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Abstract

Background: Automated biomedical named entity recognition and normalization serves as the basis for many
downstream applications in information management. However, this task is challenging due to name variations and entity
ambiguity. A biomedical entity may have multiple variants and a variant could denote several different entity identifiers.

Results: To remedy the above issues, we present a novel knowledge-enhanced system for protein/gene named entity
recognition (PNER) and normalization (PNEN). On one hand, a large amount of entity name knowledge extracted from
biomedical knowledge bases is used to recognize more entity variants. On the other hand, structural knowledge of entities
is extracted and encoded as identifier (ID) embeddings, which are then used for better entity normalization. Moreover,
deep contextualized word representations generated by pre-trained language models are also incorporated into our
knowledge-enhanced system for modeling multi-sense information of entities. Experimental results on the BioCreative VI
Bio-ID corpus show that our proposed knowledge-enhanced system achieves 0.871 F1-score for PNER and 0.445 F1-score
for PNEN, respectively, leading to a new state-of-the-art performance.

Conclusions: We propose a knowledge-enhanced system that combines both entity knowledge and deep contextualized
word representations. Comparison results show that entity knowledge is beneficial to the PNER and PNEN task and can be
well combined with contextualized information in our system for further improvement.

Keywords: Entity recognition, Entity normalization, Knowledge base, Attention mechanism, Contextual word
representations

Background
With the rapid development of computer technology and
biotechnology, the number of biomedical literature is
growing rapidly. These biomedical literatures contain a
wealth of valuable knowledge, which can be used to pro-
mote biomedical development and help people improve
their living environment. Furthermore, it is well recognized
that the adoption of common database identifiers (IDs)
could facilitate data integration and re-use. However,
manually annotating them from massive biomedical litera-
ture is labor-intensive and costly. New methods and tools
need to be developed to support more effective and
consistent extraction of biomedical entities and their IDs,

thereby facilitating downstream applications such as rela-
tion extraction [1] and knowledge base completion [2].
For this purpose, the BioCreative VI Track 1 proposed

a challenging task (called Bio-ID Assignment), which fo-
cused on entity tagging and ID assignment [3]. There
were two specific subtasks in Track 1: 1) biomedical
named entity recognition (BioNER) and 2) normalization
(BioNEN), also known as disambiguation. The first sub-
task aimed at automatically recognizing biomedical en-
tities and their types from texts; and the second subtask
was to associate entity mentions in texts with their cor-
responding common IDs in knowledge bases.
BioNER has been widely studied. Most existing ap-

proaches treat this problem as a sequence labeling task,
which can be handled through traditional machine learn-
ing (ML)-based models (e.g., Hidden Markov Models and
Conditional Random Fields) with complex feature engin-
eering [4, 5]. Although effective, the design of features is
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labor-intensive and time-consuming. To overcome this
drawback, neural networks were proposed to automatic-
ally extract features based on word embedding technology
[6–8]. They constructed feature representations through
multi-layer neural networks without relying on compli-
cated feature engineering. Among them, bidirectional long
short-term memory with conditional random field model
(BiLSTM-CRF) exhibited promising results [6].
Compared with BioNER, BioNEN is a more challenging

task. Previous work on this subtask was largely based on
domain-specific dictionaries or heuristic rules [9, 10], and
could achieve relatively high performance. However, these
methods have a heavy reliance on the completeness of dic-
tionaries and the design of rules. Therefore, it could be
difficult to apply them to new datasets or shift them to
new domains. Later, some work [11, 12] proposed to con-
vert mentions and candidate entities into a common vec-
tor space, and then disambiguated candidate entities by a
scoring function (e.g., cosine similarity). In recent years,
neural network-based approaches have shown consider-
able success in entity normalization [13–15]. These
methods used neural architectures to learn the context
representations around an entity mention and calculated
the context-entity similarity scores to determine which
candidate is a correct assignment.
Although many studies have been made for the BioNER

and BioNEN, yet challenges still exist. One is the name
variations, which means that a named entity may have
multiple surface forms, such as its full name, partial names,
morphological variants, aliases and abbreviations [16]. The

other is entity ambiguity, which means that an entity men-
tion could possibly correspond to different entity IDs [16,
17]. Take Fig. 1 as an example to illustrate. In the solid line
box of Fig. 1, the variants “VEGF (human)”, “MVCD1” and
“VPF” all represent the same gene entity (vascular endothe-
lial growth factor), whose ID is “NCBI Gene: 7422”. This is
the name variations problem (synonym). The arrow in this
side means that different variants can correspond to the
same ID in the KB. In the dashed box, the variants “VEGF
(human)” and “VEGF (pig)” have the same entity name, but
correspond to different genus IDs (“NCBI Gene: 7422” and
“NCBI Gene: 397157”, respectively). This is the entity ambi-
guity problem (polysemy). The arrow in this side means
that the same mention can have several variants with differ-
ent IDs in the KB.
Large-scale Biomedical Knowledge bases (KBs) such as

UniProt [18] and NCBI Gene [19] contain rich information
about the protein/gene entities and structural relationship
between them. This information is quite useful for solving
the above two issues. Luo et al. [20] and Akhondi et al. [21]
showed that the information of prior chemical entity name
provided by domain dictionaries could help boost the NER
performance. However, the existing structural information
of entities and how to use them for the Bio-ID Assignment
task has not yet been well studied.
Besides, the multi-sense information of words has been

leveraged and empirically verified to be powerful in many
sequence labeling tasks [22, 23]. Peters et al. [22] proposed
a deep contextualized word representation method, called
Embeddings from Language Models (ELMo) [22]. This

