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Genome-scale metabolic modeling reveals increased
reliance on valine catabolism in clinical isolates
of Klebsiella pneumoniae
Matthew L. Jenior1,4,5✉, Mary E. Dickenson1,4 and Jason A. Papin 1,2,3,5✉

Infections due to carbapenem-resistant Enterobacteriaceae have recently emerged as one of the most urgent threats to
hospitalized patients within the United States and Europe. By far the most common etiological agent of these infections is Klebsiella
pneumoniae, frequently manifesting in hospital-acquired pneumonia with a mortality rate of ~50% even with antimicrobial
intervention. We performed transcriptomic analysis of data collected previously from in vitro characterization of both laboratory
and clinical isolates which revealed shifts in expression of multiple master metabolic regulators across isolate types. Metabolism has
been previously shown to be an effective target for antibacterial therapy, and genome-scale metabolic network reconstructions
(GENREs) have provided a powerful means to accelerate identification of potential targets in silico. Combining these techniques
with the transcriptome meta-analysis, we generated context-specific models of metabolism utilizing a well-curated GENRE of K.
pneumoniae (iYL1228) to identify novel therapeutic targets. Functional metabolic analyses revealed that both composition and
metabolic activity of clinical isolate-associated context-specific models significantly differs from laboratory isolate-associated
models of the bacterium. Additionally, we identified increased catabolism of L-valine in clinical isolate-specific growth simulations.
These findings warrant future studies for potential efficacy of valine transaminase inhibition as a target against K. pneumoniae
infection.
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BACKGROUND
Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as
a growing and urgent issue in healthcare facilities around the
world, posing a significant threat to public health. Carbapenem
antibiotics, currently considered to be the most potent and highly
effective class of antimicrobial agents, are often considered a last-
resort, reserved specifically for the treatment of severe multidrug-
resistant (MDR) bacterial infections1–3. This recent surge in CRE-
associated infections has been driven primarily by the emergence
and dissemination of carbapenemases, a specific type of
β-lactamase that has the ability to hydrolyze carbapenems,
rendering even carbapenem-class antibiotics ineffective2. A large
proportion of these CRE-related infections are due to the Gram-
negative bacterium Klebsiella pneumoniae2,3, with over 50% of K.
pneumoniae infections now being resistant to carbapenems in
parts of the Eastern Mediterranean and Europe3. As K. pneumoniae
has been rapidly acquiring antibiotic resistance and rendering
almost all available treatments ineffective, the discovery of new
treatment strategies for this bacterial pathogen are critical1,3.
One strategy that has emerged recently is the targeting of

elements of virulence or core metabolism that may be too costly
for the organism to accumulate mutations in or diminish the
ability to manifest disease4. By identifying those characteristics
lost during evolution toward sustained laboratory culture, while
remaining conserved across infections, it becomes possible to
gain insight into important phenotypes that contribute to
successful infection. Furthermore, it has been shown that clinical
and laboratory isolates of other bacterial pathogens may also be
easily differentiated by distinct metabolic capacities5. Employing

this approach for K. pneumoniae, we may highlight “core”
metabolic pathways in clinical isolates that may present ideal
therapeutic target candidates. Consistent with this strategy,
certain elements of metabolism have already been successfully
identified as drug targets in bacterial pathogens including other
Enterobacteriaceae6–9.
Changes in bacterial transcription have been used to assess

differences in active metabolism with higher resolution than
metabolomics screens, as shifts can be traced to specific pathways
and gene products10. While RNA-seq has become a relatively
standard method for characterizing transcription, technical
variability, small sample sizes, and sample heterogeneity still exist
and may influence study-specific results11,12. Additional differ-
ences in data processing criteria also introduce variability into
downstream interpretations13,14. To account for these factors,
meta-analyses of transcriptomic datasets across multiple studies
can be performed using a unified curation and analysis pipeline.
As such, we assembled 56 publicly available transcriptomes of K.
pneumoniae isolates from both the laboratory and clinical profiles
during growth in similar media conditions at multiple institu-
tions15–18. Overall, certain transcriptional patterns varied consis-
tently between clinical and laboratory isolates, and differential
expression analysis revealed increased transcription of aminogly-
coside degradation and key regulators for histidine utilization
among clinical isolates.
To further explore possible targets within infection-associated

