Association of Race and Ethnicity on the Management of Acute Non-ST-Segment Elevation Myocardial Infarction

Tarryn Tertulien, MD, MSc; Stephen T. Broughton (D), MD; Gretchen Swabe © , MS; Utibe R. Essien (D) MD, MPH; Jared W. Magnani (D), MD, MSc

Abstract

BACKGROUND: Prior studies have reported disparities by race in the management of acute myocardial infarction (MI), with many studies having limited covariates or now dated. We examined racial and ethnic differences in the management of MI, specifically non-ST-segment-elevation MI (NSTEMI), in a large, socially diverse cohort of insured patients. We hypothesized that the racial and ethnic disparities in the receipt of coronary angiography or percutaneous coronary intervention would persist in contemporary data.

METHODS AND RESULTS: We identified individuals presenting with incident, type I NSTEMI from 2017 to 2019 captured by a health claims database. Race and ethnicity were categorized by the database as Asian, Black, Hispanic, or White. Covariates included demographics (age, sex, race, and ethnicity); Elixhauser variables, including cardiovascular risk factors and other comorbid conditions; and social factors of estimated annual household income and educational attainment. We examined rates of coronary angiography and percutaneous coronary intervention by race and ethnicity and income categories and in multivariable-adjusted models. We identified 87094 individuals (age 73.8 ± 11.6 years; 55.6% male; 2.6% Asian, 13.4% Black, 11.2 \% Hispanic, 72.7% White) with incident NSTEMI events from 2017 to 2019. Individuals of Black race were less likely to undergo coronary angiography (odds ratio [OR], 0.93; [95\% CI, 0.89-0.98]) and percutaneous coronary intervention (OR, $0.86 ;$ [$95 \% \mathrm{Cl}, 0.81-0.90]$) than those of White race. Hispanic individuals were less likely (OR, 0.88; [95\% CI, 0.84-0.93]) to undergo coronary angiography and percutaneous coronary intervention (OR, 0.85 ; [$95 \% \mathrm{CI}, 0.81-0.89]$) than those of White race. Higher annual household income attenuated differences in the receipt of coronary angiography across all racial and ethnic groups.

CONCLUSIONS: We identified significant racial and ethnic differences in the management of individuals presenting with NSTEMI that were marginally attenuated by higher household income. Our findings suggest continued evidence of health inequities in contemporary NSTEMI treatment.

Key Words: disparities $■$ ethnicity \square non-ST-segment-elevation myocardial infarction $■$ outcome $■$ race

Prior studies have identified racial and ethnic disparities in the management and treatment of acute coronary syndromes (ACS) and have consistently demonstrated that individuals of Black race are less likely than White individuals to receive invasive cardiac procedures such as coronary angiography and percutaneous cutaneous intervention (PCl$)^{1-6}$ Professional societies
such as the American Heart Association ${ }^{7}$ and Centers for Disease Control and Prevention's Healthy People $2030^{8,9}$ have asserted that addressing racial disparities is a priority. ${ }^{4,10,11}$ Identifying the extent of differences in ACS treatment by race and ethnicity in contemporary data is essential for documenting progress toward their resolution.

[^0]
CLINICAL PERSPECTIVE

What Is New?

- Individuals of Black race persistently have lower odds of coronary revascularization post non-ST-segment-elevation myocardial infarction.
- Among all patients who underwent coronary angiography, individuals of Black race or Hispanic ethnicity had lower likelihood of percutaneous coronary intervention.
- Lower household income was associated with lower odds of coronary revascularization post non-ST-segment-elevation myocardial infarction.

What Are the Clinical Implications?

- We identified contemporary racial and ethnic differences in the management of individuals presenting with non-ST-segment-elevation myocardial infarction.
- Continued efforts to incorporate race and ethnicity and individual-level social factors are essential to improve health equity in cardiovascular outcomes.

Further, social risk factors such as income level and educational attainment may contribute to racial and ethnic disparities in cardiovascular care. ${ }^{12,13}$ As social risk factors contribute to health outcomes, understanding how they modify procedural use is likewise a priority for developing appropriate strategies to address racial disparities. ${ }^{14-17}$ Social risk factors, such as income, education, and neighborhood socioeconomic status, have been shown to modify racial differences in cardiovascular risk and disease. ${ }^{18-20}$ Limitations of prior studies of ACS and racial and ethnic differences in management include geographic generalizability and absence of inclusion of social risk factors that may contribute to health care access and management.

We studied racial and ethnic differences in the acute management of patients with non-ST-segment-elevation myocardial infarction (NSTEMI) in a large, geographically representative, and contemporary administrative health claims database. Specifically, we examined rates of coronary angiography and PCI by race or ethnicity and the contributions of social risk factors, particularly annual household income, toward racial and ethnic differences. Our hypotheses were 2 fold: first, we hypothesized that we would identify persistent differences in the acute management of NSTEMI by race and ethnicity using contemporary data. Second, we hypothesized that racial and ethnic differences in NSTEMI management would vary by annual household income, a marker of social capital.

METHODS

Sample Selection

The data employed in this analysis were provided by Optum Clinformatics. As per licensing agreement, the authors cannot make the data available to others or provide the data to them. Interested individuals may seek the data directly from Optum. The authors indicate they did not have access to the data that would not be available to others with a similar licensing agreement. We conducted a retrospective analysis using Optum's de-identified Clinformatics ${ }^{\circledR}$ Data Mart Database. Optum is a large US database composed of inpatient, outpatient, emergency department, pharmacy. and laboratory health claims. Medical claims include International Classification of Diseases, Ninth Revision and Tenth Revision codes (ICD-9 and ICD-10); Current Procedural Terminology codes; Healthcare Common Procedure Coding System procedure codes; and site of service codes. The database includes commercial and Medicare Advantage enrollees and is geographically diverse across the United States. Informed consent was waived as the data are de-identified. The University of Pittsburgh Institutional Review Board determined this research activity did not constitute human subjects research.

We selected individuals hospitalized with an NSTEMI from January 1, 2017, to December 31, 2019. Individuals were required to have continuous benefit enrollment for at least 6 months before presentation with a diagnosis of NSTEMI as defined by ICD-10 codes; all administrative codes used in the analysis are provided in Table S1. We then excluded individuals with (1) missing or unknown income or race or ethnicity; (2) heart assist device or cardiogenic shock present at the time of admission, as indicators of severity of presentation; (3) less than 6 months of enrollment; (4) age <18years, as the diagnosis of NSTEMI in children would be both unexpected and have different management than that of adults; and (5) unknown or missing sex. Figure S1 summarizes the sequence of steps used for cohort selection. Table S2 summarizes the baseline characteristics of excluded individuals for the missing variables compared with the main cohort.

The approach toward the assignment of race or ethnicity in Optum has been described previously. ${ }^{20}$ Briefly, race or ethnicity was derived from individual records obtained from a licensed consumer database and categorized as Asian, Black, Hispanic, or White. Individuals whose race or ethnicity could not be determined based on the described methods were considered unknown and were excluded from this analysis.

Two outcomes were assessed in this study: receipt of coronary angiography and PCI within the index hospitalization. These outcomes were assessed separately, with each dichotomized to indicate whether
the procedure had been performed as identified by Current Procedural Terminology codes. An individual was considered to have either outcome of interest if they had a Current Procedural Terminology code for the corresponding procedure on a claim with a date within their inpatient stay. Those individuals with Current Procedural Terminology codes for both coronary angiography and PCl were categorized as having undergone PCl .

We collected baseline characteristics of individuals with NSTEMI, including sex, age, race, ethnicity, and estimated household income and educational attainment. The Elixhauser Comorbidity Index employed here and previously validated for administrative analyses using $I C D-9$ and $/ C D-10$ codes ${ }^{21,22}$ incorporates over 30 conditions across organ systems and their varying severity. Comorbidities were defined based on the presence of a corresponding ICD-9 or ICD-10 diagnosis code in any claim before or at the time of cohort entry (inpatient admission).

Annual household income was estimated by extracting >130 data points (eg, Internal Revenue Service data, address-level home value, credit and short-term loans) linked to the ZIP +4, a highly specific geographic indicator, as described previously. ${ }^{23}$ Annual household income was categorized as $<\$ 40000, \$ 40000-$ \$49999, \$50000-\$59999, \$60000-\$74999, \$75000-\$99999, and $\geq \$ 100000$ and validated using household surveys. ${ }^{23}$ Educational attainment was similarly estimated using census data at the ZIP +4 level and was categorized as less than 12th grade, high school diploma, less than bachelor's degree, bachelor's degree or higher, or unknown.

Statistical Analysis

We summarized continuous variables by their distributions (mean and SD or median for nonnormally distributed variables) and categorical variables by their frequency. We summarized characteristics across the 4 different racial and ethnic groups (Asian, Black, Hispanic, White) using the ANOVA or Wilcoxon ranksum tests for continuous variables and Pearson's chisquare tests for categorical variables. Additionally, we compared the unadjusted incidence of primary outcomes across racial or ethnicity categories.

We used stepwise multivariable-adjusted logistic regression to assess the odds of undergoing coronary angiography or PCl across categories of race or ethnicity employing White race as our referent. Our progressive multivariable adjustment included age and sex (Model 1); the covariates included in the Elixhauser Comorbidity Index and Model 1 covariates (Model 2); annual household income, educational attainment, insurance type (Medicare versus commercial insurance), and Model 2 covariates (Model 3). Using Model

2 covariates and educational attainment, we then assessed for the association between race or ethnicity and receipt of coronary angiography by annual household income. We then repeated these steps using PCI as the outcome of interest. Individuals of White race were used as the referent category in all models. To assess the effect by annual household income, we stratified our analysis by income with White race as the referent category. We then plotted the odds ratios (ORs) of the association of race and ethnicity on receipt of interventions by annual household income on a log scale. As a sensitivity analysis, in Table S3, we used Greedy propensity score matching to reduce residual confounding in our regression models. We used 1:2 matching of individuals of Black race, Hispanic and Asian ethnicity to individuals of White race with a caliper of 0.2, and repeated our multivariable-adjusted logistic regressions described earlier using the matched data. We then repeated our stratified analyses by income with White race as the referent category. All analyses were conducted using SAS software version 9.4 (SAS Institute, Cary, NC). A 2 -sided P value of 0.05 was considered the threshold for statistical significance.

RESULTS

Following exclusions, we identified a total of 87094 individuals for inclusion in the analysis as described by Table 1 (age 73.8 ± 11.6 years; 55.6% male; 2.6% Asian, 13.4\% Black, 11.2\% Hispanic, 72.7\% White). Hypertension, diabetes, and stroke were more common among Black and Hispanic individuals than Asian and White individuals. In total, 52.5% of the data set had an annual household income $\geq \$ 50000$; of whom 3.4% were Asian, 7.5% were Black, 10.1\% were Hispanic, and 79\% were White. Among those with Medicare, 2.4\% were Asian race, 13.7\% Black race, 11.5\% Hispanic ethnicity, and 72.3% White race. Among those with a bachelor's degree, 5.4% were Asian race, 4.9% Black race, 7.0% Hispanic ethnicity, and 82.6\% White race. Among those who had <12th-grade education, 4\% were Asian race, 4.9% were Black race, 67% were Hispanic ethnicity, and 24% were White race.

Table 2 presents the incidence of coronary angiography and PCl by race and ethnicity and annual household income strata. In the overall cohort, Black and Hispanic individuals had a significantly lower incidence of coronary angiography than White individuals. Asian individuals (554 per 1000 inpatient events, 95\% $\mathrm{Cl}, 523-584)$ had a trend toward a lower incidence of coronary angiography when compared with White individuals (562 per 1000 inpatient events, 95\% CI, 557568). With increasing annual household income strata, individuals of Black race and Hispanic ethnicity had had similar incidence rates of coronary angiography

Table 1. Baseline Characteristics by Race and Ethnicity

Race and ethnicity	All eligible patients ($\mathrm{n}=87094$)	Asian ($\mathrm{n}=2303$)	Black ($\mathrm{n}=11659$)	Hispanic $\text { (} \mathrm{n}=9780 \text {) }$	White ($\mathrm{n}=63352$)
Age, y, mean (SD)	73.8 (11.6)	73.3 (12.5)	72.1 (11.6)	73.5 (11.8)	74.2 (11.4)
Sex, n (\%)					
Female	38683 (44.4\%)	887 (38.5\%)	6255 (53.7\%)	4228 (43.2\%)	27313 (43.1\%)
Male	48411 (55.6\%)	1416 (61.5\%)	5404 (46.4\%)	5552 (56.8\%)	36039 (56.9\%)
Education level, n (\%)					
<12th grade	526 (0.6\%)	21 (0.9\%)	26 (0.2\%)	354 (3.6\%)	125 (0.2\%)
High school diploma	30164 (34.6\%)	485 (21.1\%)	6316 (54.2\%)	4644 (47.5\%)	18719 (29.6\%)
<Bachelor's degree	46614 (53.5\%)	1261 (54.8\%)	4831 (41.4\%)	4091 (41.8\%)	36431 (57.5\%)
\geq Bachelor's degree	9715 (11.2\%)	534 (23.2\%)	477 (4.1\%)	681 (7\%)	8023 (12.7\%)
Unknown	75 (0.1\%)	2 (0.1\%)	9 (0.1\%)	10 (0.1\%)	54 (0.1\%)
Household income, n (\%)					
<\$40000	32781 (37.6\%)	556 (24.1\%)	6931 (59.5\%)	4050 (41.4\%)	21244 (33.5\%)
\$40000-\$49999	8536 (9.8\%)	172 (7.5\%)	1282 (11\%)	1123 (11.5\%)	5959 (9.4\%)
\$50000-\$59999	8568 (9.8\%)	193 (8.4\%)	1092 (9.4\%)	1167 (11.9\%)	6116 (9.7\%)
\$60000-\$74999	10269 (11.8\%)	273 (11.9\%)	950 (8.2\%)	1157 (11.8\%)	7889 (12.5\%)
\$75000-\$99999	12345 (14.2\%)	413 (17.9\%)	800 (6.9\%)	1137 (11.6\%)	9995 (15.8\%)
\$100000	14595 (16.8\%)	696 (30.2\%)	604 (5.2\%)	1146 (11.7\%)	12149 (19.2\%)
Medicare, n (\%)	72681 (83.5\%)	1847 (80.2\%)	9981 (85.6\%)	8320 (85.1\%	52533 (82.9\%)
Number of Elixhauser comorbidities, median (Q1, Q3)	$9(5,12)$	$8(5,11)$	$9(6,13)$	$9(6,12)$	$8(5,12)$
Hypertension	82381 (94.6\%)	2155 (93.6\%)	11299 (96.9\%)	9352 (95.6\%)	59575 (94\%)
Diabetes	49168 (56.5\%)	1460 (63.4\%)	7664 (65.7\%)	6730 (68.8\%)	33314 (52.6\%)
Stroke	28134 (32.3\%)	734 (31.9\%)	4056 (34.8\%)	3129 (32\%)	20215 (31.9\%)
Continuous enrollment time, median (Q1, Q3)	60.7 (34.4, 106.5)	60.8 (35.5, 109.5)	48.6 (28.3, 87.1)	57.8 (31.4, 117.6)	60.8 (36.4, 108.5)