Fig. 1 Illustration of structure information of entities. The first column represents the mention, the middle column represents the variant
corresponding to the mention, and the last column represents the entity ID. The solid line box represents the name variations and the arrow in
this side means that different variants can correspond to the same ID in the KB. The dashed box represents the entity ambiguity and the arrow in
this side means that the same mention can have several variants with different ID in the KB
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method directly adopted pre-trained bi-directional Lan-
guage Models (biLMs) to integrate both semantic and
multi-sense information of words as context-dependent
embeddings. As far as we know, ELMo has not been well
explored in biomedical domains.
In this paper, we propose a novel knowledge-enhanced

system that could employ rich entity knowledge and
deep contextual word representations for protein/gene
named entity recognition (PNER) and normalization
(PNEN). Specifically, entity name knowledge in KBs is
introduced into a BiLSTM-CRF model to recall more
protein/gene mentions. Then, structural knowledge of
entities is encoded by an autoencoder into ID embed-
dings, which are used for entity disambiguation during
the PNEN phase. To further explore the entity ambigu-
ity issue, ELMo is also incorporated into our system to
capture underlying meanings for each word. Experi-
ments on the BioCreative VI Bio-ID corpus show that
our proposed knowledge-enhanced system could effect-
ively leverage prior knowledge and achieves state-of-the-
art performance on both PNER and PNEN subtasks.
The contributions of this work are summarized as follows:

� We explore the effect of ELMo representations on
entity recognition and normalization in biomedical
domains. Experimental results show that it could
accurately capture context-dependent aspects of
word meaning, therefore effectively improving the
performance of PNER and PNEN.

� We integrate structural knowledge of entities into
ID embeddings, which can be beneficial to remedy
the entity ambiguity issue faced by PNEN.

� Entity name knowledge, which can be used as prior
clues to better address the issue of name variations,
is also incorporated into our system.

Results
Experiment setup
Dataset
Our experiments are conducted on the corpus published
by BioCreative VI Bio-ID Track1 [3], which is drawn
from annotated figure panel captions from SourceData
[24] and is converted into BioC format along with the
corresponding full text articles.
Bio-ID corpus contains a training set and a test set. The

training set consists of 13,573 annotated figure panel cap-
tions corresponding to 3658 figures from 570 full length
articles, with a total of 51,977 annotated Protein/Gene
IDs. The test set consists of 4310 annotated figure panel
captions from 1154 figures taken from 196 full length arti-
cles, with a total of 14,232 annotated Protein/Gene IDs.
Table 1 shows the statistical results of the number of

IDs that an entity mention has (entity ambiguity) on the
BioID corpus. For each target mention in the BioID

corpus, we estimate ambiguity as the number of different
IDs associated to it by human annotators. From Table 1,
we can know that: (1) many mentions tend to be highly
skewed, in the sense that they usually refer to one spe-
cific entity; (2) nearly one-third of mentions correspond
to two or more different IDs; (3) the ambiguity rate per
ambiguous mention is 2.79 on the training set and 2.41
on the test set.
Table 2 shows the statistical results of the number of

entity variants corresponding to a specific entity ID
(name variations) on the BioID corpus. We compute
the synonymy rate as the number of different variants
that can be used to name a particular ID. From Table 2,
we can see that: (1) for the 5282 IDs present in the
Training set and 1980 IDs present in the Test set, most
entities are associated with only a single variant (78% in
the Training set and 85% in the Test set respectively);
(2) and the synonymy rate is lower, 2.46 on the training
set and 2.26 on the test set.

Negative sampling
Since our disambiguation model is only given training
samples for correct ID assignments, negative sampling is
needed to automatically generate samples of corrupt as-
signments. For each context-ID pair (C, s), where s is the
correct ID assignment for the context C around the en-
tity mention, we produce some negative samples with
the same context C but with a different entity ID s′. Fol-
lowing Eshel et al. [13], we uniformly sample out of the
candidate IDs of each mention to obtain a corrupt s′ for
forming each negative sample (C, s′).

Training details
Throughout our experiments, a word is initialized with
200-dimensional pre-trained word embeddings [25],
which are trained on the openly available biomedical lit-
erature (∼5B words) using the word2vec tool. The di-
mensions for character, part-of-speech (POS), chunking,
and knowledge features (KFs) are 50, 25, 10, and 15, re-
spectively. Deep contextualized word representations
ELMo is 1024-dimensional generated by biLMs pre-
trained on a corpus with approximately 30 million sen-
tences [22]. For both PNER and PNEN, we fine-tune all

Table 1 Statistics of entity ambiguity for the Bio-ID corpus

Properties Training set Test set

# Mentions 4440 1715

# Monosemous 3031 1265

# Polysemous/Ambiguity Rate 1409 / 2.79 450 / 2.41

The left column reports four types of attributes, which are the number of
unique proteins/genes mention terms (#Mentions), the number of #Mentions
with only one entity ID attested in the corpus (#Monosemous), the number of
#Mentions with two or more IDs attested in the corpus (#Polysemous), and the
average number of candidate IDs that a polysemous target mention has
(Ambiguity Rate)
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the parameters during training to improve the
performance.
UniProt [18] and the NCBI Gene [19] KBs are used for

entity knowledge extraction as well as candidate ID gener-
ation. The versions of UniProt and NCBI Gene used in
our experiments are 2018_11 and 04-Dec-2018, respect-
ively. The disambiguation model is trained with fixed-size
left and right contexts (n2 = 10 words in each side exclud-
ing stop words and punctuation). Mini-batch size is set to
8 for both models. We fixed the dropout rate at 0.5 during
training to ease the overfitting problem.
In the following experiments, we randomly chose 80%

of the training set to be the actual training set and the
remaining 20% to be the validation set. The training set
is used to fit the parameters of the model, the validation
set is used to evaluate the performance of our models
and choose the hyper-parameters settings associated
with the best performance (hyper-parameter tuning), the
test set is used to assess the performance of the final
chosen model by the official evaluation scripts provided
by the BioID shared task.
The PNER task is evaluated on strict entity span match-

ing, i.e. the character offsets have to be identical with the
gold standard annotations. For the PNEN task, only the
normalized IDs returned by the systems are evaluated.
The performance of the systems is reported as precision
(P), recall (R) and F1-score (F1) on corpus level.