metabolic pathways, we integrated our transcriptomic meta-
analysis with a previously published genome-scale metabolic
network reconstruction (GENRE) of K. pneumoniae (iYL1228)19.
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GENREs are computational formalisms of the biochemical reac-
tions encoded for in an organism’s genome20,21. Previously,
GENRE-based growth simulations in other pathogens have
successfully highlighted novel enzyme targets which were
subsequently validated in the laboratory, effectively accelerating
research efforts8,20,21. Additionally, GENREs can also be utilized to
provide improved context for omics data as the network
architecture can reveal additive effects of small changes in activity
across interconnected pathways22. These network-based analyses
enable greater insight into metabolic patterns that correspond
with growth under specific conditions, such as during active
infection20,21. We continued the transcriptomic meta-analysis
through integration with metabolic network-based investigation
which allowed us to discern novel conserved components of K.
pneumoniae’s metabolic strategy specific to active infection. Most
prominent among these predictions was significantly elevated
uptake and utilization of environmental L-valine through the
increased activity of an Enterobacteriaceae-specific valine transa-
minase. This elevated uptake of L-valine was observed across
>89% of clinical isolate context-specific models, while nearly
entirely absent from models of laboratory strains, supporting the
hypothesis of increased importance for survival in vivo. These
results also agreed with previous findings that macrophages
respond to high concentrations of exogenous valine in order to
upregulate phagocytosis and the killing of K. pneumoniae during
infection23. Our study highlights the utility of well-curated GENREs
integrated with transcriptomic data to accelerate molecular target
identification.

RESULTS
Transcriptomic data collection
We performed an extensive search of publicly available RNA-Seq
datasets on the NCBI Sequence Read Archive24 characterizing
either laboratory or clinical isolates of K. pneumoniae. Datasets
were considered for meta-analysis if isolates were grown to
exponential phase in vitro using LB growth medium at 37 °C, at
which point transcriptomic samples were collected and
sequenced. This selected standard for transcriptomic samples
was still anticipated to be reflective of emergent properties within
both laboratory strains and clinical isolates25. Strains that undergo
serial passaging, including strains that originated from the clinic,
are understood to have many different characteristics when
compared to strains which were more recently isolated from a
clinical setting26,27. Therefore, the strains represented throughout
this study were classified as laboratory strains if they had
undergone serial passaging (defined within this study as having
undergone greater than four passages26–29), whereas strains were
classified as clinical isolates if they were recently isolated (having
undergone a maximum of four passages) from a clinical setting. As
properties characteristic of laboratory strains versus clinical
isolates are typically understood to be developed over an
extended period of time30. These criteria resulted in 56 total
RNA-Seq datasets across four distinct studies; of these datasets, 17
represented laboratory strains16,17 and 39 represented clinical
isolates15,18 (Supplementary Table 1). The combination of studies
from a variety of independent groups also helps to minimize
concerns due to strain or experimental variation inherent to each
individual study31. Further, the simple categorization of datasets,
being laboratory or clinical, selected for use here is both highly
clinically relevant and results in a much greater ability to power
the claims being made through this study.

