transfer data to each other through the base station as
shown in Figure 1. Vt

i can easily get when SDAGl
i and SDAGe

i are determined.

v1

v2

v3

v4

v5

v6v0 v7

SDAG1

SDAG2 ~ SDAGm-1

SDAGm

Figure 3. The composition of SDAG.

As mentioned above, we can get the set of partitions of a DNN job as SDAG =
{SDAGl

1, SDAGe
1, SDAGl

2, SDAGe
2, · · · , SDAGl

i, SDAGe
i , · · · , SDAGl

m, SDAGe
m}. The SDAG

is called the DNN execution profile, that is, the optimal partition offloading decision of the
DNN. The SDAG is stored on the mobile device in the deployment phase and the user can
know how to process a DNN job from the SDAG in the runtime phase. Each partition in
SDAG performs its operation on the input matrice (i.e., the output matrice of the former
partition ) and passes the output matrice to the next partition.

For convenience, Table 1 lists some important mathematical notations used in the paper.

Table 1. Notation Description.

Notation Definition

BS = {b1, b2, · · · , bi , · · · } the set of base stations
tstart the time DNN query occurs
tend the time when the DNN job is completed
m the number of time periods

P = {p1, p2, · · · , pm} the set of time periods
n the number of DNN layers
vj a DNN layer

Fl = {tl
1, tl

2, · · · , tl
n} the set of DNN layer’s local processing time

Fe = {te
1, te

2, · · · , te
n} the set of DNN layer’s edge processing time

Ft = {tt
1, tt

2, · · · , tt
n} the set of DNN layer’s output transfering time

SDAG =
{SDAG1l , SDAG1e, · · · , SDAGml , SDAGme}

the DNN execution profile generated by MDPO

Vit the set of DNN layers whose output need be
transferred in network

4. MDPO for Edge Computation Offloading
4.1. Problem Formulation

The objective of MDPO is generating the SDAG execution profile whose total latency
to process the DNN job is minimal. The total latency of DNN computation offloading can
be computed as tend − tstart. We can formalize the objective problem as follows:

minimize : tend − tstart (1)

Taking UE’s mobility into account, minimizing the total latency equals to completing
the DNN job with least number of passing base stations (since the time the UE spending
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in every base station is fixed), which also can be thought as the number of time periods,
problem (1) can be equivalently re-formalized as follows:

minimize : m (2)

Furthermore, it equals to maximize the number of DNN layers to be processed at each
time period. It can be realized through making the optimal decision to ensure efficient
cooperation between local and edge. The total latency of the DNN job consists of three
stages, which are local-processing stage, edge-processing stage and transferring stage,
described as follows:

In the local-processing stage, the total local processing latency is the sum of the latency
of processing every SDAGl

i , for i from 1 to m, it can be formalized as follows:

Tl =
m

∑
i=1

( ∑
vj∈SDAGl

i

tl
j) (3)

In the edge-processing stage, the total edge processing latency is the sum of the latency
of processing every SDAGe

i , for i from 1 to m, it can be formalized as follows:

Te =
m

∑
i=1

( ∑
vj∈SDAGe

i

te
j ) (4)

In the transferring stage, the outputs in the Vt
i should be transferred over the wireless

network, the total transferring latency can be formalized as follows:

Tt =
m

∑
i=1

( ∑
vj∈Vt

i

tt
j) (5)

The total latency can be calculated by adding the three stages’ latency formalized
above. The objective function can be equivalently re-formalized as follows:

minimize : T = Tl + Te + Tt (6)

We should guarantee that in every time period, the processing time in this time period
should be less than user’s dwelling time in the base station. In the ith time period, which
can be formalized as follows:

∑
vj∈SDAGl

i

tl
j + ∑

vj∈SDAGe
i

te
j + ∑

vj∈Vt
i

tt
j ≤ pi (7)

Since the DNN topology is complex, we can not get the SDAG directly. Based on the
objective function, we develop a mobility-included DNN partition offloading algorithm
(MDPO) to generate the SDAG. The MDPO algorithm is divided into two steps to complete,
for a DAG topology DNN. Otherwise, for a chain topology DNN, just step (2) can generate
the SDAG. The two steps are summarized as follows: (1) The first step is just for these
DAG topology DNNs, we convert the DAG topology to a chain topology by a DAG-to-
Chain algorithm, this problem can be solved as a min-cut problem; (2) In the second step,
we reconstruct a DAG to represent the collaborative execution paths by the UE and the
edge clouds for a DNN query at the layer level, using a Chain-to-DAG algorithm. Finally,
We can find the shortest path in the new constructed DAG, and we can get the SDAG easily
from the shortest path.