Performance
PNER performance
In this experiment, we explore the effects of different fea-
tures representations on the performance of our recogni-
tion model. Table 3 shows the results of different
combinations of these features on the test set. We first take
the BiLSTM-CRF model with word embedding and charac-
ter embedding ½xwt ; xct � as the baseline for comparison.
From Table 3, we can see that the addition of linguistic

features (POS tagging and chunking) contributes to the
PNER task on both the strict and overlap criteria, but only
achieves a small improvement of 0.8 and 0.5% in F1-score,
respectively. On the basis of linguistic features, the
addition of KFs and ELMo representations bring a signifi-
cant improvement in the PNER performance.

Take a look at the overlap match criteria, the addition of
KFs increases the F1-score from 0.839 to 0.855 (1.6% im-
provement), especially showing substantial recall gains when
comparing with others. This demonstrates that the rich in-
formation of prior protein/gene entities provided by KFs
helps recognize more entity variants and proves the validity
of entity name knowledge on the name variations issue.
Similarly, the addition of ELMo representations in-

creases the F1-score by 2.1% from 0.839 to 0.860. Al-
though the recall gains brought by the ELMo is not as
good as that of KFs, it is capable of modeling the multi-
sense information of words across vary linguistic con-
text, resulting in an increase in precision. In other
words, this allows the BiLSTM-CRF model to better
understand the context information to accurately distin-
guish entities and non-entities. Moreover, ELMo can
complement the context-free nature of traditional word
embedding to represent context-dependent information.
When all additional features (linguistic features, KFs

and ELMo representations) are added, the best perform-
ance (0.814 F1-score at the strict criteria and 0.871 F1-
score at the overlap criteria) is achieved. This proves
that there exists a complementary relationship between
KFs and ELMo, thus they can balance the recall and pre-
cision of the BiLSTM-CRF model on the PNER subtask.

PNEN performance
In this experiment, we explore the effects of the archi-
tecture of our disambiguation model on the test set
based on the above PNER model selected by the valid-
ation set. Since the ELMo representation and the gating
mechanism have been proven to be effective, they will
be added directly to the entity disambiguation model
without being explored. Five common sequence en-
coders are used for context representation learning,
which are shown below.

LSTM and GRU Firstly, we explore the standard recurrent
encoders with either Long Short-Term Memory (LSTM) or
Gated Recurrent Units (GRU) for sequence encoding. The
last hidden state is used to represent a sequence.

BiLSTM and BiGRU To preserve information from
both past and future, we also consider bidirectional
LSTM/GRU that concatenates the last hidden state of
the forward direction, and the last hidden state of the
backward direction to represent a sequence.

Hierarchical-ConvNet Inspired by Zhao et al. [26], we
introduce a hierarchical convolutional network which con-
catenates different representations of the sequence at four
different levels of convolutional layers. In each layer, a rep-
resentation ui is computed by a max-pooling operation over

Table 2 Statistics of name variations for the Bio-ID corpus

Properties Training set Test set

# IDs 5282 1980

# Single Var. 4133 1689

# Multiple Var. / Synonymy Rate 1149 / 2.46 291 / 2.26

The left column tabulates four types of attributes, which are the number of
unique entity IDs (#IDs), the number of #IDs with only one variant (#Single
Var.), the number of #IDs with two or more variants (#Multiple Var.), and the
average number of variants that a multiple var. target ID has (Synonymy Rate)
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the feature maps. The final sequence representation hset ¼ ½
u1; u2;u3; u4� is the concatenation of ui from each layer.
In addition, two kinds of attention mechanism are pro-

posed to verify the effect of ID embedding. The first is
Knowledge-based attention, which is designed to focus
on contextual words that are more relevant to candidate
IDs (mentioned in the section 2.3.3 Entity Disambigu-
ation). The second is Self-attention [27], which is simi-
lar to the former except that pre-trained ID embeddings
is not considered when calculating the attention score,
as shown below:

et ¼ tanh WL
ah

se
t þ bLa

� �
: ð1Þ

Table 4 shows the results of different model architec-
tures on the test set. From Table 4, we can see that:

(1) The recurrent encoders (GRU, LSTM, BiLSTM
and BiGRU) achieve better performance than
Hierarchical-ConvNet. Recurrent encoders are
suitable to capture the long-term dependencies
within sequences, while Hierarchical-ConvNet is
suitable to capture the local features. In most cases,
entity disambiguation relies predominantly on glo-
bal features rather than local features.

(2) Both BiLSTM and BiGRU perform well and are
superior to unidirectional models (LSTM and
GRU). Compared with the unidirectional models,
the bidirectional models could capture context
information more comprehensively.

(3) By incorporating attention mechanism, the above
five sequence encoders have achieved performance
improvements, regardless of the introduction of

Table 3 Results with KF/ELMo representations on the test set for PNER

Model Strict Match Overlap Match

P R F1 P R F1

Baseline 0.749 0.816 0.781 0.800 0.871 0.834

+ linguistic features 0.817 0.764 0.789 0.868 0.812 0.839

+ linguistic features + KFs 0.776 0.845 0.809 0.820 0.893 0.855

+ linguistic features + ELMo 0.826 0.801 0.813 0.874 0.847 0.860

+ linguistic features + KFs + ELMo (ours) 0.815 0.812 0.814 0.873 0.869 0.871

Strict match criteria require that the predicted entity and the gold standard annotations have to match exactly at the byte offset; and overlap match criteria
allows a match if the predicted entity overlaps with the gold annotation at all. The highest scores are highlighted in bold. We tune the hyper-parameters through
the validation set and use the official evaluation script to assess the performance of the final chosen model on the test set

Table 4 Results with different choices of model architecture on the test set for PNEN