compared with individuals of White race. Within the overall cohort, Asian (306 per 1000 inpatient events, $95 \% \mathrm{Cl}, 283-328$), Black (256 per 1000 inpatient events, $95 \% \mathrm{Cl}, 247-265$) and Hispanic (273 per 1000 inpatient events, $95 \% \mathrm{Cl}, 263-284$) individuals had a lower incidence of PCl compared with individuals of White race (307 per 1000 inpatient events, $95 \% \mathrm{Cl}$, 303-312). With increasing annual income, individuals of Asian race (for income $\geq \$ 100000,337$ per 1000 inpatient events, $95 \% \mathrm{Cl}, 294-380$) had a similar incidence of PCI to individuals of White race (for income $\geq \$ 100000$, 339 per 1000 inpatient events, $95 \% \mathrm{Cl}$, 329-349). With increasing annual household income, individuals of Black race and Hispanic ethnicity had lower incidence rates of PCI than individuals of White race.

Table 3 summarizes the association between race and ethnicity and the odds of coronary angiography and PCI receipt following presentation with NSTEMI in multivariable-adjusted models. In Model 1 (adjusted for age and sex), individuals of Black race (OR, 0.79; [95\% $\mathrm{Cl}, 0.76-0.82]$) and Hispanic ethnicity (OR, 0.86; [95\% $\mathrm{Cl}, 0.82-0.90]$) significantly had lower odds of receipt of coronary angiography compared with individuals
of White race. In Model 3 (fully adjusted), individuals of Black race (OR, 0.93; [95\% Cl, 0.89-0.98]) and Hispanic ethnicity (OR, 0.88 ; [$95 \% \mathrm{Cl}, 0.84-0.92]$) persistently had lower odds of receipt of coronary angiography. A similar trend was observed among individuals receiving PCI. In Model 1, individuals of Black race (OR, 0.74 ; [$95 \% \mathrm{Cl}, 0.71-0.78]$) and Hispanic ethnicity (OR, 0.82 ; [$95 \% \mathrm{Cl}, 0.78-0.86]$) had lower odds of receiving PCI than individuals of White race. In Model 3, individuals of Black race (OR, 0.86; [95\% CI, 0.81-0.90]) and Hispanic ethnicity (OR, 0.85; [95\% CI, 0.81-0.89]) persistently had lower odds of PCI than individuals of White race. As summarized in Table S4, among individuals who have received coronary angiography, individuals of Black race (OR, 0.85; [95\% CI, 0.80-0.90]) and Hispanic ethnicity (OR, 0.88; [95\% CI, 0.83-0.94]) persistently had lower odds of PCI compared with Individuals of White race. We also found a significant interaction between sex, race, and income, as summarized in Table S5 and S6 and Figure S2.

Table 4 and Figure 1 summarize the association of race and ethnicity with coronary angiography and PCl after presentation with NSTEMI by annual household income. Among individuals with an annual household

Table 2. Incidence Rates of Coronary Angiography and Percutaneous Coronary Intervention per 1000 Individuals by Race or Ethnicity and Income Strata

Coronary angiography				
	Asian	Black	Hispanic	White
Overall cohort	553.6 (523.2, 584.0)	528.1 (514.9, 541.3)	535.3 (520.8, 549.8)	562.4 (556.6, 568.2)
<\$40000	489.6 (431.4, 547.8)	494.9 (478.6, 511.2)	510.8 (488.6, 532.9)	559.6 (549.2, 570)
\$40000-\$49999	598.4 (482.9, 714.0)	508.6 (469.5, 547.6)	516.2 (474.2, 558.2)	$551.8(532.8,570.8)$
\$50000-\$59999	585.3 (477.4, 693.3)	538.2 (494.6, 581.8)	$539.2(497,581.4)$	$550.4(532,568.8)$
\$60000-\$74999	490.4 (407.4, 573.5)	$571.2(523.2,619.2)$	540.1 (497.8, 582.3)	582.5 (565.5, 599.6)
\$75000-\$99999	580.8 (507.3, 654.3)	577.5 (524.8, 630.2)	579.9 (535.6, 624.2)	584.0 (569.0, 599.0)
$\geq \$ 100000$	594.7 (537.4, 652.1)	629.1 (565.8, 692.5)	607.3 (562.2, 652.3)	$594.4(580.9,607.9)$
Percutaneous coronary intervention				
Overall cohort	305.7 (283.1, 328.3)	255.8 (246.6, 264.9)	273.3 (263.0, 283.7)	307.3 (303.0, 311.6)
<\$40000	250.2 (208.6, 291.8)	229.6 (218.5, 240.7)	252.8 (237.2, 268.3)	297.8 (290.2, 305.4)
\$40000-\$49999	337.0 (250.2, 423.7)	257.4 (229.6, 285.2)	276.8 (246, 307.5)	295.8 (281.9, 309.7)
\$50000-\$59999	326.3 (245.7, 406.9)	277.8 (246.5, 309.2)	268.3 (238.5, 298.1)	286.4 (273.1, 299.7)
\$60000-\$74999	285.5 (222.1, 348.8)	279.3 (245.7, 312.9)	283.8 (253.2, 314.4)	323.1 (310.3, 335.8)
\$75000-\$99999	319.4 (264.9, 373.9)	307.5 (269.1, 345.9)	290.4 (259.1, 321.7)	325.9 (314.7, 337.1)
$\geq \$ 100000$	337.0 (293.8, 380.1)	328.7 (282.9, 374.5)	329.7 (296.5, 362.9)	339 (328.8, 349.2)

Table 3. Association of Race and Ethnicity With Coronary Angiography and Percutaneous Coronary Intervention ($\mathrm{n}=87$ 094) After Presentation With Non-ST-Segment-Elevation Myocardial Infarction

Race or ethnicity	Model 1, OR (95\% CI)*	P value	Model 2, OR $(95 \% \mathrm{Cl})^{\dagger}$	P value	Model 3, OR $(95 \% \mathrm{Cl})^{\ddagger}$	P value
Coronary angiography						
Asian	0.91 (0.84-1.00)	0.04	0.95 (0.87-1.05)	0.31	0.95 (0.87-1.05)	0.30
Black	0.79 (0.76-0.82)	<0.01	0.92 (0.88-0.96)	<0.01	0.93 (0.89-0.98)	<0.01
Hispanic	0.86 (0.82-0.90)	<0.01	0.89 (0.85-0.93)	<0.01	0.88 (0.84-0.92)	<0.01
White	Referent	...	Referent	...	Referent	\ldots
Percutaneous coronary intervention						
Asian	0.94 (0.86-1.04)	0.22	0.96 (0.87-1.05)	0.38	0.96 (0.87-1.05)	0.36
Black	0.74 (0.71-0.78)	<0.01	0.84 (0.80-0.88)	<0.01	0.86 (0.81-0.90)	<0.01
Hispanic	0.82 (0.78-0.86)	<0.01	0.84 (0.80-0.88)	<0.01	0.85 (0.81-0.89)	<0.01
White	Referent	...	Referent	\ldots	Referent	\ldots

Modeling the odds of receipt of coronary angiography or percutaneous coronary intervention.
*Model 1 adjusted for age and/or age and sex in the overall categories.
${ }^{\dagger}$ Model 2 adjusted for Model 1 plus Elixhauser Comorbidities Index.
\ddagger Model 3 adjusted for Model 2 plus income and education level.
OR indicates odds ratio.
income <\$40 000, Black race (OR, 0.92; [95\% CI, 0.870.98]) and Hispanic ethnicity (OR, 0.84; [95\% CI, 0.78$0.90]$) were associated with significantly lower receipt of coronary angiography than White race. Similarly, individuals of Black race (OR, 0.81; [95\% CI, 0.76-0.87]) and Hispanic ethnicity (OR, 0.81; [95\% CI, 0.75-0.88]) had lower odds of PCI than individuals of White race. Among individuals with an annual household income $\geq \$ 100000$, the differences in the receipt of coronary angiography and PCI were attenuated across all other racial and ethnic groups compared with individuals of White race. Higher income attenuated the observed
racial differences in the receipt of coronary angiography and PCI among individuals of Asian, Black, and White race compared to individuals of White race with an annual household income $\geq \$ 100000$. Using propensity matching, results were similar, whereby individuals of Black race and Hispanic ethnicity with an annual household income $<\$ 40000$ had lower odds of receipt of both coronary angiography and PCI (Table S7). Additionally, we observed effect modification between annual household income and race and ethnicity. As summarized in Table S8, relative to White individuals with an annual household income
 elevation myocardial infarction, by annual household income (95\% Confidence Intervals)

Coronary angiography												
	<\$40000	P value	\$40-<\$50000	P value	\$50-<\$60000	P value	\$60-<\$75000	P value	\$75-<\$100000	P value	\$ ≥ 100000	P value
Asian	0.84 (0.70-1.01)	0.06	1.34 (0.95-1.88)	0.10	1.18 (0.86-1.62)	0.31	0.71 (0.54-0.92)	0.01	1.07 (0.85-1.34)	0.56	0.97 (0.81-1.16)	0.73
Black	0.92 (0.87-0.98)	0.01	0.89 (0.78-1.02)	0.10	0.93 (0.80-1.07)	0.30	0.94 (0.81-1.10)	0.46	0.94 (0.80-1.11)	0.45	1.01 (0.84-1.22)	0.89
Hispanic	0.84 (0.78-0.90)	<0.01	0.88 (0.76-1.01)	0.07	0.87 (0.76-1.01)	0.06	0.89 (0.78-1.03)	0.11	0.94 (0.82-1.07)	0.36	0.97 (0.85-1.12)	0.68
White	Referent											
Percutaneous coronary intervention												
Asian	0.82 (0.67-1.01)	0.06	1.28 (0.91-1.80)	0.15	1.22 (0.89-1.69)	0.22	0.86 (0.65-1.14)	0.31	0.99 (0.79-1.24)	0.92	0.95 (0.80-1.13)	0.56
Black	0.81 (0.76-0.87)	<0.01	0.90 (0.78-1.04)	0.14	0.99 (0.85-1.15)	0.85	0.83 (0.71-0.97)	0.02	0.93 (0.79-1.09)	0.38	0.90 (0.75-1.08)	0.25
Hispanic	0.81 (0.75-0.88)	<0.01	0.93 (0.80-1.08)	0.32	0.87 (0.75-1.01)	0.07	0.87 (0.75-1.00)	0.05	0.81 (0.71-0.94)	<0.01	0.90 (0.78-1.03)	0.12
White	Referent											

Modeling the odds of receipt of coronary angiography or percutaneous coronary intervention. Adjusted for age, sex, Elixhauser Comorbidities Index, educational level, and insurance type.
$\geq \$ 100000$, individuals with an annual household income $<\$ 40000$ and categorized as Asian, Black, or Hispanic were less likely to undergo coronary angiography and PCl .

DISCUSSION

In a large, highly representative, administrative health claims database of insured individuals, we examined racial and ethnic differences in standard interventional treatment for individuals presenting with NSTEMI. Specifically, we identified that among individuals presenting with NSTEMI, those of Black race and Hispanic ethnicity were less likely to undergo coronary angiography and PCl than individuals of White race. Interestingly, among patients with NSTEMI who underwent coronary angiography, individuals of Black race and Hispanic ethnicity subsequently had lower odds of PCI than individuals of White race who underwent coronary angiography. Individuals of Asian race have a similar likelihood of coronary angiography and PCl as individuals of White race. We further identified a graded association between annual household income and the likelihood of coronary angiography and PCl . Specifically, we determined that lower annual household income was associated with decreased likelihood of coronary angiography and PCl in Asian, Black, and Hispanic individuals.

Extensive research has demonstrated the association between race and ethnicity and ACS management. ${ }^{3,24,25}$ There are significant differences in the preventive care received by individuals of Black race compared with those of White race. ${ }^{26}$ The differences in care likely indicate suboptimal preventative medical therapy and underdiagnosed coronary artery disease among individuals of Black race. Individuals of Black race are less likely to receive guideline-based NSTEMI therapies, including coronary angiography and revascularization. ${ }^{27-29}$ Notably, a prior study ${ }^{27}$ demonstrated that racial differences in the management of NSTEMI persisted across the span of 15 years (2000-2014). Similarly, racial disparities in coronary revascularization have been noted in the management of ST-segmentelevation myocardial infarction, with Black race and Hispanic ethnicity associated with lower likelihood of coronary intervention. ${ }^{4}$ Our study extends this literature as we report that despite increasing awareness of health inequities, we identified persistent racial and ethnic disparities in NSTEMI management in highly generalizable contemporary data. Our analyses were further strengthened by accounting for social risk factors, thereby facilitating our examination of whether annual household income, a fundamental indicator of social capital, may modify the association between race and ethnicity and interventional strategy. Multiple

Figure 1. Odds ratio of coronary angiography or percutaneous coronary intervention by income and race or ethnicity (Asian - Green; Black -Orange, Hispanic - Purple, and White - Pink). PCI indicates percutaneous coronary intervention.
mechanisms likely contribute to our findings including (1) implicit and explicit bias; (2) intersectionality of race, ethnicity, and income; and (3) individual-level factors.

