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Abstract: Chinese Angelica is a significant medical plant due to the various therapeutic constituents
in its root; whereas the aerial part is considered worthless and often discarded as agricultural waste.
In this work, phytochemicals from the stem were first systematically analyzed by means of GC–MS
after derivatization and HPLC–MS/MS in multiple reaction monitoring (MRM) mode. Phthalides,
ferulic acid, and coniferyl ferulate were detected in the stem; although their content is relatively low
in comparison with the root. Some specific compounds, such as p-hydroxybenzoic acid, vanillic acid,
protocatechuic acid, caffeic acid, 4-hydroxyphenyl-1, 2-ethanediol, thymol-β-D-glucopyranoside, etc.
and a significant amount of phytosterols (1.36 mg/g stem, mainly β-sitosterol) were detected in the
stem. The extracted oil from the stem contained a considerable amount of phthalides (48.5 mg/g),
β-sitosterol (56.21 mg/g), and stigmasterol (14.03 mg/g); no other bioactive compounds were found
that could be potentially used as pharmaceuticals or additives to healthcare food.
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1. Introduction

Medicinal plants are valuable and sustainable sources of therapeutic agents and health-care foods.
Angelica sinensis (AS) is a perennial Apiaceae plant [1,2]. Its root (also named Radix Angelica sinensis)
is a traditional and ethnologic medicine in China, and has long been employed for tonifying and
invigorating blood, lubricating the intestines, relieving pain, as well as treating female irregular
menstruation and amenorrhea [3,4]. Also, AS root is used as a dietary supplement for women’s
care in Asia, Europe, and America. Great efforts have been directed towards the phytochemistry
of the AS root. The main bioactive constituents include phthalides, ferulic acid, and coniferyl
ferulate [3,4]. Z/E-ligustilides and n-butylidenephthalides in apiaceae are active ingredients that
can reduce platelet aggregation, enhance microcirculation, inhibit uterine contractions, and also exert
analgesic, anti-inflammatory, antiproliferative, and antifungal effects [5–8]. Ferulic acid has antioxidant,
anti-inflammatory, and anti-Alzheimer’s functionalities [9–12]. Coniferyl ferulate exhibits bioactivities,
such as antibacterial, antioxidant, anticancer, and an inhibitory effect towards the progression of
tetrachloromethane (CCl4)-induced liver fibrosis [13–16]. The concentrations of these compounds in
Angelica vary with its species, geographic sources, harvesting time, and processing methods, which all
influence its therapeutic activities [3,4].

Despite the multiple medical functions of the root, a long-time interval (normally three
years) is needed for its growth in order for it to be used as a high-quality medical material.
The commercial AS root is expensive, and usually supplied in the form of slices, powders,
or dispensing granules as a health food or therapeutic medicine [17]. It is impractical to use
the root as a feedstock to extract bioactive compounds for pharmacological applications or to
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further purify it for medicinal synthesis. However, the aerial part, mainly the stem, is abundant,
and potentially can be used as a low-cost feedstock to isolate bioactive ingredients for medical
applications or health-care products. Actually, it is usually regarded as agricultural waste to
burn it or allow it to decompose on the ground. Although Zhou and coworkers have isolated
some bioactive compounds (including 24, 24-dimethyl-9,19-cyclolanostan-3β-ol, uracil, hyperoside,
allantoin, 1-(4-hydroxyphenyl)-1, 2-ethanediol, etc.) from the aerial part [18], there is a lack of effort
focusing on the comprehensive identification of the constituents and quantitative analysis of bioactive
compounds in the AS stem. Moreover, the differences of the bioactive constituents in the stem and
root lack understanding.