Model Micro-averaged Macro-averaged

P R F1 P R F1

LSTM 0.486 0.388 0.431 0.537 0.443 0.395

+ Self-attention 0.490 0.391 0.435 0.550 0.452 0.405

+ Knowledge-based attention 0.495 0.395 0.440 0.559 0.465 0.417

GRU 0.484 0.387 0.430 0.548 0.454 0.406

+ Self-attention 0.491 0.393 0.436 0.558 0.461 0.414

+ Knowledge-based attention 0.495 0.395 0.439 0.551 0.454 0.407

BiLSTM 0.486 0.389 0.432 0.541 0.446 0.398

+ Self-attention 0.493 0.394 0.438 0.552 0.456 0.408

+ Knowledge-based attention 0.499 0.400 0.444 0.559 0.461 0.414

BiGRU 0.487 0.389 0.433 0.542 0.446 0.398

+ Self-attention 0.497 0.397 0.441 0.558 0.462 0.415

+ Knowledge-based attention 0.501 0.400 0.445 0.562 0.464 0.416

Hierarchical-ConvNet 0.468 0.375 0.416 0.522 0.429 0.381

+ Self-attention 0.473 0.378 0.420 0.529 0.434 0.386

+ Knowledge-based attention 0.483 0.386 0.429 0.532 0.441 0.392

Only the normalized IDs returned by the systems are evaluated on both micro-averaged and macro-averaged metrics. Micro-averaged calculates metrics
globally by counting the total true positives, false negatives and false positives, macro-averaged calculates metrics for each label in documents and finds their
unweighted mean. The highest scores are highlighted in bold. We tune the hyper-parameters through the validation set and use the official evaluation script to
assess the performance of the final chosen model on the test set.
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Knowledge-based attention or Self-attention.
The possible reason is that the attention
mechanism could flexibly capture global and local
connections and better model long-term dependen-
cies to capture important context information be-
tween elements in a sequence.

(4) Knowledge-based attention could effectively fuse
knowledge and context representations and
outperform the Self-attention mechanism. With
the help of ID embeddings learned by autoencoder,
Knowledge-based attention brings more benefits
to PNEN and significantly increases its F1-score
under both micro- and macro-averages. We attri-
bute it to the following two aspects. On one hand,
Knowledge-based attention mechanism could find
important contexts related to candidate ID. On the
other hand, the knowledge representations obtained
from KBs through ID representation learning could
provide valid information for PNEN. Knowledge
representations could efficiently encode prior entity
structural knowledge in a low-dimensional space
and significantly improve the performance of PNEN.

(5) Compared to BiLSTM + Knowledge-based
attention, BiGRU + Knowledge-based attention
wins with a slight advantage and achieves the
highest Micro-averaged F1-score of 0.445 in all
models, which means that it could better integrate
context information and prior knowledge through
the proposed attention mechanism.

Discussion
Comparison with related work for PNER
We compared our approach with other related work on
the PNER subtask and the results are shown in Table 5.
Kaewphan et al. [29] used a publicly available NER

toolkit NERsuite with one-hot represented word and
POS tagging as input for PNER. Additional dictionary
features were also used for their experiments, but there
was no clear performance improvement in either strict
or overlap criteria. Their recognition approach achieved
the highest rank on the PNER subtask (0.734 and 0.831
F1-scores under both matching criteria). However,

traditional ML-based methods need extensive feature
engineering, which is time-consuming and labor inten-
sive. Based on their previous work [29], Kaewphan et al.
[30] further developed a BiLSTM-CRF based model,
which used character embeddings learned by a Convolu-
tional Neural Network (CNN) and the predictions from
their original NERsuite model [29] as inputs of the recog-
nition model. Neural network-based methods bring sig-
nificant improvement in PNER performance (3.2% F1-
score improvement under strict criteria than before).
However, they did not use entity name knowledge or
ELMo representations, resulting in a 4.8% F1-score lower
than our method. Sheng et al. [28] also constructed a
BiLSTM-CRF model that used only word and character as
inputs, without relying on the help of any other external
features.
Comparing with these approaches, our model incorpo-

rates multi-sense information of words and entity name
knowledge in KBs. Therefore, our model gets relatively
balanced precision and recall while both are improved,
which outperforms approaches mentioned above.

Comparison with related work for PNEN
Similarly, we compared our work with other related work
on the PNEN subtask. The results are shown in Table 6.
Kaewphan et al. [29] applied exact string matching to

retrieve candidate IDs of protein/gene mentions based
on KBs. For the ambiguous mentions with multiple can-
didate IDs, some heuristic rules were developed for dis-
ambiguating protein/gene mentions and uniquely
assigning an ID. Their normalization approach achieved
the highest rank on this PNEN subtask (0.397 micro-
averaged F1-score). Typically, hand-crafted rules are
clear and effective, but they are inflexible and hard to
expand to a new dataset. Kaewphan et al. [30] used the
same method as their previous work [29] to perform
PNEN, but based on their new recognition method.
Compared with their previous results, they achieved
1.8% micro-averaged F1-score improvement from 0.397
to 0.415. This shows that their normalization approach
depends on the performance of PNER to a large extent.
Sheng et al. [28] compiled a contextual dictionary

based on the training set and then checked if the entity
mention was in this contextual dictionary. If so, theyTable 5 Comparison with related work on the PNER subtask

System Strict Match Overlap Match

P R F1 P R F1

Sheng et al. [28] 0.509 0.613 0.556 0.686 0.826 0.749

Kaewphan et al. [29] 0.729 0.739 0.734 0.825 0.836 0.831

Kaewphan et al. [30] 0.764 0.768 0.766 – – –

Ours 0.815 0.812 0.814 0.873 0.869 0.871

Strict match criteria require that the predicted entity and the gold standard
annotations have to match exactly at the byte offset; and overlap match
criteria allows a match if the predicted entity overlaps with the gold
annotation at all. The highest scores are highlighted in bold.