4.2. DAG-to-Chain Algorithm

In this section, we introduce the first step of MDPO, i.e, the DAG-to-Chain Algorithm.
By observing the topologies of lots of DNN models, we found that most DNNs are chain
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topology, even for these DAG topology DNNs, the overall structure is still a long chain,
only some vertices have more than one branches. The most commonly used multi-branch
structure is inception, such as in GoogLeNet [4]. Inception v1 is shown in Figure 4.

Filter 

concatenation

Previous 

layer

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

Figure 4. Inception module, naive version.

Based on this discovery, to simplify the partition offloading decision making, we first
convert the DAG topology to a chain topology before generating the SDAG. At first, we
put all multi-branch structures of the DAG in a set Bran = {br1, br2, · · · , bri, · · · }. A branch
structure bri is defined as the set of vertices from the beginning vertex of the branch to the
branch’s convergence vertex, such as inception structure. We convert every branch to one
layer, therefore, the DAG topology DNN can convert to a chain topology DNN. In order to
complete the structural conversion, we need get the minimal latency of computing every bri.

The objective in this phase is to minimize the total latency of computing every bri by
the the collaborative execution of the UE and the edge cloud. As the multi-branch structure
always has a few layers, and the bottleneck of latency is transmission latency, we should
avoid too much data transmission over the wireless network, so we just cut the branch
once to realize the collaborative execution, it can be resolved as a min-cut problem. We cut
the bri into two disjoint subgraphs, the former subgraph is processed at local and the latter
one is offloaded to the edge cloud. The total latency consists of three stages, as formalized
in Equation (6). To get the minimal latency, we construct a new graph gi to represent the
total latency of these three stages of bri [27], so that each edge only captures a single delay
value. e and l are two new vertices we add to the graph to represent the edge-processing
and local-processing. The procedure from bri to gi is shown as Figure 5.

In the newly constructed graph gi, blue links represent the local-processing stage, its
weight is tl

j. Orange links represent the edge-computing stage, its weight is te
j . Black links

represent the transferring stage, its weight is tt
j. To get the minimal latency, the problem

can be thougt as a min-cut problem. Our job is to cut the graph into two disjoint subgraphs
to ensure the total latency is minimal, requiring the vertices l and e in different subgraphs,
such as the red dotted line in Figure 5. For every vertex vj, if the link from l to vj is cut,
the jth layer is processed at local, and if the link from vj to e is cut, the jth layer is processed
at edge. Moreover, the black cut links represent the transmission latency. The total latency
is the sum of the weights of all cut links. However, one vertex may have multiple successors
and its transmission latency is cut multiple times, but we count in the total latency only
once. Boykov’s algorithm [33] is used to solve the min-cut problem. We define the total
latency of processing bri as tmi.
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v1

v2

v3

v4

v5

v6
input output

l

e

tj
l

tj
e

tj
t

v1

v2

v3

v4

v5

v6
input output

Figure 5. The procedure of constructing a DAG gi from a branch bri.

In order to convert the DAG topology to a chain topology, we merge every multi-branch
structure into one layer, as shown in Figure 6. We define the local processing time of this layer
as ∞ and the edge processing time of this layer as tmi, and we renumber the layers. Then,
the DAG topology DNN can convert to a chain topology DNN, defined as Chain.

v1

v2

v3

v4

v5

v6v0 v2

t1

l
 =   

      t1

e 
= tmi 

     t1

t
 =

 
 t6

t

V1

Figure 6. The method of converting a branch bri to a layer.

The DAG-to-Chain Algorithm is concluded as Algorithm 1.