In the work, the fresh Angelica plant was divided into two parts (root and stem, Figure 1),
the constituents in the oily extract of the AS stem were comprehensively analyzed by gas
chromatography–mass spectrometry (GC–MS) after trimethylsilyl derivatization. Ferulic acid
and chemically unstable coniferyl ferulate were concurrently monitored by a triple-quadrupole
high-performance liquid chromatography–mass spectrometer (HPLC–MS/MS) on multiple reaction
monitoring (MRM) mode. The significant 16 bioactive compounds in the stem, mainly including
phthalides, some organic acids, phytosterols, and coniferyl ferulate, were quantified with the aid
of standard compounds, and compared with the compounds from the root. The objectives of our
work are (1) to provide some phytochemical information about the medical AS plant and (2) to
explore an abundant and low-cost source of some bioactive compounds for pharmacy or healthcare
food applications.
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In the work, optimized ultrasonic extraction using methanol-formic acid (95:5, v/v) as a solvent 
at a temperature 30 °C was applied for the extraction of organic compounds from AS stem and root 
samples [19]. Introduction of formic acid in methanol can facilitate the extraction efficiency of 
coniferyl ferulate, ferulic acid, ligustilide, and butylidenephthalide. Mild temperature extraction can 
avoid the degradation and conversion reactions of unstable coniferyl ferulate and Z-ligustilide 
[19,20]. Ultrasonic extraction can result in dissolution of some carbohydrates in the solvent. The 
carbohydrates were removed by (1) one-step precipitation with absolute methanol and then (2) 
aqueous extraction in ethyl acetate. The organic phase was dried and the purified oily extract was 
obtained. The yields of oily extracts for the AS stem and root were 1.8% and 3.3%, respectively. 
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Figure 1. Photographs of Angelica sinensis stem and root.

2. Results and Discussion

2.1. Extraction and Purification of Extracts

In the work, optimized ultrasonic extraction using methanol-formic acid (95:5, v/v) as a solvent
at a temperature 30 ◦C was applied for the extraction of organic compounds from AS stem and root
samples [19]. Introduction of formic acid in methanol can facilitate the extraction efficiency of coniferyl
ferulate, ferulic acid, ligustilide, and butylidenephthalide. Mild temperature extraction can avoid the
degradation and conversion reactions of unstable coniferyl ferulate and Z-ligustilide [19,20]. Ultrasonic
extraction can result in dissolution of some carbohydrates in the solvent. The carbohydrates were
removed by (1) one-step precipitation with absolute methanol and then (2) aqueous extraction in ethyl
acetate. The organic phase was dried and the purified oily extract was obtained. The yields of oily
extracts for the AS stem and root were 1.8% and 3.3%, respectively.
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2.2. GC/MS Analysis

2.2.1. Identification of Phytochemicals

Since many compounds with hydroxyl and carboxyl groups in AS extracts are difficult to detect
using GC–MS, trimethylsilyl derivatization can decrease the polarities of compounds making them
easier to detect. The chemical structures of constituents were identified based on the Shimadzu Mass
Spectra Library (similarity ≥88%) or with the aid of standard compounds.

The typical GC spectra of AS stem and root extracts after trimethylsilyl derivatization are
shown in Figure 2. The identified compounds from the spectra are listed in Table 1, and the
structures of some important bioactive compounds are shown in Figure 3. From the GC spectra,
34 compounds were tentatively identified from the extracts, mainly including phthalides, organic acids,
and phytosterols. Phthalides are a kind of significant compounds in the AS root, and are responsible
for many bioactivities [4]. Butylphthalide (4), Z/E-butylidenephthalide (5/6), Z/E-ligustilide (8/10),
and Senkyunolide G, I, H (13, 17, 21) are the main phthalides that can be identified in the chromatogram
of AS root extract. Whereas, only Z/E-ligustilide, Senkyunolide I, and Z-butylidenephthalide can
be detected in the stem extract. Senkyunolide I (17) was identified by comparing the retention time
and mass information with a standard compound; though its peak partially overlaps on the peak of
palmitic acid. Recently, ligustilide dimers (riligustilide and levistolide A) and trimers (triligustilide
A and B) from AS root were isolated and recognized [21,22]. These compounds can also inhibit
platelet aggregation, although polymerization can weaken the activity [22]. These compounds were
not identified from the GC–MS analysis, presumably due to their very low content [21].
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Figure 2. Typical GC chromatograms of TMS-derivatized oily extracts from AS stem and root.
The identified compounds were numbered according to retention time. Peak labels are the same
as the numbers in Figure 3 and Table 1.