Table 6 Comparison with related work on the PNEN subtask

System Micro-averaged

P R F1

Sheng et al. [28] 0.170 0.224 0.193

Kaewphan et al. [29] 0.472 0.343 0.397

Kaewphan et al. [30] 0.445 0.388 0.415

Ours 0.501 0.400 0.445

The highest scores are highlighted in bold
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normalized the mention to the known ID that shared
the most contextual words with the sequence the entity
belonged to. For cases without matched IDs in the com-
piled dictionary, they used the same UniProt API and
NCBI Gene API as ours, to search for candidate IDs and
directly assigned the first ID match to ambiguous men-
tions. Since no disambiguation models were used to pick
candidate IDs, their approach achieved a relatively low
precision and recall on the PNEN subtask.
Our normalization approach outperforms the above

related approaches and achieves a state-of-the-art result
(0.445 micro-averaged F1-score). We attribute this to
the validity of our disambiguation model, which accur-
ately models the context representation through rich
structural knowledge of entities in KBs.

Influences of the training data size
We further explored the influences of the training data
size. We first divided the Bio-ID training data into eight
parts and then added each part to training set one by
one. In this case, we trained eight models with different
sizes of training sets.
Figure 2 shows the trend of PNER results with the size

of training set increasing. From Fig. 2 we can see that
the F1-scores of the PNER subtask increase gradually
when the training set size increases. To estimate the
asymptotic F1-score for PNER, we defined a non-linear
function F1PNER = i + jmn to fit the results of Strict
Match and Overlap Match criterias as follows:

F1strictPNER ¼ 0:82948−0:17636 0:750ð Þn ð2Þ

F1overlapPNER ¼ 0:88179−0:11142 0:767ð Þn ð3Þ

where n is the number of training set part. These func-
tions illustrate that as the training set increases, the
asymptotic F1-scores under strict and overlap criteria

could reach to about 0.829 and 0.882, respectively. Simi-
larly, Fig. 3 shows the same information for PNEN sub-
task and the following estimations are obtained:

F1micro
PNEN ¼ 0:46260−0:06155 0:852ð Þn ð4Þ

F1macro
PNEN ¼ 0:42573−0:05011 0:813ð Þn ð5Þ

These functions show similar results. As the training
dataset increases, the asymptotic F1-scores under micro-
and macro-averages could reach to about 0.463 and
0.426, respectively.

Error analysis
We analyzed the incorrect output of our knowledge-
enhanced system on the PNEN subtask, and divided
them into the following four types:

(1) PNEN FPs caused by PNER FPs: false positives in
PNER (PNER FPs) could cause PNEN FPs, which
refers to some non-entity words are incorrectly rec-
ognized as entities during the PNER phase, resulting
in normalization errors during the PNEN phase.

(2) PNEN FNs caused by PNER FNs: false negatives in
PNER (PNER FNs) could cause PNEN FNs, which
refers to that some entities are not recognized
during the PNER phase and they cannot be
normalized.

(3) PNEN FPs caused by Missed ID: true positives in
PNER but false positives in PNEN (PNEN FPs),
which is the case that correct ID of the ambiguous
mention is not included in the result retrieved by
candidate ID generation.

(4) PNEN FPs caused by Incorrect ID: true positives in
PNER but false positives in PNEN (PNEN FPs),
which is the case that our system fails to assign the
correct ID to the ambiguous mention.

Fig. 2 Training data size vs. PNER F1-score
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See Table 7 for more details. PNER FPs propagate to
the PNEN phase and cause 995 normalization errors,
with a proportion of 17.59%. PNER FPs is that some
non-entity words are incorrectly recognized as entities.
Take the sentence (1) predicted by our knowledge-
enhanced system as an example. The word “Miro” de-
noted by wave line looks much like the annotated entity
“Miro1” according to its context, but is noise actually.
Although we introduced deep contextual word represen-
tations ELMo into the system to capture details of the
context, there are still errors in the PNER phase.
Sentence (1): SyGCaMP5 and MtDsRed or myc [pro-

tein:myc] - ΔEF - Miro1 [NCBI Gene:8850] - IRES -
MtDsRed (ΔEF Miro [NCBI Gene:8850]) with and with-
out TTX treatments. (predicted by our system).
PNER FNs propagate to the PNEN phase and cause 2561

normalization errors, with a proportion of 45.21%. Such er-
rors are generally related to the domain-specific abbrevia-
tions. In sentence (1), the word “TTX” denoted by
underline is a gene entity but not recognized by our system.
We analyzed two causes that lead to many entities not be-
ing able to be recalled. One is that although a large amount
of variant information exists in the introduced entity name
knowledge, there is still no guarantee that the coverage of a
large number of abbreviated variants is complete. The other

is that the textual context around the entity mention is too
general, which makes our system difficult to capture dis-
criminative information to disambiguate mentions.
Though some ambiguous entity mentions are correctly

recognized in the PNER phase, they are assigned incor-
rect ID in the PNEN phase. Such kind of errors can be
further divided into two sub-categories, PNEN FPs
caused by Missed ID and PNEN FPs caused by Incorrect
ID. Take sentence (1) to help understand, the true posi-
tive “Miro1” should correspond to the ID “NCBI Gene:
59040”, but an incorrect “NCBI Gene:8850” is assigned.
PNEN FPs caused by Missed ID is the case that cor-

rect ID of the ambiguous mention is not included in the
result retrieved by candidate ID generation. Missed ID is
usually related to the entity ambiguity issue. The more
variants an ambiguous mention corresponds to, the
more candidate IDs it may have, which makes the result-
ing candidate IDs (up to 5) more difficult to cover the
correct ID during the PNEN phase. The missed ID sub-
category brings 1376 errors, with a proportion of
24.35%.
PNEN FPs caused by Incorrect ID is the case that our

system fails to assign the correct ID to the ambiguous
mention. Although we add pre-trained ID embeddings
to help context representation learning as accurately as

Fig. 3 Training data size vs. PNEN F1-score

Table 7 Error analysis on the test set

PNER category Error type Definition #Errors Error Percentage

PNER FPs PNEN FPs caused by PNER FPs Non-entities incorrectly recognized as entities
during the PNER phase

995 17.59%

PNER FNs PNEN FNs caused by PNER FNs Entities not recognized during the PNER phase 2561 45.27%

PNER TPs PNEN FPs caused by Missed ID Entities that do not include the correct ID in the
result retrieved by candidate ID generation

1376 24.32%

PNEN FPs caused by Incorrect ID Entities assigned with the error ID by entity
disambiguation

725 12.82%
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possible, there are still 725 errors (12.83%) caused by in-
correct classification.