Algorithm 1 The DAG-to-Chain Algorithm

Input: DAG, Fl , Fe, Ft
Output: a newly constructed chain topology DNN Chain, Fl , Fe, Ft
1 for every bri in Bran of DAG
2 gi = new-graph-constuct( bri, Fl , Fe, Ft);
3 tmi = min− cut(gi);
4 tl

i = ∞
5 te

i = tmi
6 update the DAG to Chain with tl

i ,t
e
i

7 update the Fl , Fe, Ft in the Chain
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4.3. Chain-to-DAG Algorithm

In this section, we introduce the second step of MDPO, i.e, the Chain-to-DAG al-
gorithm. In this phase, our objective is to derive the SDAG to finish the DNN job with
minimal latency. We construct a DAG G to represent the collaborative execution paths by
the UE and the edge clouds for a DNN query at the layer level [28]. Figure 7 illustrates the
method to create G from Chain, which is generated after step1. Left in Figure 6 is the chain
topology DNN, and the blue vertex represents that it is converted from a multi-branch
structure. We construct a DAG as shown in right. For the new constructed G, except for
the input vertex and output vertex, each vertex in Chain is converted into three vertices.
Two vertices in right belong to the edge cloud, since offloading to edge contains the edge
processing time and transferring time. And one vertex in left belongs to the mobile device.
Each edge is added with a weight to depict the corresponding overhead, as wrote in
Figure 7. Some edges have zero weight since no computation or transmission overhead
is involved.
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Figure 7. The method of converting a Chain topology DNN to a DAG topology to represent the
collaborative execution paths by the UE and the edge clouds.

In detail, for these layers who are not converted from a multi-branch structure like V1,
it is converted into three vertives 1, 2, and 3. The weight between 1 and 2 is the transferring
time of the output of the former layer, the weight between 2 and 3 is the edge processing
time of this layer, the weight between 3 and 4 is the transferring time of the output of this
layer, and the weight between 1 and 4 is the local processing time of this layer. We can
decide where to process this layer(local or edge) through comparing the total time of local
processing and edge processing. Actually, the minimal processing time is related to the
processing decision of the former layer. So we should find the best offloading decision
profile all layers together.
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However, for these layers who are converted from a multi-branch structure like V2,
we have decided its offloading decision in step1, the former part of the multi-branch
structure is processed at local and the latter part is processed at edge. The local processing
time between 4 and 7 has been valued as ∞ and the edge processing time between 5
and 6 has been valued as tm2. So when finding the shortest path, we must choose edge
processing. As the former part of the branch is processed at local, if the layer before V2 is
processed at local too, there is no transmission overhead, so the weight between 4 and 5
is 0. If the layer before V2 is processed at edge, the output of the former layer should be
transferred to mobile user, so the weight between 3 and 5 is the output transferring time
of V1. And the weight between 6 and 7 is the transferring time of the output of this layer,
the weight between 6 and 8 is 0 because if the next layer is processed at edge, there is no
transmission overhead.

After constructing the G, we can find the shortest path in G using shortest path
algorithm, such as Dijkstra algorithm or Floyd algorithm. For example, as shown in
Figure 7, we consume that the red line is the fastest execution path for a DNN query.
The shortest path we found is the optimal offloading decision under the premise that
the user won’t handover its connected base station, base stations’ handovering maybe
bring some time loss. Therefore, the shortest path is not equivalent to the SDAG, since
the UE is moving and base stations’ handovering will happen frequently. What needs to
change is the execution decision of the layer which is processed at the time when the user
is handovering its connected base station. In every time period, we need to satisfy the
constraint as shown in Equation (7), the processing time in this time period should be less
than user’s dwelling time in the base station. We can derive the SDAG from the shortest
path layer by layer to satisfy the constraint.

We just need to reconfirm the execution decision of the layer which is processed at
the time when the UE is handovering its connected base station. We can discuss it in two
situations. (1) The first situation is that during the handovering time, the UE is doing local
processing, then the UE can continue its local processing, the base station handovering has
no effect on local processing. (2) The second situation is that during the handovering time
the UE is doing edge processing, then the output generated at edge cannot transmit to the
UE because after edge processing, the user has handovered to the next base station. In this
case, the output can transfer to the next base station to continue DNN processing, but it
costs a transferring time of the output. In this way, the edge processing time need to add
this output transferring time between these two base stations. We can compare this new
edge processing time with local processing time, and choose the way with less latency to
update the SDAG.