Transcriptomic meta-analysis reveals differential expression
in metabolic regulators and antibiotic resistance
To first characterize overall transcriptional dissimilarities between
isolate types, we performed a differential expression analysis,

comparing the relative transcriptional expression of each gene in
laboratory versus clinical strains, thresholding with an adjusted
p-value cutoff of 0.05 and a log2 fold change of 2.5 (Fig. 1A and
Supplementary Table 2). This analysis identified a total of 19 genes
as differentially expressed, 10 that are more associated with
clinical isolates and 9 that are more associated with laboratory
strains. Among genes with the highest degree of change were a
subset of amino acid metabolism regulators, including the hutC
transcription factor gene (Fig. 1B) and the gcvH glycine cleavage
system (Fig. 1C), that were both significantly increased in clinical
isolates. Importantly, each of these discussed transcriptional
differences were statistically significant, albeit some have a low
difference in absolute value of the change. Specifically, hutC
encodes for an established regulator of histidine utilization which
has been shown to be a critical colonization factor among certain
strains of K. pneumoniae32. Additionally, transcript for aminoglyco-
side N-acetyltransferase is significantly overrepresented in clinical
isolates (Fig. 1D) and encodes for an enzyme that directly
mediates the breakdown of aminoglycoside antibiotics. Addition-
ally, a putative stress response protein was expressed more highly
in clinical isolates (Fig. 1E), and has also been previously
associated with increased antibiotic resistance33. Alternatively,
mrkA, a type-3 fimbriae subunit gene, has been shown to facilitate
biofilm formation34 and whose expression was significantly more
associated with laboratory isolates (Supplementary Fig. 1A).
Furthermore, genes for multiple ribosomal subunits were highly
expressed in laboratory strains (Supplementary Fig. 1B, C). This
result suggests that the laboratory strains studied here may have
evolved towards optimization for faster growth in culture
medium35. Cumulatively, these results support the observation
that overall transcriptional activity strongly differed between
laboratory and clinical isolates in a manner that may impact
infection outcomes, and underscored the point that key metabolic
shifts may play a role in these differences.

Leveraging transcriptomics and GENREs to generate context-
specific models of K. pneumoniae
Previous studies have shown that GENREs are powerful platforms
for transcriptomic data integration, allowing for the capture of
greater context surrounding metabolic shifts between varying
conditions22. We therefore generated context-specific models of
metabolism representing either clinical or laboratory K. pneumo-
niae isolates utilizing a recently published method for transcrip-
tome data integration36, alongside a well-curated K. pneumoniae
GENRE (iYL1228)37. Briefly, the transcriptomic data integration
method identifies the most cost-effective usage of metabolism to
achieve growth that best reflects the cell’s investments into
transcription and further prunes inactive reactions36. Using this
approach, we generated unique isolate-type-specific models of K.
pneumoniae metabolism in rich medium for each of the 56
collected transcriptomes, and assessed the emergent differences
in active metabolism (Fig. 2). The resultant models of context-
specific metabolism contained a median of 298 and 302 reactions
in laboratory or clinical isolate models, respectively, from the total
2262 reactions in the uncontextualized iYL1228 (Supplementary
Table 3). Interestingly, models derived from clinical isolate
transcriptomic data were consistently larger than those from
laboratory strains, reflecting possible loss of unnecessary meta-
bolite biosynthesis during evolution toward growth in rich in vitro
culture medium. This data-driven minimization of the possible
metabolic solution space more readily reveals critical elements of
context-specific metabolism of the organism otherwise not
detectable from strictly analyzing the transcriptomic data, and
allows for a variety of downstream growth simulations.
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Network topological analysis and essentiality screens
highlight valine catabolism as differentially critical in clinical
isolates
To begin to assess overall differences in each contextualized
model, we performed an analysis of unique subnetwork topology
to each isolate-type-specific group of models. After subtracting
“core” reactions that were present in all 56 models, we were left

with a median of 52 and 72 reactions that were unique to either
laboratory or clinical-specific models, respectively (Supplementary
Table 3). Finally, to focus the analysis on those reactions most
shared within each group we further limited the scope of reactions
to only those shared by at least 55% of models within each group
respectively, revealing 15 differentially active reactions (Fig. 3A).
Among the most prominent patterns from this analysis were

Fig. 2 General procedure for generating context-specific models of metabolism from transcriptomic data. All 56 datasets from the
transcriptome meta-analysis were used to generate distinct context-specific models of K. pneumoniae metabolism.