First, race and ethnicity are nuanced social constructs, incorporating institutional and individual discrimination. ${ }^{30,31}$ Explicit and implicit biases may contribute to the differences in coronary interventions. For instance, many individuals bear negative attitudes toward individuals of Black race. ${ }^{32}$ Explicit bias may manifest as miscommunication between patients and providers, lower likelihood of recommendations for guideline-directed treatments, ${ }^{28,33}$ and other practices that further racial discrimination. Compared with the presentation of an ST-segment-elevation myocardial infarction, for which the standard of care is urgent revascularization, care differences may be amplified with regard to the approach for treating an NSTEMI. ${ }^{28}$ Management of an NSTEMI may consequently be more susceptible to implicit biases because provider recommendations for intervention (coronary angiography or PCI) may bear more weight in low- to moderate-risk patients. Prior studies have demonstrated that individuals of Black race and Hispanic ethnicity were less likely to receive counseling about referral for advanced therapies, which can have dire consequences on patient health outcomes. ${ }^{34,35}$ Standardized approaches to patients with respect to guideline-directed treatment may assist with ameliorating racial and ethnic differences in referral for invasive cardiovascular treatments.

Second, the intersectionality of race or ethnicity and income with respect to health outcomes has been demonstrated in the literature, whereby lower income has been associated with a decreased likelihood of coronary revascularization for acute myocardial infarction. ${ }^{34,35}$ Lower-income individuals have less access to high-quality hospitals, inconsistent patient-provider relationships, and an increased likelihood of limited health literacy, which could contribute to decreased rates of revascularization among these patients. ${ }^{16,36}$ Our findings show that income level further amplifies the noted racial disparities in receipt of coronary angiography and PCI for NSTEMI. ${ }^{27,28}$ We found that individuals with an income <\$40000 consistently had lower likelihood of coronary angiography and lower likelihood of PCI when compared with White individuals with an annual household income $\geq \$ 100000$. Race and ethnicity and income, correlated but by no means equivalent, have joint contributions to cardiovascular health risk and outcomes. ${ }^{31}$ Therefore, attention must be given to both race or ethnicity and social risk factors, such as income, to overcome racial and ethnic disparities in management of ACS.

Lastly, at the individual level, prior research indicates that individuals of Black race and Hispanic ethnicity may be less likely to consent to invasive cardiovascular procedures. ${ }^{37}$ The distrust and fear at the level of the individual may be rooted in the historical and current experiences of disadvantaged individuals within the
health care system. Distrust of providers or the health care delivery system, given prior experience with discrimination, may limit patients' acceptance of treatment for ACS. ${ }^{38}$ Further research is needed to identify and implement interventions to dismantle individual-level barriers reinforced by structural racism. Dismantling these barriers will allow disadvantaged individuals to benefit from standard, guideline-based therapies.

Our findings that insured individuals of Black race or Hispanic ethnicity had decreased likelihood of coronary revascularization in NSTEMI compared with those of White race are noteworthy. The decreased likelihood of coronary revascularization persisted despite adjusting for social risk factors such as income and education. Additionally, we noted that income modified the association of race and ethnicity and the likelihood of coronary interventions, such that decreasing income was associated with lower likelihood of receiving the procedures studied here across all racial and ethnic groups. The evident racial and ethnic disparities in the management of NSTEMI identified here are concerning, as coronary angiography and PCl are standard and potentially life-saving therapies for treating ACS. ${ }^{39}$ The persistent racial and ethnic disparities in cardiovascular disease care emphasize the critical importance of addressing obstacles toward health equity.

Our findings underscore the importance of intentionally addressing the well-established racial and ethnic disparities in cardiovascular disease management and outcomes. A systematic review of 16 studies revealed that a diverse workforce improved clinical outcomes and health care quality. ${ }^{40}$ Studies have shown that a more diverse cardiology workforce could lead to better patient care and health outcomes among marginalized populations, such as Black and Hispanic individuals. ${ }^{41,42}$ A workforce with more minority physicians could result in more marginalized patients receiving improved preventative care, essential health care screenings, and guideline-directed care for ACS. Training a more diverse workforce will have extensive benefits for addressing both institutionalized racism and reluctance of patients to accept interventions.

Our analysis had several strengths, most notably the availability of contemporary nationwide health claims data from over 80000 individuals diagnosed with NSTEMI. Optum is a geographically, racially, and ethnically diverse cohort of individuals, which facilitates the generalizability of our findings to both private and Medicare Advantage-insured individuals with NSTEMI. The demographic representation, including sex, region, age, and race and ethnicity, is consistent with the overall privately insured population in the United States. Our study has several important limitations. First, these data represent only individuals with private health insurance or Medicare Advantage. We recognize that the use of health claims data introduces a selection
bias. Our inability to include uninsured patients in our analysis likely underestimates the effects of social risk factors such as income and education on receiving revascularization for ACS, specifically NSTEMI. As such, we recognize that consistent with other administrate health claims data, our results are not generalizable to those without insurance. Individuals of Black race, for example, are less likely to have insurance and therefore less represented by claims data such as used in our current analysis. Second, we recognize that administrative data are subject to misclassification of diagnoses. Third, we likewise cannot rule out misclassification of demographics such as race, ethnicity, or the social risk factors used in the current analysis. We also recognize that race and ethnicity are highly heterogeneous and may not be adequately captured by the categories used in this analysis. Similarly, we recognize that administrative data are an indirect estimation, and as such, the racial and ethnic groups may not be consistent with those identified as self-report. Fourth, we cannot determine the appropriateness of revascularization, as we do not have data on the extent of coronary artery disease, in the current data; however, we identified consistent differences in PCl after coronary angiography by race and ethnicity. Finally, we recognize that other factors, such as neighborhood segregation, may influence the racial and ethnic differences observed here. Likewise, we cannot exclude residual confounding from unmeasured drivers of structural racism and health inequities that are beyond our capacity to include in this analysis.

CONCLUSIONS

In this retrospective analysis of a large US health care use database, we found that, compared with those of White race, individuals of Black race and Hispanic ethnicity had a persistently lower likelihood of receiving coronary angiography or PCl when presenting with NSTEMI, even when accounting for demographics, comorbidities, and social risk factors. We observed a graded association between annual household income and likelihood of coronary intervention. Our analysis used real-world, contemporary claims data demonstrating that racial and ethnic disparities in ACS management continue to be endemic in clinical practice. Additional investigation must address how to incorporate data regarding race, ethnicity, and income into the management of patients with ACS, specifically NSTEMI, to improve the overall cardiovascular outcomes across diverse patient populations.

ARTICLE INFORMATION

Received February 15, 2022; accepted May 16, 2022.

Affiliations

Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (T.T., S.T.B., G.S., U.R.E., J.W.M.); Division of Cardiology, UPMC Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania (S.T.B., J.W.M.); and Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania (U.R.E.).

Sources of Funding

Dr. Jared W. Magnani - This work was supported by the following grants: National Institutes of Health/National Heart, Lung, and Blood Institute R01HL143010 and R33HL144669. Dr. Essien is supported by this award. This work was not supported specifically by this award.

Disclosures

None.

Supplemental Material

Tables S1-S8
Figures S1-S2

REFERENCES

1. Simon S, Ho PM. Ethnic and racial disparities in acute myocardial infarction. Curr Cardiol Rep. 2020;22:88. doi: 10.1007/s11886-020-01351-9
2. Graham G, Xiao Y-YK, Rappoport D, Siddiqi S. Population-level differences in revascularization treatment and outcomes among various United States subpopulations. World. J Cardiol. 2016;8:24-40. doi: 10.4330/wjc.v8.i1. 24
3. Singh JA, Lu X, Ibrahim S, Cram P. Trends in and disparities for acute myocardial infarction: an analysis of Medicare claims data from 1992 to 2010. BMC Med. 2014;12:190. doi: 10.1186/s12916-014-0190-6
4. Bolorunduro OB, Kiladejo AV, Animashaun IB, Akinboboye OO. Disparities in revascularization after ST elevation myocardial infarction (STEMI) before and after the 2002 IOM report. J Natl Med Assoc. 2016;108:119-123. doi: 10.1016/j.jnma.2016.04.001
5. Rashid M, Timmis A, Kinnaird T, Curzen N, Zaman A, Shoaib A, Mohamed MO, Belder MA, Deanfield J, Martin GP, et al. Racial differences in management and outcomes of acute myocardial infarction during COVID-19 pandemic. Heart. 2021;107:734-740. doi: 10.1136/ heartjnl-2020-318356
6. Hess N, Seese L, Sultan I, Mulukutla S, Marroquin O, Gleason T, Fallert M, Wang Y, Thoma F, Kilic A. The impact of race on outcomes of revascularization for multivessel coronary artery disease. The Annals of Thoracic Surgery. 2020;111:1983-1990. doi: 10.1016/j. athoracsur.2020.08.005
7. Churchwell K, Elkind MSV, Benjamin RM, Carson AP, Chang EK, Lawrence W, Mills A, Odom TM, Rodriguez CJ, Rodriguez F, et al. Call to action: structural racism as a fundamental driver of health disparities: a presidential advisory from the American Heart Association. Circulation. 2020;142:e454-e468. doi: 10.1161/CIR. 000000000000936
8. Johnson S, Gold MR, Baciu A. Rethinking the leading health indicators for Healthy People 2030. Am Med Asso. 2020;1:e200426. doi: 10.1001/ jamahealthforum.2020.0426
9. Jackson DN, Trivedi N, Baur C. Re-prioritizing digital health and health literacy in healthy people 2030 to affect health equity. Health Commun. 2021;36:1155-1162. doi: 10.1080/10410236.2020.1748828
10. Pahigiannis K, Thompson-Paul AM, Barfield W, Ochiai E, Loustalot F, Shero S, Hong Y. Progress toward improved cardiovascular health in the United States: healthy people 2020 heart disease and stroke objectives. Circulation. 2019;139:1957-1973. doi: 10.1161/ CIRCULATIONAHA.118.035408
11. Yancy CW, Kirtane AJ. Race/ethnicity-based outcomes in cardiovascular medicine. JAMA Cardiol. 2017;2:1313-1314. doi: 10.1001/ jamacardio.2017.3826
12. Graham G. Racial and ethnic differences in acute coronary syndrome and myocardial infarction within the United States: from demographics to outcomes. Clinical Cardiol. 2016;39:299-306. doi: 10.1002/ clc. 22524
13. Tertulien T, Chen Y, Althouse AD, Essien UR, Johnson A, Magnani JW. Association of income and educational attainment in hospitalization
events in atrial fibrillation. American Journal of Preventive Cardiol. 2021;100201:100201. doi: 10.1016/j.ajpc.2021.100201
14. Kucharska-Newton AM, Harald K, Rosamond WD, Rose KM, Rea TD, Salomaa V. Socioeconomic indicators and the risk of acute coronary heart disease events: comparison of population-based data from the United States and Finland. Ann Epidemiol. 2011;21:572-579. doi: 10.1016/j.annepidem.2011.04.006
15. Liu K, Cedres LB, Stamler J, Dyer A, Stamler R, Nanas S, Berkson DM, Paul O, Lepper M, Lindberg HA, et al. Relationship of education to major risk factors and death from coronary heart disease, cardiovascular diseases and all causes, Findings of three Chicago epidemiologic studies. Circulation. 1982;66:1308-1314. doi: 10.1161/01.CIR.66.6.1308
16. Yong CM, Abnousi F, Asch SM, Heidenreich PA. Socioeconomic inequalities in quality of care and outcomes among patients with acute coronary syndrome in the modern era of drug eluting stents. J Am Heart Assoc. 2014;3:e001029. doi: 10.1161/JAHA.114.001029
17. Hanley GE, Morgan S, Reid RJ. Income-related inequity in initiation of evidence-based therapies among patients with acute myocardial infarction. J Gen Intern Med. 2011;26:1329-1335. doi: 10.1007/ s11606-011-1799-1
18. Merkin SS, Karlamangla A, Roux AD, Shrager S, Watson K, Seeman T. Race/ethnicity, neighborhood socioeconomic status and cardiometabolic risk. SSM Popul Health. 2020;11:100634. doi: 10.1016/j. ssmph.2020.100634
19. Havranek EP, Mujahid MS, Barr DA, Cohen MS, Cruz-Flores S, DaveySmith G, Dennison-Himmelfarb CR, Lauer MS, Lockwood DW, Rosal M, et al. Social determinants of risk and outcomes for cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2015;132:873-898. doi: 10.1161/CIR.0000000000000228
20. Islam SJ, Hwan Kim J, Joseph E, Topel M, Baltrus P, Liu C, Ko YA, Almuwaqqat Z, Mujahid MS, Sims M, et al. Association between early trauma and ideal cardiovascular health among black Americans: results from the morehouse-emory cardiovascular (MECA) center for health equity. Circulation. 2021;14:e007904. doi: 10.1161/ CIRCOUTCOMES.121.007904
21. Li B, Evans D, Faris P, Dean S, Quan H. Risk adjustment performance of Charlson and Elixhauser comorbidities in ICD-9 and ICD10 administrative databases. BMC Health Serv Res. 2008;8:1-7. doi: 10.1186/1472-6963-8-12
22. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Medical Care. 1998;36:8-27. doi: 10.10 97/00005650-199801000-00004
23. LaRosa AR, T O'Neal W, Lutsey PL, Chen LY, Bengtson L, Chamberlain AM, Alonso A, Magnani JW. Association of household income and adverse outcomes in patients with atrial fibrillation. Heart. 2020;106:16791685. doi: 10.1136/heartjnl-2019-316065
24. Ayanian JZ, Udvarhelyi IS, Gatsonis CA, Pashos CL, Epstein AM. Racial differences in the use of revascularization procedures after coronary angiography. JAMA. 1993;269:2642-2646. doi: 10.1001/ jama.1993.03500200056033
25. Peterson ED, Shaw LK, DeLong ER, Pryor DB, Califf RM, Mark DB. Racial variation in the use of coronary-revascularization procedures-are the differences real? Do they matter? New Engl J Med. 1997;336:480-486. doi: 10.1056/NEJM199702133360706
26. lantorno M, Rogers T, Torguson R, Kolm P, Gajanana D, Khalid N, Shlofmitz E, Khan JM, Chen Y, Musallam A, et al. Racial disparities in clinical characteristics and outcomes of women undergoing percutaneous coronary intervention. Cardiovasc Revasc Med. 2019;20:10391042. doi: 10.1016/j.carrev.2019.09.020
27. Arora S, Stouffer GA, Kucharska-Newton A, Vaduganathan M, Qamar A, Matsushita K, Kolte D, Reynolds HR, Bangalore S, Rosamond WD, et al. Fifteen-year trends in management and outcomes of non-ST-segment-elevation myocardial infarction among black and white patients: the ARIC community surveillance study, 2000-2014. J Am Heart Assoc. 2018;7:e010203. doi: 10.1161/JAHA.118.010203
28. Anstey DE, Li S, Thomas L, Wang TY, Wiviott SD. Race and sex differences in management and outcomes of patients after ST-elevation and non-ST-elevation myocardial infarct: results from the NCDR. Clinical Cardiol. 2016;39:585-595. doi: 10.1002/clc. 22570
29. Yong CM, Ungar L, Abnousi F, Asch SM, Heidenreich PA. Racial differences in quality of care and outcomes after acute coronary syndrome. Am J Cardiol. 2018;121:1489-1495. doi: 10.1016/j.amjcard.2018.02.036
30. Feagin JR, McKinney KD. The many costs of racism. Lanham, MD: Rowman \& Littlefield Publishers; 2003.
31. Williams DR, Sternthal M. Understanding racial-ethnic disparities in health: sociological contributions. J Health Soc Behav 2010;51 Suppl:S15-27. doi:10.1177/0022146510383838
32. Dovidio JF, Penner LA, Albrecht TL, Norton WE, Gaertner SL, Shelton JN. Disparities and distrust: the implications of psychological processes for understanding racial disparities in health and health care. Social Sci Med. 2008;67:478-486. doi: 10.1016/j.socscimed.2008.03.019
33. Breathett K, Knapp SM, Carnes M, Calhoun E, Sweitzer NK. Imbalance in heart transplant to heart failure mortality ratio among African American, hispanic, and white patients. Circulation. 2021;143:24122414. doi: 10.1161/CIRCULATIONAHA.120.052254
34. Rose KM, Foraker RE, Heiss G, Rosamond WD, Suchindran CM, Whitsel EA. Neighborhood socioeconomic and racial disparities in angiography and coronary revascularization: the ARIC surveillance study. Annals Epidemiol. 2012;22:623-629. doi: 10.1016/j. annepidem.2012.06.100
35. Kilpi F, Silventoinen K, Konttinen H, Martikainen P. Early-life and adult socioeconomic determinants of myocardial infarction incidence and fatality. Soc Sci Med. 2017;177:100-109. doi: 10.1016/j. socscimed.2017.01.055
36. Kaplan GA, Keil JE. Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993;88:1973-1998. doi: 10.1161/01.CIR.88.4.1973
37. Groeneveld PW, Sonnad SS, Lee AK, Asch DA, Shea JE. Racial differences in attitudes toward innovative medical technology. J Gen Intern Med. 2006;21:559-563. doi: 10.1111/j.1525-1497.2006.00453.x
38. Purnell TS, Simpson DC, Callender CO, Boulware LE. Dismantling structural racism as a root cause of racial disparities in COVID-19 and transplantation. Am J Transpl. 2021;21:2327-2332. doi: 10.1111/ajt. 16543
39. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145:e153-e639. doi: 10.1161/CIR.0000000000001052
40. Gomez LE, Bernet P. Diversity improves performance and outcomes. J Natl Med Assoc. 2019;111:383-392. doi: 10.1016/j.jnma.2019.01.006
41. Johnson AE, Birru Talabi M, Bonifacino E, Culyba AJ, Jonassaint NL, Nance MA, Napoé GS, Olafiranye O, Owusu-Ansah S, Suber TL. Considerations for racial diversity in the cardiology workforce in The United States of America. J Am Coll Cardiol. 2021;77:1934-1937. doi: 10.1016/j.jacc.2021.02.043
42. QT C, Johnson A, Berlacher K, Douglas PS. The urgent and ongoing need for diversity, inclusion, and equity in the cardiology workforce in the United States. J Am Heart Assoc. 2021;10:e018893. doi: 10.1161/ JAHA.120.018893