Long chain organic acids, including palmitic acid (16), linoelaidic acid (23), and Z-oleic acid
(24) are the main constituents in the extracts of both stem and root. Ferulic acid (18) is abundant
in the AS root extract and also can be identified in the stem extract. Other organic acids with a
benzene ring, such as cinnamic acid (1), p-hydroxybenzoic acid (2), p-hydroxybenzeneacetic acid (3),
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vanillic acid (9), protocatechuic acid (11), and caffeic acid (19) were detectable in the stem extract,
whereas they were not found in the root extract. In phytochemistry, cinnamic and caffeic acids are
significant intermediates for the biosynthesis of lignin monomers, which are related to the high level of
lignification in the plant stem [23]. Vanillic acid has a hepatoprotective effect and can suppress hepatic
fibrosis in chronic injury [24,25]. Protocatechuic and caffeic acids have antioxidant, anti-inflammatory,
anti-glycation, and chemopreventive effects [26,27]. In addition, 4-hydroxyphenyl-1, 2-ethanediol (7),
and thymol-β-D-glucopyranoside (29) were identified from the stem extract, whereas they were not
found in the root extract. 4-hydroxyphenyl-1,2-ethanediol was also isolated from the aerial parts of
AS previously [18]. Thymol-β-D-glucopyranoside is firstly identified in the Angelica plant; both were
reported to exhibit antibacterial activity [18,28].
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Figure 3. Chemical structures of some compounds identified in extracts of Angelica sinensis stem and
root by GC–MS. The numbers in brackets correspond to the peak numbers of GC chromatograms in
Figure 2.
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Table 1. Constituent identification from GC chromatograms of AS stem and root extracts.

Peak No. RT (min) Chemical Name Formula Relative Intensity of MS Ions Stem Root

1 17.46 Cinnamic acid C9H8O2 220(27), 205(93), 161(100), 131(73), 103(62) + -
2 18.98 p-hydroxybenzoic acid C7H6O3 282(23), 267(100), 223(98), 193(49), 126(13) + -
3 19.20 p-hydroxybenzeneacetic acid C8H8O3 296(14), 252(23), 179(26), 164(18), 73(100) + -
4 19.60 Butylphthalide C12H14O2 190(3), 172(3), 133(100), 105(33), 77(16) - +
5 20.00 Z-butylidenephthalide C12H12O2 188(21), 159(100), 146(43), 131(42), 103(35) + +
6 20.92 E-butylidenephthalide C12H12O2 188(21), 159(100), 146(43), 131(48), 103(39) - +
7 21.00 4-hydroxyphenyl-1, 2-ethanediol C8H10O3 267(100), 193(7), 147(16) + -
8 21.16 Z-ligustilide C12H14O2 190(55), 161(80), 148(100), 133(24), 105(70) + +
9 21.66 Vanillic acid C8H8O4 312(44), 297(100), 282(36), 267(72), 253(48) + +