Fig. 1 Transcriptional differences between laboratory and clinical isolates of K. pneumoniae. A Differential expression analysis with Log2
fold change cutoff= 2.5, p-value cutoff= 0.05. Genes with highest degree of difference are labeled. Each point is an individual gene and the
color of the point corresponds to whether or not the Log2 fold change is not significant (black, NS), has a Log2 fold change > 2.5 (green, Log2
FC), has a p-value < 0.05 (blue, p-value), or a Log2 fold change > 2.5 and a p-value < 0.05 (red, p-value and log2 FC). B–E Median and
interquartile ranges for select genes based on previous analysis. Significant differences determined by Wilcoxon rank-sum test with
Benjamini–Hochberg correction (***p-value ≤ 0.001, **p-value ≤ 0.01).
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reactions for the import of environmental L-valine in clinical isolate
models that were not present in their laboratory counterparts.
When quantified, there was consistently a large positive net import
flux across valine-associated reactions in clinical isolate models
(mean net import flux= 8.959) (Supplementary Table 4). This
finding was interesting as it has been recently discovered that
exogenous L-valine promotes increased macrophage phagocytosis
in vivo, thereby pressuring a lung pathogen to evolve to remove
excess valine from the environment23.
Next, we sought to identify differentially essential metabolic

pathway elements between clinical and laboratory isolates in an
effort to ultimately provide a basis for future drug target
discovery efforts. To accomplish this goal, we performed both
single gene and reaction knockout simulations across context-
specific models using a threshold of a minimum of 1% of optimal
biomass for a gene or reaction to be deemed essential38,39. This
functional analysis resulted in a median of 262 and 282 essential
reactions in laboratory and clinical associated models, respec-
tively (Supplementary Table 3). We then cross referenced these
results against the uncontextualized iYL1228 to limit potential
targets to only those components of metabolism that were
environment-specific, and likely not due to strict user-applied
constraints, as well as subtracting the “core” essential reactions,
resulting in a reduction to a median 52 (laboratory) and 72
(clinical) essential reactions. Then, using a similar 55% threshold
of shared elements to the previous topology analysis, our
combined essentiality screen reported a total of 15 reactions as
differentially essential between isolate types (Fig. 3B). This
analysis indicated that bioconversion of environmental valine is
essential in clinical isolates, but not for laboratory strains of K.
pneumoniae. Of the 15 differentially essential reactions parsed,
three reactions were directly related to valine metabolism (Fig.
3B). These three reactions had the highest levels of consistent
essentiality among analyzed reactions, being essential for growth
in ~90% of clinical isolate context-specific models. These results
seem to agree with the prior topology-based findings, indicating

that valine catabolism may play an important role in the
metabolism of K. pneumoniae during infection.

Simulated growth analysis predicts growth advantage and
metabolic heterogeneity among clinical K. pneumoniae
isolates
After observing consistent differences conserved across the
metabolic models with individually integrated transcriptomes,
we then performed a unified analysis within each group (clinical
and laboratory) to incorporate all possible strain-level variation
into single models of metabolism for each isolate type. We first
specified the objective function as biomass for the subsequent
analysis. We then iterated through a wide range of minimum
objective flux values, assessing the correlation between the
transcript abundances and the median reaction flux values during
each iteration. From this analysis, the optimum biomass flux
threshold value corresponding to the highest transcript-to-model
correlation value was selected for both conditions. The two
resultant models, being one laboratory strain model and one
clinical isolate model, are able to account for the variation
captured within each isolate type and the optimal flux distribu-
tions that most fit with the transcriptomic investments made by
the bacterium. From the corresponding flux distributions, we first
measured differences in sampled biomass reaction flux, which is
analogous to the growth rate and accounts for biosynthesis of
major cellular components (Fig. 4A). Strikingly, growth simulations
with a rich medium in silico formulation predicted that the clinical
isolate-specific model produced biomass at a significantly higher
rate than laboratory strains under the same extracellular condi-
tions (p-value ≪ 0.001), indicating that clinical isolates have a
higher potential ability to grow more rapidly. This observation
may be explained by the fact that colonizing a host organism
presents substantial environmental pressure and encourages
rapid growth to ensure the highest probability of colonization.
Though it was observed that laboratory strains had potentially
evolved metabolic machinery towards faster growth in culture