The Chain-to-DAG Algorithm is concluded as Algorithm 2.

Algorithm 2 The Chain-to-DAG Algorithm

Input: Chain, Fl , Fe, Ft,P
Output: SDAG
1 G = newgraph-constuct(Chain, Fl , Fe, Ft);
2 SP = shortest-path(G);
3 for every layer vj in SP
4 if vj is processed at handovering time && vj is processing at edge
5 te

j += tt
j;

6 if te
j > tl

j
7 update SDAG by pushing vj to local processing set;
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5. Evaluation

In this section, we evaluate the proposed MDPO algorithm in terms of the end-to-end
latency speedup across different DNN benchmarks on different network conditions, com-
paring to local-only execution approach and cloud-only execution approach. (Section 5.2).
We also evaluate the performance of MDPO with different moving velocities of the UE.
(Section 5.3) We then compare MDPO against Neurosurgeon [25], a well-known DNN
computation offloading framework. (Section 5.4)

5.1. Experimental Environment

We implemented MDPO on pytorch DNN framework, which is an actively devel-
oped open-source deep learning library. Our mobile device is a laptop with a Intel CPU
(2.11 GHz) and 2 GB memory. Our edge server has a Intel CPU(3.60 GHz 16 cores), NVIDIA
GeForce RTX 2080 Ti GPU and 64 GB memory. MDPO can make partition on both chain
topology and DAG topology DNN. We evaluate the performance of MDPO on both topolo-
gies. For chain topology, AlexNet [1] and VGG16 [34] are used as benchmarks, and for
DAG topology, GoogLeNet [4], ResNet [5] and MobileNet [35] are well-known models used
as benchmarks. The multi-branch structure in GoogeLeNet is Inception, the multi-branch
structure in ResNet is residuals module and the multi-branch structure in MobileNet is
inverted residuals module. The details of these DNNs are shown in Table 2.

We consider the scenario that the geographical distribution of base stations follows an
independent uniform distribution, and the radius of communication region of every base
station is set as 50 m. The UE performs a uniform linear centripetalmotion with different
velocities. We evaluate the MDPO performance on four kinds of network conditions, which
are 3G (1 Mbps), 4G (50 Mbps), WiFi (100 Mbps) and 5G (500 Mbps). We compare the
performance of MDPO with local-only execution and edge-only execution. In the edge-only
execution, the UE transfers the raw input to the edge cloud, the DNN model is stored in
edge cloud in advance. So the edge cloud can process the DNN job to get the final output,
then the edge cloud transfer the result to the user. The edge-processing time is formalized
as the sum of these three stages’ time.

Table 2. DNNs for Evaluation.

DNN Name Number of Layers DNN Topology

AlexNet 24 chain
VGG 42 chain

GoogLeNet 152 DAG
ResNet 245 DAG

MobileNet 110 DAG

5.2. Latency Improvement

In this section, we evaluate the end-to-end latency speedup across 5 DNN benchmarks
as shown in Table 2 on four different network conditions using MDPO, compared to
local-only processing and edge-only processing, the result is shown in Figure 8. In this
experiment, the velocity of mobile user is 100m/s and we use the same input for every
DNN benchmark.

Figure 8a shows the result on 3G network, when the network’s is under heavy work-
load, the performance of our proposed MDPO equals to the performance of local-only
execution for every DNN benchmark. Actually, MDPO choose to execute all layers at
local on this network condition, since it costs too much time to upload the input or layer
output to the edge cloud over wireless network, the transferring time is magnitude of
local-processing time. So wireless network transferring is the bottleneck of edge-processing
under poor network. Of course, if the data size of the input or some layer output is very
small, then the transferring time can be decreased sharply, MDPO may choose to offload
some partitions to edge clouds on 3G network. However, the data size of the input image
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in our experiment is about 600 KB and in the current Internet environment, pictures with
very small size are not commonly used.