SUPPLEMENTAL MATERIAL

Table S1. Summary of ICD-10, and CPT10 codes used in the analysis.
Condition

Congestive heart failure

IO9.81, I11.0, I13.0, I13.2, I50.1, I50.20, I50.21, I50.22, I50.23, I50.30, I50.31, I50.32, I50.33, I50.40, I50.41, I50.42, I50.43, I50.810, I50.811, I50.812, I50.813, I50.814, I50.82, I50.83, I50.84, I50.89, I50.9, I51.81, I97.130, I97.131, O29.121, O29.122, O29.123, O29.129, R57.0, Z95.811, Z95.812, 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428.0, 428.1, 428.2, 428.3, 428.4, 428.5, 428.6, 428.7, 428.8, 428.9

A18.84, A32.82, A39.51, A52.03, B33.21, B37.6, IO1.1, IO1.8, IO1.9, IO2.0, IO5.0, IO5.1, IO5.2, IO5.8, IO5.9, IO6.0, IO6.1, IO6.2, IO6.8, IO6.9, IO7.0, IO7.1, IO7.2, IO7.8, IO7.9, IO8.0, IO8.1, IO8.2, IO8.3, IO8.8, IO8.9, IO9.1, IO9.89, I33.0, I33.9, I34.0, I34.1, I34.2, I34.8, I34.9, I35.0, I35.1, I35.2, I35.8, I35.9, I36.0, I36.1, I36.2, I36.8, I36.9, I37.0, I37.1, I37.2, I37.8, I37.9, I38.X, I39.X, M32.11, Q22.0, Q22.1, Q22.2, Q22.3, Q22.4, Q22.5, Q22.6, Q22.8, Q22.9, Q23.0, Q23.1, Q23.2, Q23.3, Q23.4, Q23.8, Q23.9, T82.01XA, T82.01XD, T82.01XS, T82.02XA, T82.02XD, T82.02XS, T82.03XA, T82.03XD, T82.03XS, T82.09XA, T82.09XD, T82.09XS, T82.221A, T82.221D, T82.221S, T82.222A, T82.222D, T82.222S, T82.223A, T82.223D, T82.223S, T82.228A, T82.228D, T82.228S, T82.6XXA, T82.6XXD, T82.6XXS, Z95.2, Z95.3, Z95.4, 932.0, 932.1, $932.2,932.3,932.4,394.0,394.1,394.2,394.3,394.4,394.5,394.6,394.7$, 394.8, 394.9, 395.0, 395.1, 395.2, 395.3, 395.4, 395.5, 395.6, 395.7, 395.8, 395.9, 396.0, 396.1, 396.2, 396.3, 396.4, 396.5, 396.6, 396.7, 396.8, 396.9, 397.0, 397.1, 397.9, 424.0, 424.01, 424.02, 424.03, 424.04, 424.05, 424.06, 424.07, 424.08, 424.09, 424.10, 424.11, 424.12, 424.13, 424.14, 424.15, 424.16, 424.17, 424.18, 424.19, 424.20, 424.21, 424.22, 424.23, 424.24, 424.25, 424.26, 424.27, 424.28, 424.29, 424.30, 424.31, 424.32, 424.33, 424.34, 424.35, 424.36, 424.37, 424.38, 424.39, 424.40, 424.41, 424.42, 424.43, 424.44, 424.45, 424.46, 424.47, 424.48, 424.49, 424.50, 424.51, 424.52, 424.53, 424.54, 424.55, 424.56, 424.57, 424.58, 424.59, 424.60, 424.61, 424.62, 424.63, 424.64, 424.65, 424.66, 424.67, 424.68, 424.69, 424.70, 424.71, 424.72, 424.73, 424.74, 424.75, 424.76, 424.77, 424.78, 424.79, 424.80, 424.81, 424.82, 424.83, 424.84, 424.85, 424.86, 424.87, 424.88, 424.89, 424.90, 424.91, 424.92, 424.93, 424.94, 424.95, 424.96, 424.97, 424.98, 424.99, 746.3, 746.4, 746.5, 746.6, V42.2, V43.3

I27.0, I27.1, I27.2, I27.20, I27.21, I27.22, I27.23, I27.24, I27.29, I27.81, I27.82, I27.83, I27.89, I27.9, I28.0, I28.1, I28.8, I28.9, 415.11, 415.12, 415.13, 415.14, 415.15, 415.16, 415.17, 415.18, 415.19, 416.0, 416.1, 416.2, 416.3, 416.4, 416.5, 416.6, 416.7, 416.8, 416.9, 417.9 A52.00, A52.01, A52.02, A52.09, I70.0, I70.1, I70.201, I70.202, I70.203, I70.208, I70.209, I70.211, I70.212, I70.213, I70.218, I70.219, I70.221, I70.222, I70.223, I70.228, I70.229, I70.231, I70.232, I70.233, I70.234, I70.235, I70.238, I70.239, I70.241, I70.242, I70.243, 170.244, I70.245, 170.248 , 170.249 , 170.25 , 170.261 , I70.262, 170.263 , 170.268 , 170.269 , I70.291, 170.292, I70.293, I70.298, I70.299, I70.301, I70.302, I70.303, I70.308, I70.309, I70.311, 170.312, $170.313,170.318,170.319,170.321,170.322,170.323,170.328,170.329,170.331$, I70.332, I70.333, I70.334, I70.335, I70.338, I70.339, I70.341, I70.342, I70.343, I70.344, 170.345, I70.348, I70.349, I70.35, I70.361, I70.362, I70.363, I70.368, I70.369, I70.391, I70.392, 170.393, I70.398, I70.399, I70.401, I70.402, I70.403, I70.408, I70.409, I70.411, I70.412, I70.413, I70.418, I70.419, I70.421, I70.422, I70.423, I70.428, I70.429, I70.431, I70.432, 170.433, 170.434, I70.435, I70.438, $170.439,170.441,170.442,170.443,170.444,170.445$, 170.448, I70.449, I70.45, I70.461, I70.462, I70.463, I70.468, I70.469, I70.491, I70.492, I70.493, 170.498, I70.499, I70.501, I70.502, I70.503, I70.508, I70.509, I70.511, I70.512, I70.513, I70.518, I70.519, I70.521, I70.522, I70.523, I70.528, I70.529, I70.531, I70.532, I70.533, I70.534, I70.535, I70.538, I70.539, I70.541, I70.542, I70.543, I70.544, I70.545, I70.548, I70.549, I70.55, I70.561, I70.562, I70.563, I70.568, I70.569, I70.591, I70.592, I70.593, I70.598, I70.599, I70.601, I70.602, I70.603, I70.608, I70.609, I70.611, I70.612, I70.613, I70.618, 170.619, I70.621, I70.622, I70.623, I70.628, I70.629, I70.631, I70.632, I70.633, I70.634, I70.635, I70.638, I70.639, I70.641, I70.642, I70.643, I70.644, I70.645, I70.648, I70.649, I70.65, 170.661, I70.662, I70.663, I70.668, I70.669, I70.691, I70.692, I70.693, I70.698, I70.699, 170.701, 170.702, 170.703, 170.708, 170.709, I70.711, I70.712, I70.713, 170.718, 170.719, I70.721, I70.722, I70.723, I70.728, I70.729, I70.731, I70.732, I70.733, I70.734, I70.735, 170.738, I70.739, I70.741, I70.742, 170.743, I70.744, I70.745, I70.748, I70.749, 170.75, I70.761,

Hypertension (uncomplicated)

Hypertension (complicated)

Paralysis

I70.762, I70.763, I70.768, I70.769, I70.791, I70.792, I70.793, I70.798, I70.799, I70.8, I70.90, 170.91, I70.92, I71.00, I71.01, I71.02, I71.03, 171.1, I71.2, I71.3, I71.4, I71.5, I71.6, I71.8, I71.9, I72.0, I72.1, I72.2, I72.3, I72.4, I72.5, I72.6, I72.8, I72.9, I73.01, I73.1, I73.81, I73.89, I73.9, 174.01, I74.09, I74.10, I74.11, I74.19, I74.2, 174.3, I74.4, I74.5, I74.8, I74.9, 175.011, I75.012, 175.013, I75.019, I75.021, I75.022, I75.023, I75.029, I75.81, I75.89, I77.0, I77.1, I77.2, I77.3, 177.4, I77.5, I77.6, I77.70, I77.71, 177.72, I77.73, I77.74, I77.75, I77.76, 177.77, I77.79, 177.810, 177.811, I77.812, I77.819, I77.89, I77.9, I78.0, I78.1, I78.8, I78.9, I79.0, I79.1, I79.8, I99.8, 199.9, K31.811, K31.819, K55.1, K55.8, K55.9, Z95.820, Z95.828, 440.X, 440.1, 440.2, 440.3, $440.4,440.5,440.6,440.7,440.8,440.9,441.00,441.01,441.02,441.03,441.04,441.05$, 441.06, 441.07, 441.08, 441.09, 441.10, 441.11, 441.12, 441.13, 441.14, 441.15, 441.16, 441.17, 441.18, 441.19, 441.20, 441.21, 441.22, 441.23, 441.24, 441.25, 441.26, 441.27, 441.28, 441.29, 441.30, 441.31, 441.32, 441.33, 441.34, 441.35, 441.36, 441.37, 441.38, 441.39, 441.40, 441.41, 441.42, 441.43, 441.44, 441.45, 441.46, 441.47, 441.48, 441.49, $441.50,441.51,441.52,441.53,441.54,441.55,441.56,441.57,441.58,441.59,441.60$, 441.61, 441.62, 441.63, 441.64, 441.65, 441.66, 441.67, 441.68, 441.69, 441.70, 441.71, $441.72,441.73,441.74,441.75,441.76,441.77,441.78,441.79,441.80,441.81,441.82$, $441.83,441.84,441.85,441.86,441.87,441.88,441.89,441.90,442.0,442.1,442.2,442.3$, 442.4, 442.5, 442.6, 442.7, 442.8, 442.9, 443.1, 443.2, 443.3, 443.4, 443.5, 443.6, 443.7, 443.8, 443.9, 444.21, 444.22, 444.71, 449.X, 557.1, 557.9, V43.4