Present
Absent

Essential
Non-essential

A

B

Fig. 3 Environmental valine is differentially essential in clinical isolate context-specific models of K. pneumoniae. A Reaction topology
differentially present between the context-specific model groups. B Differential reaction essentiality between isolate model groups,
essentiality was determined through single reaction knockout screen with a cutoff of 1% of the biomass flux. Inclusion in final analysis was
determined by cross reference against uncontextualized GENRE and a within-group shared threshold of >55% of models possessing a given
feature. Color within the figure area indicates essentiality/presence (red) and non-essentiality/absence (blue), and color on the top margin
denotes strain-type of origin for the associated transcriptome with clinical isolate (purple) or laboratory strain (teal).
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medium, the growth simulations performed here demonstrated
that clinical isolates may be able to grow more effectively due to
their optimization around environmental pressures.
To then evaluate the degree to which core metabolic activity

was altered across isolate types, we focused the analysis of
reaction activity on reactions shared across both clinical and
laboratory-specific models (excluding the biomass synthesis
reaction). To accomplish this goal, flux sampling of the optimal
metabolic solution space was performed exhaustively which
resulted in possible activity levels for all reactions in the network
that satisfies not only robust growth but also the integrated
transcriptome. To focus specifically on differential patterns of core
metabolism, we temporarily excluded biomass synthesis reaction
components as they remained largely consistent across condi-
tions. Using the reaction flux distributions from this subset of the
overall metabolic networks, we performed unsupervised machine
learning through non-metric multidimensional scaling (NMDS) of
Bray–Curtis dissimilarities (Fig. 4B), which indeed showed a
significant difference in core metabolic activity between the
isolate-type-specific models (p-value= 0.001). This finding was
intriguing as it indicated the strain groups are likely adapted for
growth in distinct metabolic environments despite simulated
growth in the same media conditions. Within-group variation was
also significantly greater in clinical isolates (p-value < 0.001,
Supplementary Table 5), accurately reflecting the environmental
diversity within patients from which they were isolated. Con-
versely, the within-group variation of core metabolic activity was
very low in laboratory-specific growth simulations, potentially
suggestive of evolution toward growth in culture medium.

Flux sampling further supports valine consumption as
important to the metabolic strategy of clinical isolates
Based on our previous results, we investigated differences in
L-valine usage between the two isolate-type models during
growth. Interestingly, the maximum growth rate achieved by the
clinical-isolate model was significantly greater than that of the
laboratory isolates (p-value ≪ 0.001). Closer investigation revealed
the increased L-valine consumption was due to activity of valine
transaminase, which mediates the conversion of L-valine to
L-alanine and results in the downstream production and export
of acetate (Fig. 5B). Valine transaminase was highly active only