10 22.43 E-ligustilide C12H14O2 190(54), 161(83), 148(100), 105(82), 77(36) + +
11 22.76 Protocatechuic acid C7H6O4 370(37), 355(27), 311(25), 193(100), 165(7) + -
12 23.38 Myristic acid C14H28O2 285(67), 145(19), 132(35), 117(100) + +
13 24.20 Senkyunolide G C12H14O3 278(11), 249(93), 221(100), 205(22), 131(16) + +
14 25.32 Pentadecanoic acid C15H30O2 299(74), 132(36), 129(37), 117(100) + +
15 25.48 Dibutyl phthalate C16H22O4 223(5), 205(6), 149(100) + +
16 27.23 Palmitic acid C16H32O2 328(5), 313(67), 132(42), 117(100) + +
17 27.26 Senkyunolide I C12H16O4 368(19), 353(11), 252(100), 237(31), 223(19) + +
18 28.05 Ferulic acid C10H10O4 338(100), 323(92), 308(74), 293(63), 249(52) + +
19 28.88 Caffeic acid C9H8O4 396(54), 381(19), 307(8), 219(100), 191(14) + -
20 29.05 Heptadecanoic acid C17H34O2 342(5), 327(71), 145(23) 129(41), 117(100) + +
21 29.27 Senkyunolide H C12H16O4 368(20), 353(16), 252(100), 237(32), 147(45) + +
22 30.01 Mannonolactone C6H10O6 319(14), 305(5), 229(7), 129(9), 73(100) + +
23 30.26 Linoelaidic acid C18H32O2 352(4), 337(66), 262(44), 177(51), 73(100) + +
24 30.35 Z-oleic acid C18H34O2 354(3), 339(47), 129(71) 117(98), 73(100) + +
25 30.52 E-oleic acid C18H34O2 354(5), 339(83), 129(78), 117(100), 75(80) + +
26 30.82 Stearic acid C18H36O2 356(7), 341(69), 132(42), 129(43)117(100) + +
27 32.55 Butyl 9,12-octadecadienoate C22H40O2 336(6), 263(25), 178(18), 135(29), 109(42) - +
28 33.60 Eicosanoic acid C20H40O2 384(10), 369(75), 132(44), 117 (100) + +
29 34.78 Thymol-β-D-glucopyranoside C16H24O6 361(100), 271(23), 243(26), 169(40), 147(30) + -
30 35.18 Monopalmitin C19H38O4 371(100), 239(27), 203(23), 147(36), 129(16) + +
31 35.75 Behenic acid C22H44O2 412(12), 379(71), 132 (47), 117(100) + +
32 45.64 Campesterol C28H48O 472(28), 382(83), 343(60), 255(28), 129(100) + -
33 46.30 Stigmasterol C29H48O 484(25), 394(43), 255(41), 129(54), 83(100) + +
34 48.11 β-sitosterol C29H50O 486(33), 396(88), 357(60), 255(29), 129(100) + +

“+” represents that the compound was detected; “-” represents that the compounds was not detected.

Phytosterols, such as campesterol, stigmasterol, and β-Sitosterol predominate in higher plants
and some typical diets (nuts, seeds, etc.) [29]. They have been shown to have many functions,
such as reducing blood cholesterol, inhibiting growth of cancer cells, enhancing immune function,
and anti-osteoarthritic effects [30–33]. Phytosterols are rarely reported in the AS root, while β-sitosterol
was previously isolated from the mixture of AS stem and leaf [18]. In the chromatogram,
three phytosterols—campesterol, stigmasterol, and β-sitosterol—were obviously identified as the
peak No. 32, 33, and 34, respectively, of the stem extract, while only stigmasterol and β-sitosterol were
identified from the root extract with much low concentration (campesterol was not identified, probably
due to the very low concentration).

Some antibacterial compounds, such as 24, 24-dimethyl-9,19-cyclolanostan-3 β-ol, daucosterol,
allantoin, and D-mannitol were reported to exist in the aerial part [18]; whereas, they were not
identified in the extract of stem. Potentially, these compounds mainly are distributed in the leaves.

2.2.2. Quantitative Analysis

The contents of 15 bioactive compounds in the extracts and dry materials were quantified with
aids of standard compounds. The calibration curves were obtained by plotting peak areas versus
corresponding concentration of compounds (Figure S2, in supplementary materials). The results are
shown in Table 2.
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Table 2. Contents of 15 components in AS stem and root revealed by GC–MS.