Conclusions
In this paper, we present a knowledge-enhanced system for
biomedical named entity recognition and normalization
with proteins and genes as the application target. For the
name variations challenge, entity name knowledge is used
for PNER to increase its recall rate. ELMo representations
are also added to the recognition model for the purpose of
improving the model precision. For the entity ambiguity
challenge, we use an autoencoder to encode structural
knowledge of entities into ID embeddings for better entity
disambiguation. Experimental results on the BioCreative VI
Bio-ID dataset verify that the proposed system outperforms
the existing state-of-the-art systems on both PNER and
PNEN subtasks, with the aid of these two kinds of know-
ledge and ELMo representations.
Our system implemented this task in two separate steps

in a pipeline, which may lead to error propagation from
PNER to PNEN as can be seen from the error analysis. As
future work, we would like to construct a joint model that
recognizes and normalizes protein/gene entities simultan-
eously, to reduce such error propagation by enabling feed-
back from PNEN phase to PNER phase. And, it allows
entity recognition and normalization to interact with each
other to jointly optimize PNER and PNEN.

Methods
In this section, we describe our knowledge-enhanced
system for the Bio-ID Assignment task. Figure 4 shows
the workflow of our system. It can be divided into three
modules:

(1) Feature extraction is performed on the original
corpus, and six types of features are obtained and
used as input to the entity recognition model.

(2) Entity recognition is used to get the entity
mentions. The extracted features are mapped to
vector representations and concatenated together as
inputs to the entity recognition model for entity
mentions. To further improve the model
performance, some heuristic rules are used to
correct the predicted results output by the entity
recognition model.

(3) Entity normalization is used to generate candidate
IDs and eliminate ambiguity for mentions. This
module first generates candidate IDs for the
mentions, which are then mapped to pre-trained ID
embeddings. The candidate ID embeddings will
then be fed to the entity disambiguation model
along with the local contexts of the mention, for
the purpose of picking the most likely one as the as-
signment result for the mention.

Fig. 4 The workflow of our knowledge-enhanced system. The
arrow means the workflow of the system, the rectangle indicates a
specific operation or process, and the pink oval box indicates the
results of entity recognition and normalization
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Feature extraction
Refer to the practice of Tsai et al. [31], we employ the
GENIA Tagger [32] to process input documents, includ-
ing tokenization, POS tagging and chunking. All of these
provide features for our BiLSTM-CRF model to further
enrich the information of each word. In particular, to
recognize more entity variants and alleviate the name
variations issue, entity name knowledge contained in
UniProt and NCBI Gene KBs is used to generate our
KFs. Specifically, the longest possible match between the
input word sequences and variant term of entities con-
tained in KBs are first captured. Then, for each word in
the match, it is encoded in BIO (Begin, Inside, Outside)
tagging scheme to form KFs. Intuitively, KFs can aug-
ment the hint information for each entity mention by a
large number of variant terms in KBs.
In addition, ELMo representation learned by a pre-

trained LSTM-based multi-layer biLM is also extracted.
The biLM takes character sequence of each word as in-
put and encodes them with CNN and highway networks,
whose output is then given to a two-layers BiLSTM with
residual connections. Then, the combination of hidden
states of each layer is performed to assign each word an
ELMo representation. The following formula gives the
ELMo representation for the t-th word,

xelmo
t ¼ γ

XL
j¼0

l jh
LM
t; j : ð6Þ

where hLMt; j is the t-th hidden state of j-th LSTM layer

in the biLM, lj is the softmax-normalized weight of j-th
LSTM layer in the biLM. γ is the scalar parameter that
allows the model to scale the entire ELMo
representations.
ELMo can model multi-sense information of each

word across different linguistic contexts and make the
embeddings contain more contextual information.

Entity recognition
The architecture of BiLSTM-CRF model for entity rec-
ognition is illustrated in Fig. 5. It mainly consists of
three parts: Embedding layer, BiLSTM layer and CRF
layer.

Embedding layer
Given an input feature sequence W = {w1, ..., wt, ..., wn} ∈
ℝn, it is mapped to a feature vector sequence X = {x1, ...,
xt, ..., xn} ∈ ℝ

d × n through the embedding layer, where d is
the embedding dimension and n is the sequence length.
Each of the feature vectors xt ∈ℝ

d consists of the fol-
lowing six parts. A word embedding xwt mapped by the
word embedding matrix pre-trained by the word2vec
tool, a character embedding xct learned from the charac-

ter sequence of the word by character-level BiLSTM, an
ELMo representation xelmo

t learned by the pre-trained
LSTM-based multi-layer biLM, and the POS, chunking,

knowledge feature vectors xpost , xchunkt , xkft obtained by
random initialization mapping.
The concatenation of the above six feature vectors

yields the output of the embedding layer, which can be
represented as follows:

xt ¼ xwt ; x
c
t ; x

pos
t ; xchunkt ; xkft ; x

elmo
t

h i
: ð7Þ

After that, the feature vector sequence X will be
taken as input to the next BiLSTM layer for context
representation learning.