I10.X, I16.0, I16.9, O10.011, O10.012, O10.013, O10.019, O10.02, O10.03, 401.1, 401.9, 642.00, 642.01, 642.02, 642.03, 642.04

H35.031, H35.032, H35.033, H35.039, I11.0, I11.9, I12.0, I12.9, I13.0, I13.10, I13.11, I13.2, I15.0, I15.1, I15.2, I15.8, I15.9, I16.1, I67.4, O10.111, O10.112, O10.113, O10.119, O10.12, O10.13, O10.211, O10.212, O10.213, O10.219, O10.22, O10.23, O10.311, O10.312, O10.313, O10.319, O10.32, O10.33, O10.411, O10.412, O10.413, O10.419, O10.42, O10.43, O10.911, O10.912, O10.913, O10.919, O10.92, O10.93, O11.1, O11.2, O11.3, O11.4, O11.5, O11.9, O16.1, O16.2, O16.3, O16.4, O16.5, O16.9
G04.1, G80.0, G80.1, G80.2, G80.8, G80.9, G81.00, G81.01, G81.02, G81.03, G81.04, G81.10, G81.11, G81.12, G81.13, G81.14, G81.90, G81.91, G81.92, G81.93, G81.94, G82.20, G82.21, G82.22, G82.50, G82.51, G82.52, G82.53, G82.54, G83.0, G83.10, G83.11, G83.12, G83.13, G83.14, G83.20, G83.21, G83.22, G83.23, G83.24, G83.30, G83.31, G83.32, G83.33, G83.34, G83.4, G83.5, G83.81, G83.82, G83.83, G83.84, G83.89, G83.9, I69.031, I69.032, I69.033, I69.034, I69.039, I69.041, I69.042, I69.043, I69.044, I69.049, I69.051, I69.052, I69.053, I69.054, I69.059, I69.061, I69.062, I69.063, I69.064, I69.065, I69.069, I69.131, I69.132, I69.133, I69.134, I69.139, I69.141, I69.142, I69.143, I69.144, I69.149, I69.151, I69.152, I69.153, I69.154, I69.159, I69.161, I69.162, I69.163, I69.164, I69.165, I69.169, I69.231, I69.232, I69.233, I69.234, I69.239, I69.241, I69.242, I69.243, I69.244, I69.249, I69.251, I69.252, I69.253, I69.254, I69.259, I69.261, I69.262, I69.263, I69.264, I69.265, I69.269, I69.331, I69.332, I69.333, I69.334, I69.339, I69.341, I69.342, I69.343, I69.344, I69.349, I69.351, I69.352, I69.353, I69.354, I69.359, I69.361, I69.362, I69.363, I69.364, I69.365, I69.369, I69.831, I69.832, I69.833, I69.834, I69.839, I69.841, I69.842, I69.843, I69.844, I69.849, I69.851, I69.852, I69.853, I69.854, I69.859, I69.861, I69.862, I69.863, I69.864, I69.865, I69.869, I69.931, I69.932, I69.933, I69.934, I69.939, I69.941, I69.942, I69.943, I69.944, I69.949, I69.951, I69.952, I69.953, I69.954, I69.959, I69.961, I69.962, I69.963, I69.964, I69.965, I69.969, R53.2
G08.X, G10.X, G11.0, G11.1, G11.10, G11.11, G11.19, G11.2, G11.3, G11.4, G11.8, G11.9, G12.0, G12.1, G12.20, G12.21, G12.22, G12.23, G12.24, G12.25, G12.29, G12.8, G12.9, G13.0, G13.1, G13.2, G13.8, G20.X, G21.0, G21.11, G21.19, G21.2, G21.3, G21.4, G21.8, G21.9, G23.0, G23.1, G23.2, G23.8, G23.9, G24.09, G24.1, G24.2, G24.8, G25.4, G25.5, G25.70, G25.71, G25.79, G25.81, G25.82, G25.83, G25.89, G25.9, G26.X, G32.0, G32.81, G32.89, G80. 3

Seizures and epilepsy

Other neurological disorders

Chronic pulmonary disease

G40.001, G40.009, G40.011, G40.019, G40.101, G40.109, G40.111, G40.119, G40.201, G40.209, G40.211, G40.219, G40.301, G40.309, G40.311, G40.319, G40.401, G40.409, G40.411, G40.419, G40.42, G40.501, G40.509, G40.801, G40.802, G40.803, G40.804, G40.811, G40.812, G40.813, G40.814, G40.821, G40.822, G40.823, G40.824, G40.833, G40.834, G40.89, G40.901, G40.909, G40.911, G40.919, G40.A01, G40.A09, G40.A11, G40.A19, G40.B01, G40.B09, G40.B11, G40.B19, R56.1, R56.9
E75.00, E75.01, E75.02, E75.09, E75.10, E75.11, E75.19, E75.23, E75.25, E75.26, E75.29, E75.4, F05.X, F84.2, G35.X, G36.0, G36.8, G36.9, G37.0, G37.1, G37.2, G37.3, G37.4, G37.5, G37.8, G37.9, G47.411, G47.419, G47.421, G47.429, G89.0, G91.0, G91.1, G91.2, G91.3, G91.4, G91.8, G91.9, G93.0, G93.40, G93.41, G93.49, G93.5, G93.6, G93.7, G93.81, G93.82, G93.89, G93.9, G94.X, O99.350, O99.351, O99.352, O99.353, O99.354, O99.355, P91.60, P91.61, P91.62, P91.63, 330.1, 330.2, 330.3, 330.4, 330.5, 330.6, 330.7, 330.8, $330.9,331.0,331.1,331.2,331.3,331.4,331.5,331.6,331.7,331.8,331.9,332.0,333.4$, $333.5,333.71,333.72,333.79,333.85,333.94,334.0,334.1,334.2,334.3,334.4,334.5$, $334.6,334.7,334.8,334.9,335.0,335.1,335.2,335.3,335.4,335.5,335.6,335.7,335.8$, $335.9,338.0,340 . X, 341.1,341.2,341.3,341.4,341.5,341.6,341.7,341.8,341.9,345.00$, $345.01,345.02,345.03,345.04,345.05,345.06,345.07,345.08,345.09,345.10,345.11$, $345.2,345.3,345.40,345.41,345.42$, 345.43 , 345.44 , 345.45 , $345.46,345.47,345.48,345.49$, $345.50,345.51,345.52,345.53,345.54,345.55,345.56,345.57,345.58,345.59,345.60$, $345.61,345.62$, 345.63 , 345.64, 345.65, 345.66, 345.67, 345.68, 345.69, 345.70, 345.71, $345.72,345.73,345.74,345.75,345.76,345.77$, $345.78,345.79,345.80,345.81,345.82$, $345.83,345.84,345.85,345.86,345.87,345.88,345.89,345.90,345.91,347.00,347.01$, 347.10, 347.11, 649.40, 649.41, 649.42, 649.43, 649.44, 768.7, 768.70, 768.71, 768.72, 780.3, 780.31, 780.32, 780.33, 780.39, 780.97, 784.3

J41.0, J41.1, J41.8, J42.X, J43.0, J43.1, J43.2, J43.8, J43.9, J44.0, J44.1, J44.9, J45.20, J45.21, J45.22, J45.30, J45.31, J45.32, J45.40, J45.41, J45.42, J45.50, J45.51, J45.52, J45.901, J45.902, J45.909, J45.990, J45.991, J45.998, J47.0, J47.1, J47.9, J60.X, J61.X, J62.0, J62.8, J63.0, J63.1, J63.2, J63.3, J63.4, J63.5, J63.6, J64.X, J65.X, J66.0, J66.1, J66.2, J66.8, J67.0, J67.1, J67.2, J67.3, J67.4, J67.5, J67.6, J67.7, J67.8, J67.9, J68.4, J70.1, J70.3, 490.X, 490.1, 490.2, 490.3, 490.4, 490.5, 490.6, 490.7, 490.8, 490.9, 491.0, 491.1, 491.2, 491.3, 491.4, 491.5, 491.6, 491.7, 491.8, 491.9, 492.0, 492.1, 492.2, 492.3, 492.4, 492.5, 492.6, 492.7, 492.8, 493.00, 493.01, 493.02, 493.03, 493.04, 493.05, 493.06, 493.07, 493.08, 493.09, 493.10, 493.11, 493.12, 493.13, 493.14, 493.15, 493.16, 493.17, 493.18, 493.19, 493.20, 493.21, 493.22, 493.23, 493.24, 493.25, 493.26, 493.27, 493.28, 493.29, 493.30, 493.31, 493.32, 493.33, 493.34, 493.35, 493.36, 493.37, 493.38, 493.39, 493.40, 493.41, 493.42, 493.43, 493.44, 493.45, 493.46, 493.47, 493.48, 493.49, 493.50, 493.51, 493.52, 493.53, 493.54, 493.55, 493.56, 493.57, 493.58, 493.59, 493.60, 493.61, 493.62, 493.63, 493.64, 493.65, 493.66, 493.67, 493.68, 493.69, 493.70, 493.71, 493.72, 493.73, 493.74, 493.75, 493.76, 493.77, 493.78, 493.79, 493.80, 493.81, 493.82, 493.83, 493.84, 493.85, 493.86, 493.87, 493.88, 493.89, 493.90, 493.91, 493.92, 494.X, 494.0, 494.1, 495.0, 495.1, 495.2, 495.3, 495.4, 495.5, 495.6, 495.7, 495.8, 495.9, 496.0, 496.1, 496.2, 496.3, 496.4, 496.5, 496.6, 496.7, 496.8, 496.9, 497.0, 497.1, 497.2, 497.3, 497.4, 497.5, 497.6, 497.7, 497.8, 497.9, 498.0, 498.1, 498.2, 498.3, 498.4, 498.5, 498.6, 498.7, 498.8, 498.9, 499.0, 499.1, 499.2, 499.3, 499.4, 499.5, 499.6, 499.7, 499.8, 499.9, 500.0, 500.1, 500.2, 500.3, $500.4,500.5,500.6,500.7,500.8,500.9,501.0,501.1,501.2,501.3,501.4,501.5,501.6$, 501.7, 501.8, 501.9, 502.0, 502.1, 502.2, 502.3, 502.4, 502.5, 502.6, 502.7, 502.8, 502.9, 503.0, 503.1, 503.2, 503.3, 503.4, 503.5, 503.6, 503.7, 503.8, 503.9, 504.0, 504.1, 504.2, 504.3, 504.4, 504.5, 504.6, 504.7, 504.8, 504.9, 505.X, 506.4

Diabetes (uncomplicated)

E08.21, E08.22, E08.29, E08.311, E08.319, E08.321, E08.3211, E08.3212, E08.3213, E08.3219, E08.329, E08.3291, E08.3292, E08.3293, E08.3299, E08.331, E08.3311, E08.3312, E08.3313, E08.3319, E08.339, E08.3391, E08.3392, E08.3393, E08.3399, E08.341, E08.3411, E08.3412, E08.3413, E08.3419, E08.349, E08.3491, E08.3492, E08.3493, E08.3499, E08.351, E08.3511, E08.3512, E08.3513, E08.3519, E08.3521, E08.3522, E08.3523, E08.3529, E08.3531, E08.3532, E08.3533, E08.3539, E08.3541, E08.3542, E08.3543, E08.3549, E08.3551, E08.3552, E08.3553, E08.3559, E08.359,