In contrary, as shown in Figure 8d, we can find that under light-workload network
condition 5G, it costs little time to upload the DNN input to edge servers, and the per-
formance of edge-only execution improves dramatically compared to heavy-workload
network condition, such as 3G shown in Figure 8a. The MDPO equals to the edge-only
execution for every DNN benchmark since the layer transferring time can be less than
layer processing time at local on 5G network. Under light-workload network, the latency
speedup depends on the computing power ratio of edge cloud and mobile device. There-
fore, if the edge server’s load is heavy, more layers should be processed at local. In our
proposed MDPO, we assume that the server resources are sufficient. We should take the
edge cloud load into account in future work.

Figure 8. The latency speedup of MDPO across 5 DNNs on four kinds of network conditions[3G (1 Mbps), 4G (50 Mbps),
WiFi (100 Mbps) and 5G (500 Mbps)] compared to local-only execution and edge-only execution. The result is normalized to
local-only execution.

In Figure 8b,c, the workload of network is between 3G and 5G. Actually, the era of
3G has passed, and the era of 5G has not yet come. 4G and WiFi are commonly used
in our daily life. We can find that MDPO works well in 4G and WiFi network. MDPO
can utilize both computing resources in mobile devices and edge clouds to improve the
computational efficiency. DNNs are composed of different types of DNN layers, such as
convolution layers, pooling layers and fully-connected layers. Different types of DNN
layers have different calculation features and data sizes, MDPO can always find the optimal
partition approach to adapt to different DNN layer types and DNN topologies, including
DAG topology and chain topology. MDPO always has better performance compared to
local-only and edge-only processing. It achieves a latency speedup of 3.9× in 4G and 5.8×
in WiFi on average over the local-only approach. In our proposed MDPO, we assume
that the battery of mobile device is sufficient. We should take the mobile device battery
into account in future work, if the battery is limited, more layers should be offloaded to
edge clouds.

In conclusion, MDPO can adapts well to different network conditions, it always be the
optimal strategy to process the DNN job compared to local-only execution and edge-only
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execution. When the network condition is well, MDPO choose to offload more DNN
layers to edge clouds to process, and when the network condition is heavy, MDPO choose
to process more DNN layers at local. In addition, MDPO can always make the optimal
partition to adapt to different DNN topologies.

5.3. UE Velocity Variation

In this section, we evaluate MDPO’s resilience to UE’s different moving velocities. We
evaluate the performance with AlexNet in 4G network and the result is shown in Figure 9.

We can find that the moving velocity of the mobile user has little influence on MDPO.
Actually, when the UE moves faster, handovering the connection of base stations becomes
more frequent, and definitely results in more wasted time. So the UE moves faster, the la-
tency becomes a little bigger. However, the extra delay is very small and MDPO can
always choose the optimal way to complete the handovering(local-processing or edge
cloud communication). So MDPO can adjust well to different UE velocities.
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Figure 9. MDPO adjusts its partitioned execution as the result of varying UE Velocity.

5.4. Comparing MDPO against Neurosurgeon

Neurosurgeon can automatically partition DNN between the mobile device and the
edge cloud, but it is only effective for chain topology in static environment, while the UE
won’t handover its connected base station. We compare MDPO against Neurosurgeon in a
static environment, since Neurosurgeon cannot work in dynamic environment. As far as
we know, MDPO is the first work taking UE’s mobility into account in DNN partitioning
research. As shown in Figure 10, we can observe that MDPO outperforms Neurosurgeon
because of the more flexible partition. MDPO has a latency speedup up to 1.2× and 1.1×
on average against Neurosurgeon.

MDPO latency speedup against Neurosurgeon in 4G network
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Figure 10. The latency speedup of MDPO against Neurosurgeon across 5 DNNs on 4G network
conditions. The result is normalized to Neurosurgeon execution.
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6. Conclusions

In this paper, we study DNN inference acceleration by partial offloading in MEC
and propose a mobility-included DNN partition offloading algorithm, which partitions
the DNN model to several partitions at layer granularity and allows the collaborative
execution of the mobile user and edge clouds. It can work well in dynamic environment
when the mobile user handovers its connected base station frequently. The MDPO is
suitable for both DAG topology and chain topology DNNs. Experimental results show
that MDPO can significantly reduce total latency and improve performance of DNN
computation compared to local-only execution, edge-only execution and a well-known
DNN computation offloading framework, Neurosurgeon. The moving patterns of the UE
have little influence on the performance of MDPO and MDPO can adapt well to different
network conditions.
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