Analytes
Stem Root

mg/g Extracts mg/g Stem mg/g Extracts mg/g Root

Z-butylidenephthalide 4.20 ± 0.31 0.074 ± 0.005 7.73 ± 0.78 0.26 ± 0.03
E-butylidenephthalide nd 1 nd 4.86 ± 0.54 0.16 ± 0.02

Z-ligustilide 28.60 ± 1.24 0.51 ± 0.02 63.04 ± 3.06 2.08 ± 0.10
E-ligustilide 4.16 ± 0.10 0.076 ±0.002 10.94 ± 0.47 0.36 ± 0.02

Senkyunolide I 11.53 ± 3.21 0.21 ± 0.06 34.30 ± 8.50 1.13 ± 0.28
Senkyunolide H nd nd 17.71 ±0.37 0.58 ± 0.02
Cinnamic acid 3.15 ± 0.88 0.057 ± 0.018 nd nd

p-hydroxybenzoic acid 3.48 ± 0.13 0.064 ± 0.002 nd nd
Vanillic acid 1.16 ± 0.12 0.021± 0.002 nd nd

Protocatechuic acid 3.00 ±0.26 0.055 ±0.004 nd nd
Caffeic acid 2.00 ±0.15 0.036 ±0.002 nd nd
Ferulic acid 7.10 ± 0.56 0.13 ± 0.01 18.18 ± 0.53 0.60 ± 0.02
Campesterol 4.93 ± 0.12 0.088 ±0.002 nd nd
Stigmasterol 14.03 ± 0.41 0.26 ± 0.01 3.94 ± 0.18 0.13 ± 0.01
β-sitosterol 56.21 ± 1.20 1.01 ± 0.02 11.21 ± 0.75 0.37 ± 0.03

Values (mean ± SD) obtained from duplicate technical runs; 1 nd = not detected.

The content of total detectable phthalides in the root was 4.57 mg/g, including Z-ligustilide
2.08 mg/g, senkyunolide I 1.13 mg/g, senkyunolide H 0.58 mg/g, E-ligustilide 0.36 mg/g,
Z-butylidenephthalide 0.26 mg/g, and E-butylidenephthalide 0.16 mg/g. The content of phthalides
in the stem was 0.87 mg/g, lower than that the root. In the stem, the phthalides mainly include
Z-ligustilide (0.51 mg/g) and senkyunolide I (0.21 mg/g). The concentration of ferulic acid in
AS root was reported to be in the range of 0.211 to 1.75 mg/g as determined by the liquid
chromatogram method [4]. In this work, the content of ferulic acid in root determined by GC–MS after
derivatization was also in this range (0.60 mg/g); whereas its content in the stem was much lower
(0.13 mg/g). The specific bioactive components in the stem included cinnamic, p-hydroxybenzoic,
vanillic, protocatechuic, and caffeic acids. The contents of these compounds are relatively low,
in range of 0.018 to 0.054 mg/g. Noticeably, AS stem contains a significant amount of phytosterols
(including 1.01 mg/g β-sitosterol, 0.26 mg/g stigmasterol, and 0.088 mg/g campesterol). However,
these compounds are very few in the root part.

After removal of organic solvent, the concentrations of bioactive compounds in the concentrated
oily extract of stem were quantified (Table 2): Z/E-ligustilide (32.76 mg/g), senkyunolide I (11.5 mg/g),
Z-butylidenephthalide (4.2 mg/g), p-hydroxybenzoic acid (3.48 mg/g), protocatechuic acid (3 mg/g),
caffeic acid (2 mg/g), ferulic acid (7.1 mg/g), campesterol (4.93 mg/g), stigmasterol (14.03 mg/g),
and β-sitosterol (56.21 mg/g). Other components identified from the stem extract are main long
chain organic acids that have no biological toxicities. In consideration of various bioactive and
pharmacological functions as well as the collaborative effects of these compounds, the extracts can
be directly used for pharmaceuticals or as a health-care additive in food. In addition, due to the
abundance of ligustilides and β-sitosterol, the oily extract from AS stem can be further used for
isolation monomeric phthalides and phytosterols for drug exploitation.