E08.3591, E08.3592, E08.3593, E08.3599, E08.36, E08.37X1, E08.37X2, E08.37X3, E08.37X9, E08.39, E08.40, E08.41, E08.42, E08.43, E08.44, E08.49, E08.51, E08.52, E08.59, E08.610, E08.618, E08.620, E08.621, E08.622, E08.628, E08.630, E08.638, E08.641, E08.649, E08.65, E08.69, E08.8, E09.21, E09.22, E09.29, E09.311, E09.319, E09.321, E09.3211, E09.3212, E09.3213, E09.3219, E09.329, E09.3291, E09.3292, E09.3293, E09.3299, E09.331, E09.3311, E09.3312, E09.3313, E09.3319, E09.339, E09.3391, E09.3392, E09.3393, E09.3399, E09.341, E09.3411, E09.3412, E09.3413, E09.3419, E09.349, E09.3491, E09.3492, E09.3493, E09.3499, E09.351, E09.3511, E09.3512, E09.3513, E09.3519, E09.3521, E09.3522, E09.3523, E09.3529, E09.3531, E09.3532, E09.3533, E09.3539, E09.3541, E09.3542, E09.3543, E09.3549, E09.3551, E09.3552, E09.3553, E09.3559, E09.359, E09.3591, E09.3592, E09.3593, E09.3599, E09.36, E09.37X1, E09.37X2, E09.37X3, E09.37X9, E09.39, E09.40, E09.41, E09.42, E09.43, E09.44, E09.49, E09.51, E09.52, E09.59, E09.610, E09.618, E09.620, E09.621, E09.622, E09.628, E09.630, E09.638, E09.641, E09.649, E09.65, E09.69, E09.8, E10.21, E10.22, E10.29, E10.311, E10.319, E10.321, E10.3211, E10.3212, E10.3213, E10.3219, E10.329, E10.3291, E10.3292, E10.3293, E10.3299, E10.331, E10.3311, E10.3312, E10.3313, E10.3319, E10.339, E10.3391, E10.3392, E10.3393, E10.3399, E10.341, E10.3411, E10.3412, E10.3413, E10.3419, E10.349, E10.3491, E10.3492, E10.3493, E10.3499, E10.351, E10.3511, E10.3512, E10.3513, E10.3519, E10.3521, E10.3522, E10.3523, E10.3529, E10.3531, E10.3532, E10.3533, E10.3539, E10.3541, E10.3542, E10.3543, E10.3549, E10.3551, E10.3552, E10.3553, E10.3559, E10.359, E10.3591, E10.3592, E10.3593, E10.3599, E10.36, E10.37X1, E10.37X2, E10.37X3, E10.37X9, E10.39, E10.40, E10.41, E10.42, E10.43, E10.44, E10.49, E10.51, E10.52, E10.59, E10.610, E10.618, E10.620, E10.621, E10.622, E10.628, E10.630, E10.638, E10.641, E10.649, E10.65, E10.69, E10.8, E11.21, E11.22, E11.29, E11.311, E11.319, E11.321, E11.3211, E11.3212, E11.3213, E11.3219, E11.329, E11.3291, E11.3292, E11.3293, E11.3299, E11.331, E11.3311, E11.3312, E11.3313, E11.3319, E11.339, E11.3391, E11.3392, E11.3393, E11.3399, E11.341, E11.3411, E11.3412, E11.3413, E11.3419, E11.349, E11.3491, E11.3492, E11.3493, E11.3499, E11.351, E11.3511, E11.3512, E11.3513, E11.3519, E11.3521, E11.3522, E11.3523, E11.3529, E11.3531, E11.3532, E11.3533, E11.3539, E11.3541, E11.3542, E11.3543, E11.3549, E11.3551, E11.3552, E11.3553, E11.3559, E11.359, E11.3591, E11.3592, E11.3593, E11.3599, E11.36, E11.37X1, E11.37X2, E11.37X3, E11.37X9, E11.39, E11.40, E11.41, E11.42, E11.43, E11.44, E11.49, E11.51, E11.52, E11.59, E11.610, E11.618, E11.620, E11.621, E11.622, E11.628, E11.630, E11.638, E11.641, E11.649, E11.65, E11.69, E11.8, E13.21, E13.22, E13.29, E13.311, E13.319, E13.321, E13.3211, E13.3212, E13.3213, E13.3219, E13.329, E13.3291, E13.3292, E13.3293, E13.3299, E13.331, E13.3311, E13.3312, E13.3313, E13.3319, E13.339, E13.3391, E13.3392, E13.3393, E13.3399, E13.341, E13.3411, E13.3412, E13.3413, E13.3419, E13.349, E13.3491, E13.3492, E13.3493, E13.3499, E13.351, E13.3511, E13.3512, E13.3513, E13.3519, E13.3521, E13.3522, E13.3523, E13.3529, E13.3531, E13.3532, E13.3533, E13.3539, E13.3541, E13.3542, E13.3543, E13.3549, E13.3551, E13.3552, E13.3553, E13.3559, E13.359, E13.3591, E13.3592, E13.3593, E13.3599, E13.36, E13.37X1, E13.37X2, E13.37X3, E13.37X9, E13.39, E13.40, E13.41, E13.42, E13.43, E13.44, E13.49, E13.51, E13.52, E13.59, E13.610, E13.618, E13.620, E13.621, E13.622, E13.628, E13.630, E13.638, E13.641, E13.649, E13.65, E13.69, E13.8, 249.00, 249.01, 249.02, 249.03, 249.04, 249.05, 249.06, 249.07, 249.08, 249.09, 249.10, 249.11, 249.12, 249.13, 249.14, 249.15, 249.16, 249.17, 249.18, 249.19, 249.20, 249.21, 249.22, 249.23, 249.24, 249.25, 249.26, 249.27, 249.28, 249.29, 249.30, 249.31, 250.00, 250.01, 250.02, 250.03, 250.04, 250.05, 250.06, 250.07, 250.08, 250.09, 250.10, 250.11, 250.12, 250.13, 250.14, 250.15, 250.16, 250.17, 250.18, 250.19, 250.20, 250.21, 250.22, 250.23, 250.24, 250.25, 250.26, 250.27, 250.28, 250.29, 250.30, 250.31, 250.32, 250.33, 648.00, 648.01, 648.02, 648.03, 648.04

Diabetes (complicated)

Hypothyroidism

Renal failure (moderate)

Renal failure (severe)

Liver disease (mild)

Liver disease (moderate or severe)

Peptic ulcer disease (excluding bleeding)

AIDS/HIV

E08.00, E08.01, E08.10, E08.11, E08.9, E09.00, E09.01, E09.10, E09.11, E09.9, E10.10, E10.11, E10.9, E11.00, E11.01, E11.10, E11.11, E11.9, E13.00, E13.01, E13.10, E13.11, E13.9, O24.011, O24.012, O24.013, O24.019, O24.02, O24.03, O24.111, O24.112, O24.113, O24.119, O24.12, O24.13, O24.311, O24.312, O24.313, O24.319, O24.32, O24.33, O24.410, O24.414, O24.415, O24.419, O24.420, O24.424, O24.425, O24.429, O24.430, O24.434, O24.435, O24.439, O24.811, O24.812, O24.813, O24.819, O24.82, O24.83, O24.911, O24.912, O24.913, O24.919, O24.92, O24.93, 249.40, 249.41, 249.42, 249.43, 249.44, 249.45, 249.46, 249.47, 249.48, 249.49, 249.50, 249.51, 249.52, 249.53, 249.54, 249.55, 249.56, 249.57, 249.58, 249.59, 249.60, 249.61, 249.62, 249.63, 249.64, 249.65, 249.66, 249.67, 249.68, 249.69, 249.70, 249.71, 249.72, 249.73, 249.74, 249.75, 249.76, 249.77, 249.78, 249.79, 249.80, 249.81, 249.82, 249.83, 249.84, 249.85, 249.86, 249.87, 249.88, 249.89, 249.90, 249.91, 250.40, 250.41, 250.42, 250.43, 250.44, 250.45, 250.46, 250.47, 250.48, 250.49, 250.50, 250.51, 250.52, 250.53, 250.54, 250.55, 250.56, 250.57, 250.58, 250.59, 250.60, 250.61, 250.62, 250.63, 250.64, 250.65, 250.66, 250.67, 250.68, 250.69, 250.70, 250.71, 250.72, 250.73, 250.74, 250.75, 250.76, 250.77, 250.78, 250.79, 250.80, 250.81, 250.82, 250.83, 250.84, 250.85, 250.86, 250.87, 250.88, 250.89, 250.90, 250.91, 250.92, 250.93, 775.1

E00.0, E00.1, E00.2, E00.9, E01.0, E01.1, E01.2, E01.8, E02.X, E03.0, E03.1, E03.2, E03.3, E03.4, E03.5, E03.8, E03.9, E89.0, 243.0, 243.1, 243.2, 243.3, 243.4, 243.5, 243.6, 243.7, 243.8, 243.9, 244.0, 244.1, 244.2, 244.8, 244.9

N18.3, N18.30, N18.31, N18.32, N18.9, N19.X, 403.01, 403.11, 403.91, 402.X, 404.03, 404.12, 404.13, 404.92, 404.93, 585.3, 585.4, 585.5, 585.6, 585.9, 586.X, V42.0, V45.1, V45.11, V45.12, V56.0, V56.00, V56.01, V56.02, V56.03, V56.04, V56.05, V56.06, V56.07, V56.08, V56.09, V56.10, V56.11, V56.12, V56.13, V56.14, V56.15, V56.16, V56.17, V56.18, V56.19, V56.20, V56.21, V56.22, V56.23, V56.24, V56.25, V56.26, V56.27, V56.28, V56.29, V56.30, V56.31, V56.32, V56.8 I12.0, I13.11, I13.2, N18.4, N18.5, N18.6, Z49.01, Z49.02, Z49.31, Z49.32, Z91.15, Z94.0, Z99.2

A51.45, A52.74, B18.0, B18.1, B18.2, B18.8, B18.9, B19.10, B19.20, B19.9, B25.1, B58.1, K70.0, K70.10, K70.11, K70.2, K70.30, K70.31, K70.9, K71.3, K71.4, K71.50, K71.51, K71.6, K71.7, K71.8, K73.0, K73.1, K73.2, K73.8, K73.9, K74.0, K74.00, K74.01, K74.02, K74.1, K74.2, K74.3, K74.4, K74.5, K74.60, K74.69, K75.1, K75.2, K75.3, K75.4, K75.81, K75.89, K75.9, K76.0, K76.1, K76.2, K76.3, K76.4, K76.81, K76.89, K76.9, K77.X, 702.2, 702.3, 703.2, 703.3, 704.4, 705.4, 456.0, 456.1, 456.20, 456.21, 571.0, 571.2, 571.3, 571.40, 571.41, $571.42,571.43,571.44,571.45,571.46,571.47,571.48,571.49,571.5,571.6,571.8,571.9$, 572.3, 572.8, 573.5, V42.7

B19.0, B19.11, B19.21, I85.00, I85.01, I85.11, I86.4, K70.40, K70.41, K72.10, K72.11, K72.90, K76.5, K76.6, K76.7, K91.82, Z94.4

K25.0, K25.1, K25.2, K25.3, K25.4, K25.5, K25.6, K25.7, K25.9, K26.0, K26.1, K26.2, K26.3, K26.4, K26.5, K26.6, K26.7, K26.9, K27.0, K27.1, K27.2, K27.3, K27.4, K27.5, K27.6, K27.7, K27.9, K28.0, K28.1, K28.2, K28.3, K28.4, K28.5, K28.6, K28.7, K28.9, 531.41, 531.51, 531.61, 531.70, 531.71, 531.91, 532.41, 532.51, 532.61, 532.70, 532.71, 532.91, 533.41, 533.51, 533.61, 533.70, 533.71, 533.91, 534.41, 534.51, 534.61, 534.70, 534.71, 534.91 B20.X, O98.711, O98.712, O98.713, O98.719, O98.72, O98.73, Z21.X, 042.X, 042.1, 042.2, 042.3, 042.4, 042.5, 042.6, 042.7, 042.8, 042.9, 043.0, 043.1, 043.2, 043.3, 043.4, 043.5, 043.6, 043.7, 043.8, 043.9, 044.0, 044.1, 044.2, 044.3, 044.4, 044.5, 044.6, 044.7, 044.8, 044.9, 043.X, 044.

C81.00, C81.01, C81.02, C81.03, C81.04, C81.05, C81.06, C81.07, C81.08, C81.09, C81.10, C81.11, C81.12, C81.13, C81.14, C81.15, C81.16, C81.17, C81.18, C81.19, C81.20, C81.21, C81.22, C81.23, C81.24, C81.25, C81.26, C81.27, C81.28, C81.29, C81.30, C81.31, C81.32, C81.33, C81.34, C81.35, C81.36, C81.37, C81.38, C81.39, C81.40, C81.41, C81.42, C81.43, C81.44, C81.45, C81.46, C81.47, C81.48, C81.49, C81.70, C81.71, C81.72, C81.73, C81.74, C81.75, C81.76, C81.77, C81.78, C81.79, C81.90, C81.91, C81.92, C81.93, C81.94, C81.95,