BiLSTM layer
Long short-term memory (LSTM) is a specific type of
recurrent neural network that models dependencies be-
tween elements in a sequence through recurrent connec-
tions. Here, we use one forward LSTM to compute a

hidden state h
!

t ¼ LSTMðxt; h!t−1Þ∈ℝd2 of the sequence
X from left to right at the t-th time step, and the other

backward LSTM to compute a hidden state h
 
t ¼ LSTMð

xt ; h
 
tþ1Þ∈ℝd2 of the same sequence in reverse, where d2

is the dimension of the hidden state. Then, the two hid-

den states are concatenated to form the final output ht

¼ ½ h!t ; h
 
t � of the BiLSTM layer at the t-th time step.

After that, the output of BiLSTM h ¼ fh1; :::; ht; :::; hn
g∈ℝ2d2�n is fed to a two-layer fully-connected neural
network (FC) with tanh activation to predict the confi-
dence score for each possible label of the word, which
can be written as follow:

P ¼ V tanh Whþ bð Þð Þ: ð8Þ
where W∈ℝd2�2d2 , V∈ℝk�d2 and b∈ℝd2�n are the pa-

rameters that need to be trained, k is the number of dis-
tinct labels.

CRF layer
To model the dependencies across output tags, a Linear-
Chain CRF layer is added on top of the BiLSTM layer to
decode the best tag path in all possible tag paths. For
the input sequence X, we consider P ∈ℝn × k to be the
matrix of scores output by the BiLSTM layer. The elem-
ent Pi, j of the matrix corresponds to the score of the j-
th tag of the i-th word. For a sequence of predictions
y = {y1, ..., yt, ..., yn}, we define its score to be:

score X; yð Þ ¼
Xn

i¼1 Tyi−1;yi þ Pi;yi

� �
: ð9Þ

where T is a matrix of transition scores such that Ti, j

represents the score of a transition from the tag i to tag
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j. y0 and yn are the extra start and end tags of a sequence
and T is therefore a square matrix of size k + 2.
Then, a softmax is used to yield a probability of the

path y by normalizing the above score over all possible
tag path y′:

P yjXð Þ ¼ exp score X; yð Þð ÞP
y0 exp score X; y0ð Þð Þ : ð10Þ

During training, we maximize the log-likelihood of the
correct tag sequence. RMSProp technique [33] with a
learning rate of 1e-3 is used to update the parameters of
the BiLSTM-CRF model. While decoding, we predict the
tag sequence y∗ that obtains the maximum score given
by:

y� ¼ argmax
y0

score X; y
0

� �
: ð11Þ

The Viterbi algorithm [34] is used to infer the optimal
tag path for efficiency considerations.

To further improve the PNER performance, the same
post-processing rules as Luo et al. [20] and Campos
et al. [35] are applied to pick the most likely entity men-
tion back and correct incomplete entity mentions.

Entity normalization
In this section, we explain how to map each recognized
protein/gene mention to the corresponding ID in the
UniProt or NCBI Gene KBs. Table 8 shows the pseudo-
code of our PNEN algorithm. It consists of the following
two modules, (1) candidate ID generation and (2) entity
disambiguation (i.e., pick the proper entity ID from all
candidates as the mapping ID for each entity mention).
Since pre-trained ID embeddings are required for en-

tity disambiguation, how they are learned through struc-
tural knowledge of entities will be introduced first.

ID representation learning
KBs contain rich structural knowledge of entities (e.g.,
name variations and entity ambiguity as shown in Fig.
1), which can be formalized as constraints on embeddings

Fig. 5 The architecture of BiLSTM-CRF model for PNER. In embedding layer, “w2v” means the word embeddings pre-trained using the word2vec
tool, character embedding can be learned by Character-level BiLSTM, “biLM” means the pre-trained bi-directional Language Model ELMo,
“Randomly initialized” means obtaining a corresponding vector in a random manner. Six feature representations of each word are concatenated
together to form an input and fed to a BiLSTM layer. The last is the CRF layer, which is used to decode the best tag path in all possible tag paths.
The input sentence is “SyGCaMP5 and MtDsRed or myc - ΔEF - Miro1 - IRES - MtDsRed ( ΔEF Miro) with and without TTX treatments”. The
output tag sequence is “OOOOBOOOBOOOOOOOOOOOBO”
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and allows us to extend word embeddings to embeddings
of entity ID. To this end, we adopt an autoencoder to
learn the embedding of entity IDs based on Mention-
Variant-ID structures provided by KBs.
The basic premises of the autoencoder are as follows:

(i) entity IDs are sums of their variants; and (ii) entity
mentions are sums of their variants. Take Fig. 1 as an
example to illustrate. For the premise (i), entity ID
“NCBI Gene: 7422” can be represented by the sum of its
variants “VEGF (human)”, “MVCD1” and “VPF”. For the
premise (ii), mention “VEGF” can be represented by the
sum of its variants “VEGF (human)” and “VEGF (pig)”.
We denote mention embedding as m(i) ∈ℝd, variant

embedding as v(i, j) ∈ℝd and entity ID embedding as
s(j) ∈ℝd. v(i, j) is that variant of mention m(i) that is a
member of entity ID s(j). Mention embedding m(i) is ini-
tialized by the average of the word embedding of its con-
stituent words. We can then formalize our premises that
the two constraints (i) and (ii) hold as follows:

s jð Þ ¼
X
i

v i; jð Þ ð12Þ

m ið Þ ¼
X
j

v i; jð Þ ð13Þ

The autoencoder consists of two parts, encoding and
decoding. When encoding, it takes mention embeddings
as input and unravels them to the vectors of their vari-
ants. And then, IDs can be embedded by the sum of
their constituent variants. To unravel mentions to corre-
sponding variants for ID representation learning, we
introduce a diagonal matrix E(i, j) ∈ℝd × d to allow the
mention m(i) to distribute its embedding activations to
its variants on each dimension separately. E(i, j) satisfies