within the clinical isolate model, but entirely inactive from the
laboratory strain-specific model following processing via Reaction
Inclusion by Parsimony and Transcript Distribution (RIPTiDe)
(Fig. 5B). RIPTiDe is a tool designed to integrate transcriptomic
data into metabolic models and identify most likely forms of
active metabolism by calculating the most cost-effective meta-
bolic activity based on cellular investments into transcription.
Differential transcription analysis for enzymes including in the
valine biosynthesis KEGG pathway were indeed more highly
transcribed in laboratory isolates (Supplementary Fig. 2A).
Furthermore, although the gene for valine transaminase (ilvE,
KPN_04269) is more highly transcribed in laboratory isolates,
downstream enzymes in the valine degradation pathway are more
highly transcribed in clinical isolates (Supplementary Fig. 2B).
Thus, the use of RIPTiDe interestingly was able to reveal a likely
reduction in valine consumption in laboratory isolates, and a
larger rate of valine catabolism in clinical isolates. Alternatively,
laboratory context-specific models were predicted to utilize
D-fructose at significantly higher rates through the TCA cycle
(Fig. 5C) and ultimately export large amounts of succinate as a
byproduct (Fig. 5D), potentially due to laboratory media adapta-
tion over time. These results support the hypothesis that the
clinical isolates may be more primed to consume environmental
valine, despite not being auxotrophic for the amino acid. As
previously stated, exogenous L-valine has recently been shown to
act in an immunostimulatory manner, causing an upregulation in
macrophage phagocytosis in the host immune system23. Other
studies have additionally shown that glutamate may play an
immunosuppressive role, as accumulation of glutamate can lead
to limited T-cell function40. Combined, these findings suggest
clinical isolates of K. pneumoniae may have upregulated amino
acid catabolism to combat host mechanisms of antibacterial
immunity.

DISCUSSION
Throughout the past several years, alarmingly increasing numbers
of bacterial pathogens have been reported as resistant to
antibiotics41, emphasizing the need for identification of novel
therapeutic options. GENREs have become powerful tools for
elucidating the metabolic mechanisms underlying infectious
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diseases, allowing for the identification and acceleration of novel
metabolism-based strategies for treatment22. Transcriptomic
datasets have additionally been leveraged to further contextualize
GENRES to discover essential portions of metabolism for the given
cellular states10. By targeting elements of metabolism specifically
related to life in a host, we may be able to interfere with the ability
of the organism to colonize or cause disease. Here, we leveraged
computational metabolic modeling of K. pneumoniae in combina-
tion with transcriptomic meta-analysis to identify unique compo-
nents of clinical-isolate metabolism.
Metabolic modeling results indicated highly distinct patterns of

activity within the core metabolism of clinical versus laboratory
isolates, highlighting distinct adaptations to their individual
environments. Analysis of the models representing clinical isolates
point towards the conservation of valine metabolism machinery
and the prioritization of early valine catabolism. Importantly,
valine has been shown to augment macrophage phagocytosis,
and this result could be indicative of an immunosuppressive
strategy K. pneumoniae evolved for survival during infection23.
Additional tracking of the pathways in which valine is metabolized
showed that clinical isolates were converting this amino acid into
glutamate, which is thought to act as an immunosuppressant. This
phenotype may be due to K. pneumoniae evolving to sequester
valine from the host immune system23. The bacteria are then able
to convert and excrete the byproducts as glutamate which acts as
an immunosuppressant signal. This observation agrees with other
studies that have shown the ability to metabolize valine has a
clear effect on the fitness of K. pneumoniae during active

infection42,43. Cumulatively, this study points towards the impor-
tance of amino acid catabolism for successful host colonization, a
functionality that may be conserved among strains more recently
isolated from infections.
While this study presents several novel insights into the