2.3. Coniferyl Ferulate Analysis by HPLC–MS/MS

Coniferyl ferulate cannot be detected by GC–MS as it is quite unstable and tends to
decompose under alkaline or heated conditions. Normally, it is analyzed and quantified by liquid
chromatography [34,35]. Liquid chromatography with tandem mass spectrometry can provide high
mass resolution and abundant fragment ion information of organic compounds, and is therefore adept
at qualitative elucidation. The multiple reaction monitoring (MRM) mode was adopted by selectively
screening insignificant ions and permitting the access of target ions for improving quantitative
performance. The parameters of MRM mode were optimized prior to coniferyl ferulate determination.
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The mass information of coniferyl ferulate (CA-FA) is shown in Figure S3a. The molecular ions of
[M + H]+ and [M − H]− and some adduct ions are very rare in the MS spectrum, while the main
daughter ions [FA − H]− (m/z 193) and [CA − OH]+ (m/z 163) are abundant in MS spectrum. The most
abundant characteristic daughter ion [FA − H]− was selected for fragmentation to obtain the fragment
information and corresponding optimal collision energy (CE). The optimized fragment ions and CE
are shown in Figure S3b. The [FA − H]− ion can produce three negative fragment ions with m/z of
178.2, 134.1, and 133.1, corresponding to the CE value of 14 v, 14 v, and 25 v.

The extracts were dissolved in methanol solution with concentration of 100 ppm, and then filtrated
with a 0.22-µm membrane. The solution was immediately subjected to HPLC–MRM/MS analysis
by adopting optimized parameters. As the [FA − H]− (m/z 193) ion can be commonly produced
from ferulic acid and coniferyl ferulate, both compounds can be observed from the chromatograms
(Figure 4). The contents of coniferyl ferulate and ferulic acid in the stem are 0.021 mg/g and 0.098 mg/g,
which are much lower than the corresponding values in the root (0.52 mg/g and 0.58 mg/g, respectively,
Table 3). The content of ferulic acid determined by GC–MS are slightly higher than that determined by
LC–MS/MS, which is potentially due to the degradation of coniferyl ferulate to generate some ferulic
acid during derivatization treatment before GC–MS analysis.
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Table 3. Contents of ferulic acid (FA) and coniferyl ferulate (CA-FA) analyzed by LC–MS/MS on
MRM mode.

Analytes
Stem Root

mg/g Extract mg/g Stem mg/g Extract mg/g Root

Ferulic acid 5.42 ± 0.65 0.098 ± 0.010 17.57 ± 0.91 0.58 ± 0.03
Coniferyl ferulate 1.16 ± 0.26 0.021 ± 0.004 15.76 ± 0.03 0.52 ± 0.01

Values (mean ± SD) obtained from duplicate technical runs.

Still, coniferyl ferulate tends to decompose at room temperature. Figure S5 shows the degradation
of coniferyl ferulate in the methanol solution with the time (concentration 1 ppm, temperature 25 ◦C).
The concentration of coniferyl ferulate decreased to 0.48 ppm at 9 h, while it was less than 0.01 ppm
at 48 h. In consideration of sample drying, and time consumption on extraction and purification
process, the real contents of coniferyl ferulate in stem and root should be higher than the detected
values. In traditional Chinese medicinal practice, decoction of AS root is the main administration
form. Whereas, previous work has shown that the decoction contains very low bioactive compounds
(ligustilide, ferulic acid, coniferyl ferulate etc.), and hence might contributed little to the clinical
efficacy, although many compounds are considered to possess multiple pharmacological activities [19].
Organic solvent can extract large amounts of bioactive compounds. However, it should be noted that a
long-term preservation at room temperature of extracts might result in a significant degradation of
coniferyl ferulate. In addition, ligustilides are easy to polymerize when exposed to sunlight. It was
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reported that ligustilide dimers and trimers had lower activity in inhibition of platelet aggregation.
Hence, the extracts from Angelica or isolated ligustilides should be well stored to avoid the reduction
of biological efficacy.