the following condition ∑jE
(i, j) = In with In being an iden-

tity matrix. Therefore, the encoding process can be writ-
ten as follow:

s jð Þ ¼
X
i

v i; jð Þ ¼
X
i

E i; jð Þm ið Þ ð14Þ

When decoding, it translates entity IDs back to men-
tions as follow:

m ið Þ ¼
X
j

v i; jð Þ ¼
X
j

D j;ið Þs jð Þ ð15Þ

where D(i, j) ∈ℝd × d is in analogy to the diagonal matrix
E(i, j) and used to distribute entity ID into its variants.
mðiÞ and vði; jÞ represent the entity mention and variant
generated in the decoding process.
We align the decoded mention embedding with the

original mention embedding to train the autoencoder. In
addition, variant embeddings v(i, j) and vði; jÞ obtained in
both encoding and decoding parts are also aligned to
strengthen the constraint on embeddings. Finally, our
training objective for the autoencoder is to minimize the
following equation:

Loss ¼ α � ‖
X
j

D j;ið ÞX
i

E i; jð Þm ið Þ
 !

−m ið Þ‖

þ β � ‖E i; jð Þm ið Þ−D j;ið Þs jð Þ‖ ∀i; j

:

ð16Þ
where α and β are weights and satisfy α + β = 1. We

make α = β = 0.5 experimentally determined. With the
help of this autoencoder, we thus encode structural
knowledge of entities from UniProt and NCBI Gene KBs
into ID embeddings, which are used as the input of the
disambiguation model.

Candidate ID generation
In this module, for each entity mention m ∈M, we aim
to retrieve a candidate ID set Sm which contains possible
IDs that entity mention m may refer to. To this end, we
propose the KB Retrieval method for candidate ID gen-
eration, as shown in part (1) of Table 8.
KB Retrieval method treats candidate ID generation as

an information retrieval process, which takes mentions as
queries and returns related IDs by the API resources pro-
vided by biomedical KBs. Here, UniProt official API [18]
and NCBI-gene official API [19] are used to search for
protein and gene IDs, respectively. To optimize for mem-
ory and run time, we keep top five results returned by KB
Retrieval as candidate IDs for the entity mention.

Entity disambiguation
Part (2) of Table 8 shows the process of entity disam-
biguation. In most cases, the size of the candidate ID set

Table 8 Pseudocode for PNEN Algorithm
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Sm of a mention is larger than one. We propose a disam-
biguation model, which is shown in Fig. 6, to rank the
candidate IDs in Sm and pick the most likely one as the
assignment result for the mention m.
Specifically, the model takes the left and right contexts

where the entity mention appears and a candidate ID as
inputs, and outputs a probability-like score for the can-
didate ID being correct. We set n2 as the length of the
context sequence. The left context CL∈ℝd�n2 and the
right context CR∈ℝd�n2 around the entity mention are
first fed into a duo of sequence encoder (SE) for context
representation learning. Take the left context as an ex-
ample, the resulting hidden state of the t-th time step
produced by the SE can be written as hset ¼ SEðCLÞ ,
where different architectures of SE will be compared in
the experimental part.
For the semantic meaning of a sequence, the import-

ance of each context word with respect to the candidate
ID embedding s should be different. To this end, we fit
the sequence encoder with a knowledge-based atten-
tion mechanism to focus on appropriate subparts of the
input context. Following Eshel et al. [13], we use the
pre-trained ID embedding s as the controller to calculate
the normalized weight αt ∈ [0, 1] for each hidden state
hset , which is then used to encode the entire sequence
into a context representation oL ∈ℝd × 1 as follow:

oL ¼
X
t

αth
se
t : ð17Þ

For each hidden state hset , we use a feed forward neural
network to compute its semantic relatedness with the

candidate ID embedding s. The score function is calcu-
lated as follow:

et ¼ tanh WL
ah

se
t þ VL

asþ bLa
� �

: ð18Þ

where WL
a∈ℝ

1�d;VL
a∈ℝ

1�d and bLa∈ℝ
1�1 are attention

parameters to be learned during training.
After that, the attention weight αt ∈ℝ

1 × 1 of each hid-
den state can be defined as follows.

αt ¼ exp etð ÞPTk
k¼1 exp ekð Þ

: ð19Þ

In general, the contribution of left and right contexts
should be different for the selection of different candi-
date IDs. For the purpose of dynamically controlling the
flow of left context representation oL and right context
representation oR, a gating mechanism is also adopted as
shown below:

z ¼ g⊙oL þ 1−gð Þ⊙oR: ð20Þ
g ¼ σ Wgo

L þ Vgo
R þ bg

� �
: ð21Þ

where ⊙ denotes element-wise product between two
vectors, σ is a sigmoid activation, and Wg ∈ℝ

1 × d, Vg ∈
ℝ1 × d, bg ∈ℝ

1 × 1 are the model parameters that need to
be trained.
Finally, we further concatenate the output of gating

mechanism z ∈ℝd × 1 and the pre-trained ID embedding
s as the final feature representation [z; s] and feed it to a
classifier. The classifier consists of a two-layer fully-
connected neural network (FC) with ReLU activation
and an output layer with two output units in a softmax.

Fig. 6 The architecture of our proposed disambiguation model. “ CL ” represents the left context, “ CR ” represents the right context, and “FC”
represents the fully connected layer. The target entity is “Miro1” in Fig. 5. This figure takes candidate ID “NCBI Gene: 59040” as an example
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The cross-entropy loss function is used as the training
objective. Adagrad technique [36] with a learning rate of
5e-4 is applied to update parameters with respect to the
loss function.
Note that, the disambiguation model picks the candi-

date ID which gets the highest score during the testing
as the mapping ID for each entity mention m. However,
in practice, some entity mentions do not have a corre-
sponding ID in the knowledge base. Therefore, we also
consider the assignment of a generic ID to them.
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