C81.96, C81.97, C81.98, C81.99, C82.00, C82.01, C82.02, C82.03, C82.04, C82.05, C82.06, C82.07, C82.08, C82.09, C82.10, C82.11, C82.12, C82.13, C82.14, C82.15, C82.16, C82.17, C82.18, C82.19, C82.20, C82.21, C82.22, C82.23, C82.24, C82.25, C82.26, C82.27, C82.28, C82.29, C82.30, C82.31, C82.32, C82.33, C82.34, C82.35, C82.36, C82.37, C82.38, C82.39, C82.40, C82.41, C82.42, C82.43, C82.44, C82.45, C82.46, C82.47, C82.48, C82.49, C82.50, C82.51, C82.52, C82.53, C82.54, C82.55, C82.56, C82.57, C82.58, C82.59, C82.60, C82.61, C82.62, C82.63, C82.64, C82.65, C82.66, C82.67, C82.68, C82.69, C82.80, C82.81, C82.82, C82.83, C82.84, C82.85, C82.86, C82.87, C82.88, C82.89, C82.90, C82.91, C82.92, C82.93, C82.94, C82.95, C82.96, C82.97, C82.98, C82.99, C83.00, C83.01, C83.02, C83.03, C83.04, C83.05, C83.06, C83.07, C83.08, C83.09, C83.10, C83.11, C83.12, C83.13, C83.14, C83.15, C83.16, C83.17, C83.18, C83.19, C83.30, C83.31, C83.32, C83.33, C83.34, C83.35, C83.36, C83.37, C83.38, C83.39, C83.50, C83.51, C83.52, C83.53, C83.54, C83.55, C83.56, C83.57, C83.58, C83.59, C83.70, C83.71, C83.72, C83.73, C83.74, C83.75, C83.76, C83.77, C83.78, C83.79, C83.80, C83.81, C83.82, C83.83, C83.84, C83.85, C83.86, C83.87, C83.88, C83.89, C83.90, C83.91, C83.92, C83.93, C83.94, C83.95, C83.96, C83.97, C83.98, C83.99, C84.00, C84.01, C84.02, C84.03, C84.04, C84.05, C84.06, C84.07, C84.08, C84.09, C84.10, C84.11, C84.12, C84.13, C84.14, C84.15, C84.16, C84.17, C84.18, C84.19, C84.40, C84.41, C84.42, C84.43, C84.44, C84.45, C84.46, C84.47, C84.48, C84.49, C84.60, C84.61, C84.62, C84.63, C84.64, C84.65, C84.66, C84.67, C84.68, C84.69, C84.70, C84.71, C84.72, C84.73, C84.74, C84.75, C84.76, C84.77, C84.78, C84.79, C84.90, C84.91, C84.92, C84.93, C84.94, C84.95, C84.96, C84.97, C84.98, C84.99, C84.A0, C84.A1, C84.A2, C84.A3, C84.A4, C84.A5, C84.A6, C84.A7, C84.A8, C84.A9, C84.Z0, C84.Z1, C84.Z2, C84.Z3, C84.Z4, C84.Z5, C84.Z6, C84.Z7, C84.78, C84.Z9, C85.10, C85.11, C85.12, C85.13, C85.14, C85.15, C85.16, C85.17, C85.18, C85.19, C85.20, C85.21, C85.22, C85.23, C85.24, C85.25, C85.26, C85.27, C85.28, C85.29, C85.80, C85.81, C85.82, C85.83, C85.84, C85.85, C85.86, C85.87, C85.88, C85.89, C85.90, C85.91, C85.92, C85.93, C85.94, C85.95, C85.96, C85.97, C85.98, C85.99, C86.0, C86.1, C86.2, C86.3, C86.4, C86.5, C86.6, C88.0, C88.2, C88.3, C88.4, C88.8, C88.9, C90.00, C90.01, C90.02, C90.20, C90.21, C90.22, C90.30, C90.31, C90.32, C96.0, C96.2, C96.20, C96.21, C96.22, C96.29, C96.4, C96.9, C96.A, C96.Z, D47.Z9, 200.00, 200.01, 200.02, 200.03, 200.04, 200.05, 200.06, 200.07, 200.08, 200.09, 200.10, 200.11, 200.12, 200.13, 200.14, 200.15, 200.16, 200.17, 200.18, 200.19, 200.20, 200.21, 200.22, 200.23, 200.24, 200.25, 200.26, 200.27, 200.28, 200.29, 200.30, 200.31, 200.32, 200.33, 200.34, 200.35, 200.36, 200.37, 200.38, 200.39, 200.40, 200.41, 200.42, 200.43, 200.44, 200.45, 200.46, 200.47, 200.48, 200.49, 200.50, 200.51, 200.52, 200.53, 200.54, 200.55, 200.56, 200.57, 200.58, 200.59, 200.60, 200.61, 200.62, 200.63, 200.64, 200.65, 200.66, 200.67, 200.68, 200.69, 200.70, 200.71, 200.72, 200.73, 200.74, 200.75, 200.76, 200.77, 200.78, 200.79, 200.80, 200.81, 200.82, 200.83, 200.84, 200.85, 200.86, 200.87, 200.88, 200.89, 200.90, 200.91, 200.92, 200.93, 200.94, 200.95, 200.96, 200.97, 200.98, 200.99, 201.00, 201.01, 201.02, 201.03, 201.04, 201.05, 201.06, 201.07, 201.08, 201.09, 201.10, 201.11, 201.12, 201.13, 201.14, 201.15, 201.16, 201.17, 201.18, 201.19, 201.20, 201.21, 201.22, 201.23, 201.24, 201.25, 201.26, 201.27, 201.28, 201.29, 201.30, 201.31, 201.32, 201.33, 201.34, 201.35, 201.36, 201.37, 201.38, 201.39, 201.40, 201.41, 201.42, 201.43, 201.44, 201.45, 201.46, 201.47, 201.48, 201.49, 201.50, 201.51, 201.52, 201.53, 201.54, 201.55, 201.56, 201.57, 201.58, 201.59, 201.60, 201.61, 201.62, 201.63, 201.64, 201.65, 201.66, 201.67, 201.68, 201.69, 201.70, 201.71, 201.72, 201.73, 201.74, 201.75, 201.76, 201.77, 201.78, 201.79, 201.80, 201.81, 201.82, 201.83, 201.84, 201.85, 201.86, 201.87, 201.88, 201.89, 201.90, 201.91, 201.92, 201.93, 201.94, 201.95, 201.96, 201.97, 201.98, 201.99, 202.00, 202.01, 202.02, 202.03, 202.04, 202.05, 202.06, 202.07, 202.08, 202.09, 202.10, 202.11, 202.12, 202.13, 202.14, 202.15, 202.16, 202.17, 202.18, 202.19, 202.20, 202.21, 202.22, 202.23, 202.24, 202.25, 202.26, 202.27, 202.28, 202.29, 202.30, 202.31, 202.32, 202.33, 202.34, 202.35, 202.36, 202.37, 202.38, 202.50, 202.51, 202.52, 202.53, 202.54, 202.55, 202.56, 202.57, 202.58, 202.59, 202.60, 202.61, 202.62, 202.63, 202.64, 202.65, 202.66, 202.67, 202.68, 202.69, 202.70, 202.71, 202.72, 202.73, 202.74, 202.75, 202.76, 202.77, 202.78, 202.79, 202.80, 202.81, 202.82, 202.83, 202.84, 202.85, 202.86, 202.87, 202.88, 202.89, 202.90, 202.91, 202.92, 202.93, 202.94, 202.95, 202.96, 202.97, 202.98, 202.99, 203.00, 203.01, 203.02, 203.03, 203.04, 203.05, 203.06, 203.07, 203.08, 203.09, 203.10,
203.11, 203.12, 203.13, 203.14, 203.15, 203.16, 203.17, 203.18, 203.19, 203.20, 203.21, 203.22, 203.23, 203.24, 203.25, 203.26, 203.27, 203.28, 203.29, 203.30, 203.31, 203.32, 203.33, 203.34, 203.35, 203.36, 203.37, 203.38, 203.39, 203.40, 203.41, 203.42, 203.43, 203.44, 203.45, 203.46, 203.47, 203.48, 203.49, 203.50, 203.51, 203.52, 203.53, 203.54, 203.55, 203.56, 203.57, 203.58, 203.59, 203.60, 203.61, 203.62, 203.63, 203.64, 203.65, 203.66, 203.67, 203.68, 203.69, 203.70, 203.71, 203.72, 203.73, 203.74, 203.75, 203.76, 203.77, 203.78, 203.79, 203.80, 203.81, 238.6, 273.3

Leukemia

C90.10, C90.11, C90.12, C91.00, C91.01, C91.02, C91.10, C91.11, C91.12, C91.30, C91.31, C91.32, C91.40, C91.41, C91.42, C91.50, C91.51, C91.52, C91.60, C91.61, C91.62, C91.90, C91.91, C91.92, C91.A0, C91.A1, C91.A2, C91.Z0, C91.Z1, C91.Z2, C92.00, C92.01, C92.02, C92.10, C92.11, C92.12, C92.20, C92.21, C92.22, C92.30, C92.31, C92.32, C92.40, C92.41, C92.42, C92.50, C92.51, C92.52, C92.60, C92.61, C92.62, C92.90, C92.91, C92.92, C92.A0, C92.A1, C92.A2, C92.Z0, C92.Z1, C92.Z2, C93.00, C93.01, C93.02, C93.10, C93.11, C93.12, C93.30, C93.31, C93.32, C93.90, C93.91, C93.92, C93.Z0, C93.Z1, C93.Z2, C94.00, C94.01, C94.02, C94.20, C94.21, C94.22, C94.30, C94.31, C94.32, C94.40, C94.41, C94.42, C94.6, C94.80, C94.81, C94.82, C95.00, C95.01, C95.02, C95.10, C95.11, C95.12, C95.90, C95.91, C95.92

Cancer (in situ)

D00.00, D00.01, D00.02, D00.03, D00.04, D00.05, D00.06, D00.07, D00.08, D00.1, D00.2, D01.0, D01.1, D01.2, D01.3, D01.40, D01.49, D01.5, D01.7, D01.9, D02.0, D02.1, D02.20, D02.21, D02.22, D02.3, D02.4, D03.0, D03.10, D03.11, D03.111, D03.112, D03.12, D03.121, D03.122, D03.20, D03.21, D03.22, D03.30, D03.39, D03.4, D03.51, D03.52, D03.59, D03.60, D03.61, D03.62, D03.70, D03.71, D03.72, D03.8, D03.9, D04.0, D04.10, D04.11, D04.111, D04.112, D04.12, D04.121, D04.122, D04.20, D04.21, D04.22, D04.30, D04.39, D04.4, D04.5, D04.60, D04.61, D04.62, D04.70, D04.71, D04.72, D04.8, D04.9, D05.00, D05.01, D05.02, D05.10, D05.11, D05.12, D05.80, D05.81, D05.82, D05.90, D05.91, D05.92, D06.0, D06.1, D06.7, D06.9, D07.0, D07.1, D07.2, D07.30, D07.39, D07.4, D07.5, D07.60, D07.61, D07.69, D09.0, D09.10, D09.19, D09.20, D09.21, D09.22, D09.3, D09.8, D09.9, 140.0, 140.1, 140.2, 140.3, 140.4, 140.5, 140.6, 140.7, 140.8, 140.9, 141.0, 141.1, 141.2, 141.3, 141.4, 141.5, 141.6, 141.7, 141.8, 141.9, 142.0, 142.1, 142.2, 142.3, 142.4, 142.5, 142.6, 142.7, 142.8, 142.9, 143.0, 143.1, 143.2, 143.3, 143.4, 143.5, 143.6, 143.7, 143.8, 143.9, 144.0, 144.1, 144.2, 144.3, 144.4, 144.5, 144.6, 144.7, 144.8, 144.9, 145.0, 145.1, 145.2, 145.3, 145.4, 145.5, 145.6, 145.7, 145.8, 145.9, 146.0, 146.1, 146.2, 146.3, 146.4, 146.5, 146.6, 146.7, 146.8, 146.9, 147.0, 147.1, 147.2, 147.3, 147.4, 147.5, 147.6, 147.7, 147.8, 147.9, 148.0, 148.1, 148.2, 148.3, 148.4, 148.5, 148.6, 148.7, 148.8, 148.9, 149.0, 149.1, 149.2, 149.3, 149.4, 149.5, 149.6, 149.7, 149.8, 149.9, 150.0, 150.1, 150.2, 150.3, 150.4, 150.5, 150.6, 150.7, 150.8, 150.9, 151.0, 151.1, 151.2, 151.3, 151.4, 151.5, 151.6, 151.7, 151.8, 151.9, 152.0, 152.1, 152.2, 152.3, 152.4, 152.5, 152.6, 152.7, 152.8, 152.9, 153.0, 153.1, 153.2, 153.3, 153.4, 153.5, 153.6, 153.7, 153.8, 153.9, 154.0, 154.1, 154.2, 154.3, 154.4, 154.5, 154.6, 154.7, 154.8, 154.9, 155.0, 155.1, 155.2, 155.3, 155.4, 155.5, 155.6, 155.7, 155.8, 155.9, 156.0, 156.1, 156.2, 156.3, 156.4, 156.5, 156.6, 156.7, 156.8, 156.9, 157.0, 157.1, 157.2, 157.3, 157.4, 157.5, 157.6, 157.7, 157.8, 157.9, 158.0, 158.1, 158.2, 158.3, 158.4, 158.5, 158.6, 158.7, 158.8, 158.9, 159.0, 159.1, 159.2, 159.3, 159.4, 159.5, 159.6, 159.7, 159.8, 159.9, 160.0, 160.1, 160.2, 160.3, 160.4, 160.5, 160.6, 160.7, 160.8, 160.9, 161.0, 161.1, 161.2, 161.3, 161.4, 161.5, 161.6, 161.7, 161.8, 161.9, 162.0, 162.1, 162.2, 162.3, 162.4, 162.5, 162.6, 162.7, 162.8, 162.9, 163.0, 163.1, 163.2, 163.3, 163.4, 163.5, 163.6, 163.7, 163.8, 163.9, 164.0, 164.1, 164.2, 164.3, 164.4, 164.5, 164.6, 164.7, 164.8, 164.9, 165.0, 165.1, 165.2, 165.3, 165.4, 165.5, 165.6, 165.7, 165.8, 165.9, 166.0, 166.1, 166.2, 166.3, 166.4, 166.5, 166.6, 166.7, 166.8, 166.9, 167.0, 167.1, 167.2, 167.3, 167.4, 167.5, 167.6, 167.7, 167.8, 167.9, 168.0, 168.1, 168.2, 168.3, 168.4, 168.5, 168.6, 168.7, 168.8, 168.9, 169.0, 169.1, 169.2, 169.3, 169.4, 169.5, 169.6, 169.7, 169.8, 169.9, 170.0, 170.1, $170.2,170.3,170.4,170.5,170.6,170.7,170.8,170.9,171.0,171.1,171.2,171.3,171.4$, 171.5, 171.6, 171.7, 171.8, 171.9, 172.0, 172.1, 172.2, 172.3, 172.4, 172.5, 172.6, 172.7, 172.8, 172.9, 174.0, 174.1, 174.2, 174.3, 174.4, 174.5, 174.6, 174.7, 174.8, 174.9, 175.0, 175.1, 175.2, 175.3, 175.4, 175.5, 175.6, 175.7, 175.8, 175.9, 179.0, 179.1, 179.2, 179.3,
$179.4,179.5,179.6,179.7,179.8,179.9,180.0,180.1,180.2,180.3,180.4,180.5,180.6$, $180.7,180.8,180.9,181.0,181.1,181.2,181.3,181.4,181.5,181.6,181.7,181.8,181.9$, $182.0,182.1,182.2,182.3,182.4,182.5,182.6,182.7,182.8,182.9,183.0,183.1,183.2$, $183.3,183.4,183.5,183.6,183.7,183.8,183.9,184.0,184.1,184.2,184.3,184.4,184.5$, 184.6, 184.7, 184.8, 184.9, 185.0, 185.1, 185.2, 185.3, 185.4, 185.5, 185.6, 185.7, 185.8, 185.9, 186.0, 186.1, 186.2, 186.3, 186.4, 186.5, 186.6, 186.7, 186.8, 186.9, 187.0, 187.1, $187.2,187.3,187.4,187.5,187.6,187.7,187.8,187.9,188.0,188.1,188.2,188.3,188.4$, 188.5, 188.6, 188.7, 188.8, 188.9, 189.0, 189.1, 189.2, 189.3, 189.4, 189.5, 189.6, 189.7, $189.8,189.9,190.0,190.1,190.2,190.3,190.4,190.5,190.6,190.7,190.8,190.9,191.0$, 191.1, 191.2, 191.3, 191.4, 191.5, 191.6, 191.7, 191.8, 191.9, 192.0, 192.1, 192.2, 192.3, 192.4, 192.5, 192.6, 192.7, 192.8, 192.9, 193.0, 193.1, 193.2, 193.3, 193.4, 193.5, 193.6, 193.7, 193.8, 193.9, 194.0, 194.1, 194.2, 194.3, 194.4, 194.5, 194.6, 194.7, 194.8, 194.9, 195.0, 195.1, 195.2, 195.3, 195.4, 195.5, 195.6, 195.7, 195.8, 209.00, 209.01, 209.02, 209.03, 209.04, 209.05, 209.06, 209.07, 209.08, 209.09, 209.10, 209.11, 209.12, 209.13, 209.14, 209.15, 209.16, 209.17, 209.18, 209.19, 209.20, 209.21, 209.22, 209.23, 209.24, 209.25, 209.26, 209.27, 209.28, 209.29, 209.3, 209.30, 209.31, 209.32, 209.33, 209.34, 209.35, 209.36, 258.01, 258.02, 258.03