3. Materials and Methods

3.1. Materials and Chemicals

The whole plant of mature Angelica sinensis (AS) was collected from Min Country, Gansu province
of China in mid-October. The stem (without leaves) and root were separated into two parts,
and air-dried at 50 ◦C for three days. The samples were ground in a knife mill to collect the saw dust
passing through a 2 × 2 mm2 sieve. The powdered samples were sealed in a plastic bag and stored at
2−5 ◦C for further analysis.

Cinnamic acid (99%), vanillin (99%), p-hydroxybenzoic acid (98%), protocatechuic acid (97%),
ferulic acid (98%), caffeic acid (98%) and campesterol (98%) were purchased from Macklin Biochemical
Co., Ltd. (Shanghai, China). Z-ligustilide (98%), Butylidenephthalide (98%), Senkyunolide I (98%),
stigmasterol (98%), and β-sitosterol (98%) were purchased from Chroma Biotechnol. Co., Ltd.
(Chengdu, China). Coniferyl ferulate (97%) was synthesized in a laboratory according to the
literature [36], and the structure and purity were elucidated by 1H NMR (Figure S1). The HPLC-grade
acetonitrile (≥99.9%) and methanol (≥99.9%) were bought from Merck KGaA (Darmstadt, Germany).

3.2. Isolation and Purification of Oily Extracts

Two gram AS stem and root samples were ultrasonic extracted with 50 mL methanol-formic acid
(95:5, v/v) at 30 ◦C for 40 min, 2 times. The filtrates were collected and concentrated into ~2 mL under
reduced pressure at 40 ◦C. In order to remove the soluble carbohydrates, the fluids were transferred to
50-mL centrifuge tubes charged with methanol (50 mL). After centrifugation, the supernatant liquids
were concentrated and repeatedly precipitated with methanol, and the supernate was collected and
concentrated into ~2 mL. Then, the samples were transferred into separatory funnel charged with
30 mL saturated ammonium chloride. The organics were extracted with ethyl acetate (3 × 30 mL).
The combined organic fractions were then dried over anhydrous magnesium sulfate, filtered through a
sand-core funnel, and evaporated by a rotary evaporator at 40 ◦C. Finally, 66 mg of oil product was
obtained from the root sample and 36 mg of oil product was obtained from the stem sample.

3.3. GC–MS Procedure

3.3.1. Derivatization and GC–MS Analysis

The isolated oily extracts were analyzed by GC–MS after trimethylsilyl (TMS) derivatization.
The oil samples were dissolved into dichloromethane (concentration of 10 mg/mL), of which 1 mL
solution was pipetted into a GC vial. Pyridine (50 µL) and N,O-bis trimethylsilyl trifluoroacetamide
(BSTFA, 98%, 150 µL) were added into the vial, and the mixture was maintained at 60 ◦C for 40 min.
The derivatized products were then analyzed by GCMS-TQ instrument (Shimadzu GCMS-TQ8040
triple quadrupole GC–MS/MS, Kyoto, Japan) equipped with an SH-Rxi-5Sil MS column (Shimadzu,
30 m × 0.25 mm × 0.25 µm, Kyoto, Japan). The program for GC–MS analysis is shown in Table S1.