relationship between the metabolism of K. pneumoniae and host
factors, some limitations to the analyses are present. While
transcriptomic surveys have become relatively standard, there
are still potential issues including technical variability and sample
heterogeneity which may influence the quality of data in each
study11,12. Additionally, since the strict exclusion criteria used for
selecting datasets resulted in a fewer number of studies being
included in this analysis, none of which included both laboratory
strains and clinical isolates in the same study, there could be
some bias introduced due to this data selection. Further, 15 of the
17 laboratory strains analyzed within this study originated from
the same parent strain, which may have introduced strain bias
into this study. Considering these factors, a transcriptomic meta-
analysis addresses some of the limiting factors in each
component study. We additionally acknowledge that GENREs
are not a complete representation for all mechanisms that
determine metabolic activity, as they are only built around
current reaction annotation data and lack consideration for other
levels of regulation44. Despite this limitation, the GENRE utilized
here was able to accurately predict the metabolic capabilities of
K. pneumoniae previously37, bolstering confidence in the meta-
bolic predictions made here. We do understand that since the
selected model (iYL1228) was curated using K. pneumoniae strain
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MGH 78578, the diversity of strains the transcriptomic datasets
were gathered from may result in a differing ability for the
selected model to fully represent the metabolic activity of each of
these strains. Furthermore, while the discordant relationship with
higher valine transaminase transcription in laboratory strains yet
lower reaction activity is most likely due to increased transcrip-
tion of functionally related enzymes in clinical isolates, inaccura-
cies in construction of the GENRE may also be a contributing
factor that requires additional curation. Despite these considera-
tions, our analyses demonstrate the strength of systems biology
approaches to identify potential metabolic targets against
bacterial pathogens.
Our results indicate that increased valine catabolism is a

metabolic phenotype more closely associated with clinical isolates
of K. pneumoniae. Future studies may build on the targets
identified in this study to investigate the role of L-valine in K.
pneumoniae colonization and virulence or amino acid release and
utilization by immune cells. Finally, the methods described here
may be applied to other recalcitrant bacterial pathogens in the
future as a platform for accelerated drug target discovery.

METHODS
Transcriptomic data and read curation
All transcriptomic datasets were obtained from the Sequence
Read Archive (SRA) in FASTQ format using the SRA Toolkit. Raw
reads were quality trimmed using Sickle45 to ≥Q25, a tool that
uses quality and length thresholds to determine the appropriate
location to trim the 5’- and 3’- end of reads (Supplementary Table
6). These reads were then strictly mapped to the K. pneumoniae
MGH 78578 genes (GenBank accession number: CP000647.1)
using Bowtie246, a tool for aligning sequencing reads to a
designated reference sequence, and screened for optical/PCR
duplicate reads with Picard MarkDuplicates47, an algorithm for
locating and tagging duplicate reads originating from a single
fragment of DNA. Mapping files were converted to human-
readable format using SAMtools48, a tool designed to facilitate
alignment manipulation in the common Sequence Alignment/
Map (SAM) format. Transcript abundances were normalized to
both read and target gene lengths then evenly subsampled for
equal comparison across conditions.

GENRE-based analyses
The GENRE of Klebsiella pneumoniae strain MGH 78578,
iYL122837, was obtained from the BiGG Model database49 on 5/
21/20. Flux analyses performed in this study utilized cobrapy
(v0.22.1)50. Growth simulations were performed using a pre-
viously published rich medium in silico formulation51. Gene and
reaction essentiality screens were both performed with a
minimum objective flux threshold of 1.0% of the optimal value,
the commonly accepted threshold for these simulations39.
Replicate GENRE transcriptome integration was performed with
RIPTiDe (v3.2.3)36 with 0.75 minimum objective flux fraction.
RIPTiDe is a tool developed to use both transcriptomic
abundances and overall flux parsimony to identify the most
cost-effective usage of metabolism while still accurately reflect-
ing the inputted transcriptomic data. To prune the model so that
it represents the most focused and biologically feasible meta-
bolic solution space possible, RIPTiDe first sets the objective
function to carry near optimal flux. Transcriptomic abundance
values are then used to assign linear coefficients to each
reaction, prior to performing an optimization of the minimum
sum of fluxes. Flux balance analysis is then used to identify the
reactions that no longer carry flux, and these reactions are
subsequently pruned from the model. Maximum fit RIPTiDe
analysis, where all minimum objective flux fractions are
iteratively tested to return the model with the best correlation

between the context-specific flux reactions and the inputted
transcriptomic values, was performed with all transcriptome
replicates on the default settings.

Statistical analysis
Statistical analyses were performed in R (v3.2.0). Ordination
analysis was accomplished using the vegan package (v2.5.7)52.
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