3.3.2. Qualitative Analysis

The reference compounds were dissolved in dichloromethane and diluted to five gradient
concentrations to obtain the standard solutions. Then, a 1 mL solution was transferred into the
GC vial and, after addition of pyridine (50 µL) and BSTFA (150 µL), the vial was maintained in an
oven at temperature of 60 ◦C for 40 min. The standard solution was finally analyzed by GC–MS under
the program of Table S1. The contents of analytes were determined by plotting the calibration curves
with the peak areas versus the concentration of standard compounds.
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3.4. HPLC–MS/MS Procedure

3.4.1. Multiple Reaction Monitoring (MRM) for Coniferyl Ferulate Analysis

In order to eliminate the effects of impurities, the multiple reaction monitoring (MRM) model
operated on a triple quadrupole LC–MS/MS (Shimadzu, LCMS–8050, Kyoto, Japan) was used to
estimate the content of coniferyl ferulate. The method for MRM was established on Labsolutions
LCMS Ver 5.6 according to LCMS–8050 Operators Guide (Shimadzu, Kyoto, Japan). The standard
coniferyl ferulate solution (5 ppm) was analyzed by LC–MS/MS in both negative and positive ion
modes. The most abundant ion with m/z of 193 (negative ferulate fragment) was chosen as precursor
ion. The further fragment ions from the negative193 ion and corresponding fragmentor voltage were
optimized on the build-in Optimization method. The optimized parameters for MRM model are
shown in Table S2.

3.4.2. Sample Analysis by LC–MS/MS

The purified oily extracts were dissolved in HPLC-grade methanol and diluted to 50 ppm.
The sample solution was immediately filtered through a 0.22-µm polytetrafluoroethylene membrane
and transferred into a LC vial for LC–MS/MS analysis in MRM model (Table S2).

The gradient concentrations (from 0.05 ppm to 10 ppm) of standard coniferyl ferulate and ferulic
acid solutions were prepared in methanol (HPLC-grade). After being filtrated through a 0.22-µm
polytetrafluoroethylene membrane, the standard solutions were immediately analyzed on LC–MS/MS
in MRM model. The contents of ferulic acid and coniferyl ferulate in Angelica sinensis samples were
calculated by plotting the calibration curves with the peak areas versus the concentration of the
standard solutions. In order to investigate the degradation of coniferyl ferulate, the standard solution
(1 ppm) was stored in the sample room (temperature 25 ◦C) of LC, and analyzed on MRM model after
1 h, 1.5 h, 9 h, 24 h, 48 h and 64 h.

4. Conclusions

Herein, the constituents of oily extract from Angelica sinensis (AS) stem were identified
and compared with those in the root by GC–MS after trimethylsilyl derivatization or
LC–MRM/MS. The stem contains lower contents of phthalides (Z/E-ligustilide, Senkyunolide I and
Z-butylidenephthalide), ferulic acid, and coniferyl ferulate than the root; whereas, many other bioactive
compounds were specifically identified in the extract of stem, including cinnamic, hydroxybenzoic,
p-hydroxybenzeneacetic, vanillic and protocatechuic acids, 1-(4-hydroxyphenyl)-1, 2-ethanediol,
and thymol-β-D-glucopyranoside. Moreover, there were more phytosterols (mainly β-sitosterol,
with smaller amounts of campesterol and stigmasterol) in the stem than that in the root. The oily
extract form AS stem potentially can be used as supplement for health food or therapeutic medicine.

Supplementary Materials: The following are available online, Figure S1: 1H NMR of coniferyl ferulate, Figure S2:
Linear regression equations for calculation of bioactive compounds identified in GC chromatograms, Figure S3:
MS spectrum of coniferyl ferulate (CA-FA) (a) and the optimized MS fragmentations and corresponding optimal
collision energys (CE) for [FA − H]− (m/z 193) ion in MRM mode (b), Figure S4: Linear regression equations
of ferulic acid (FA) and coniferyl ferulate (CA-FA) in LC chromatograms, Figure S5: Degradation of coniferyl
ferulate (CA-FA) in methanol solution with time, Table S1: GC–MS program for analyzing derivatized extracts of
Angelica sinensis, Table S2: LC–MS/MS program for analysis of coniferyl ferulate and ferulic acid.
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