Metastatic cancer

Solid tumor w/o metastasis (malignant)

C77.0, C77.1, C77.2, C77.3, C77.4, C77.5, C77.8, C77.9, C78.00, C78.01, C78.02, C78.1, C78.2, C78.30, C78.39, C78.4, C78.5, C78.6, C78.7, C78.80, C78.89, C79.00, C79.01, C79.02, C79.10, C79.11, C79.19, C79.2, C79.31, C79.32, C79.40, C79.49, C79.51, C79.52, C79.60, C79.61, C79.62, C79.70, C79.71, C79.72, C79.81, C79.82, C79.89, C79.9, C7B.00, С7B.01, С7B.02, С7B.03, С7B.04, С7B.09, С7B.1, С7B.8, С80.0, 196.0, 196.1, 196.2, 196.3, 196.4, 196.5, 196.6, 196.7, 196.8, 196.9, 197.0, 197.1, 197.2, 197.3, 197.4, 197.5, 197.6, 197.7, 197.8, 197.9, 198.0, 198.1, 198.2, 198.3, 198.4, 198.5, 198.6, 198.7, 198.8, 198.9, 199.0, 199.1, 209.70, 209.71, 209.72, 209.73, 209.74, 209.75, 209.79, 789.51

C00.0, C00.1, C00.2, C00.3, C00.4, C00.5, C00.6, C00.8, C00.9, C01.X, C02.0, C02.1, C02.2, C02.3, C02.4, C02.8, C02.9, C03.0, C03.1, C03.9, C04.0, C04.1, C04.8, C04.9, C05.0, C05.1, C05.2, C05.8, C05.9, C06.0, C06.1, C06.2, C06.80, C06.89, C06.9, C07.X, C08.0, C08.1, C08.9, C09.0, C09.1, C09.8, C09.9, C10.0, C10.1, C10.2, C10.3, C10.4, C10.8, C10.9, C11.0, C11.1, C11.2, C11.3, C11.8, C11.9, C12.X, C13.0, C13.1, C13.2, C13.8, C13.9, C14.0, C14.2, C14.8, C15.3, C15.4, C15.5, C15.8, C15.9, C16.0, C16.1, C16.2, C16.3, C16.4, C16.5, C16.6, C16.8, C16.9, C17.0, C17.1, C17.2, C17.3, C17.8, C17.9, C18.0, C18.1, C18.2, C18.3, C18.4, C18.5, C18.6, C18.7, C18.8, C18.9, C19.X, C20.X, C21.0, C21.1, C21.2, C21.8, C22.0, C22.1, C22.2, C22.3, C22.4, C22.7, C22.8, C22.9, C23.X, C24.0, C24.1, C24.8, C24.9, C25.0, C25.1, C25.2, C25.3, C25.4, C25.7, C25.8, C25.9, C26.0, C26.1, C26.9, C30.0, C30.1, C31.0, C31.1, C31.2, C31.3, C31.8, C31.9, C32.0, C32.1, C32.2, C32.3, C32.8, C32.9, C33.X, C34.00, C34.01, C34.02, C34.10, C34.11, C34.12, C34.2, C34.30, C34.31, C34.32, C34.80, C34.81, C34.82, C34.90, C34.91, C34.92, C37.X, C38.0, C38.1, C38.2, C38.3, C38.4, C38.8, C39.0, C39.9, C40.00, C40.01, C40.02, C40.10, C40.11, C40.12, C40.20, C40.21, C40.22, C40.30, C40.31, C40.32, C40.80, C40.81, C40.82, C40.90, C40.91, C40.92, C41.0, C41.1, C41.2, C41.3, C41.4, C41.9, C43.0, C43.10, C43.11, C43.111, C43.112, C43.12, C43.121, C43.122, C43.20, C43.21, C43.22, C43.30, C43.31, C43.39, C43.4, C43.51, C43.52, C43.59, C43.60, C43.61, C43.62, C43.70, C43.71, C43.72, C43.8, C43.9, C44.00, C44.09, C44.101, C44.102, C44.1021, C44.1022, C44.109, C44.1091, C44.1092, C44.131, C44.1321, C44.1322, C44.1391, C44.1392, C44.191, C44.192, C44.1921, C44.1922, C44.199, C44.1991, C44.1992, C44.201, C44.202, C44.209, C44.291, C44.292, C44.299, C44.300, C44.301, C44.309, C44.390, C44.391, C44.399, C44.40, C44.49, C44.500, C44.501, C44.509, C44.590, C44.591, C44.599, C44.601, C44.602, C44.609, C44.691, C44.692, C44.699, C44.701, C44.702, C44.709, C44.791, C44.792, C44.799, C44.80, C44.89, C44.90, C44.99, C45.0, C45.1, C45.2, C45.7, C45.9, C46.0, C46.1, C46.2, C46.3, C46.4, C46.50, C46.51, C46.52, C46.7, C46.9, C47.0, C47.10, C47.11, C47.12, C47.20, C47.21, C47.22, C47.3, C47.4, C47.5, C47.6, C47.8, C47.9, C48.0, C48.1, C48.2, C48.8, C49.0, C49.10, C49.11, C49.12, C49.20, C49.21, C49.22, C49.3, C49.4, C49.5, C49.6, C49.8, C49.9, C49.A0, C49.A1, C49.A2, C49.A3, C49.A4, C49.A5, C49.A9, C4A.0, C4A.10, C4A.11, C4A.111, C4A.112, C4A.12, C4A.121, C4A.122, C4A.20, C4A.21, C4A.22, C4A.30, C4A.31, C4A.39, C4A.4, C4A.51, C4A.52, C4A.59, C4A.60, C4A.61, C4A.62, C4A.70, C4A.71, C4A.72, C4A.8, C4A.9, C50.011, C50.012, C50.019,

C50.021, C50.022, C50.029, C50.111, C50.112, C50.119, C50.121, C50.122, C50.129, C50.211, C50.212, C50.219, C50.221, C50.222, C50.229, C50.311, C50.312, C50.319, C50.321, C50.322, C50.329, C50.411, C50.412, C50.419, C50.421, C50.422, C50.429, C50.511, C50.512, C50.519, C50.521, C50.522, C50.529, C50.611, C50.612, C50.619, C50.621, C50.622, C50.629, C50.811, C50.812, C50.819, C50.821, C50.822, C50.829, C50.911, C50.912, C50.919, C50.921, C50.922, C50.929, C51.0, C51.1, C51.2, C51.8, C51.9, C52.X, C53.0, C53.1, C53.8, C53.9, C54.0, C54.1, C54.2, C54.3, C54.8, C54.9, C55.X, C56.1, C56.2, C56.9, C57.00, C57.01, C57.02, C57.10, C57.11, C57.12, C57.20, C57.21, C57.22, C57.3, C57.4, C57.7, C57.8, C57.9, C58.X, C60.0, C60.1, C60.2, C60.8, C60.9, C61.X, C62.00, C62.01, C62.02, C62.10, C62.11, C62.12, C62.90, C62.91, C62.92, C63.00, C63.01, C63.02, C63.10, C63.11, C63.12, C63.2, C63.7, C63.8, C63.9, C64.1, C64.2, C64.9, C65.1, C65.2, C65.9, C66.1, C66.2, C66.9, C67.0, C67.1, C67.2, C67.3, C67.4, C67.5, C67.6, C67.7, C67.8, C67.9, C68.0, C68.1, C68.8, C68.9, C69.00, C69.01, C69.02, C69.10, C69.11, C69.12, C69.20, C69.21, C69.22, C69.30, C69.31, C69.32, C69.40, C69.41, C69.42, C69.50, C69.51, C69.52, C69.60, C69.61, C69.62, C69.80, C69.81, C69.82, C69.90, C69.91, C69.92, C70.0, C70.1, C70.9, C71.0, C71.1, C71.2, C71.3, C71.4, C71.5, C71.6, C71.7, C71.8, C71.9, C72.0, C72.1, C72.20, C72.21, C72.22, C72.30, C72.31, C72.32, C72.40, C72.41, C72.42, C72.50, C72.59, C72.9, C73.X, C74.00, C74.01, C74.02, C74.10, C74.11, C74.12, C74.90, C74.91, C74.92, C75.0, C75.1, C75.2, C75.3, C75.4, C75.5, C75.8, C75.9, C76.0, C76.1, C76.2, C76.3, C76.40, C76.41, C76.42, C76.50, C76.51, C76.52, C76.8, C7A.00, C7A.010, C7A.011, C7A.012, C7A.019, C7A.020, C7A.021, C7A.022, C7A.023, C7A.024, C7A.025, C7A.026, C7A.029, C7A.090, C7A.091, C7A.092, C7A.093, C7A.094, C7A.095, C7A.096, C7A.098, C7A.1, C7A.8, D46.9, E31.21, E31.22, E31.23

Arthropathies

L40.50, L40.51, L40.54, L40.59, L90.0, L94.0, L94.1, L94.3, M01.X0, M01.X11, M01.X12, M01.X19, M01.X21, M01.X22, M01.X29, M01.X31, M01.X32, M01.X39, M01.X41, M01.X42, M01.X49, M01.X51, M01.X52, M01.X59, M01.X61, M01.X62, M01.X69, M01.X71, M01.X72, M01.X79, M01.X8, M01.X9, M02.00, M02.011, M02.012, M02.019, M02.021, M02.022, M02.029, M02.031, M02.032, M02.039, M02.041, M02.042, M02.049, M02.051, M02.052, M02.059, M02.061, M02.062, M02.069, M02.071, M02.072, M02.079, M02.08, M02.09, M02.10, M02.111, M02.112, M02.119, M02.121, M02.122, M02.129, M02.131, M02.132, M02.139, M02.141, M02.142, M02.149, M02.151, M02.152, M02.159, M02.161, M02.162, M02.169, M02.171, M02.172, M02.179, M02.18, M02.19, M02.20, M02.211, M02.212, M02.219, M02.221, M02.222, M02.229, M02.231, M02.232, M02.239, M02.241, M02.242, M02.249, M02.251, M02.252, M02.259, M02.261, M02.262, M02.269, M02.271, M02.272, M02.279, M02.28, M02.29, M02.30, M02.311, M02.312, M02.319, M02.321, M02.322, M02.329, M02.331, M02.332, M02.339, M02.341, M02.342, M02.349, M02.351, M02.352, M02.359, M02.361, M02.362, M02.369, M02.371, M02.372, M02.379, M02.38, M02.39, M02.80, M02.811, M02.812, M02.819, M02.821, M02.822, M02.829, M02.831, M02.832, M02.839, M02.841, M02.842, M02.849, M02.851, M02.852, M02.859, M02.861, M02.862, M02.869, M02.871, M02.872, M02.879, M02.88, M02.89, M02.9, M05.00, M05.011, M05.012, M05.019, M05.021, M05.022, M05.029, M05.031, M05.032, M05.039, M05.041, M05.042, M05.049, M05.051, M05.052, M05.059, M05.061, M05.062, M05.069, M05.071, M05.072, M05.079, M05.09, M05.10, M05.111, M05.112, M05.119, M05.121, M05.122, M05.129, M05.131, M05.132, M05.139, M05.141, M05.142, M05.149, M05.151, M05.152, M05.159, M05.161, M05.162, M05.169, M05.171, M05.172, M05.179, M05.19, M05.20, M05.211, M05.212, M05.219, M05.221, M05.222, M05.229, M05.231, M05.232, M05.239, M05.241, M05.242, M05.249, M05.251, M05.252, M05.259, M05.261, M05.262, M05.269, M05.271, M05.272, M05.279, M05.29, M05.30, M05.311, M05.312, M05.319, M05.321, M05.322, M05.329, M05.331, M05.332, M05.339, M05.341, M05.342, M05.349, M05.351, M05.352, M05.359, M05.361, M05.362, M05.369, M05.371, M05.372, M05.379, M05.39, M05.40, M05.411, M05.412, M05.419, M05.421, M05.422, M05.429, M05.431, M05.432, M05.439, M05.441, M05.442, M05.449, M05.451, M05.452, M05.459, M05.461, M05.462, M05.469, M05.471, M05.472, M05.479, M05.49, M05.50, M05.511, M05.512, M05.519, M05.521, M05.522, M05.529, M05.531, M05.532, M05.539, M05.541, M05.542, M05.549, M05.551, M05.552, M05.559, M05.561, M05.562, M05.569, M05.571, M05.572, M05.579, M05.59,

M05.60, M05.611, M05.612, M05.619, M05.621, M05.622, M05.629, M05.631, M05.632, M05.639, M05.641, M05.642, M05.649, M05.651, M05.652, M05.659, M05.661, M05.662, M05.669, M05.671, M05.672, M05.679, M05.69, M05.70, M05.711, M05.712, M05.719, M05.721, M05.722, M05.729, M05.731, M05.732, M05.739, M05.741, M05.742, M05.749, M05.751, M05.752, M05.759, M05.761, M05.762, M05.769, M05.771, M05.772, M05.779, M05.79, M05.7A, M05.80, M05.811, M05.812, M05.819, M05.821, M05.822, M05.829, M05.831, M05.832, M05.839, M05.841, M05.842, M05.849, M05.851, M05.852, M05.859, M05.861, M05.862, M05.869, M05.871, M05.872, M05.879, M05.89, M05.8A, M05.9, M06.00, M06.011, M06.012, M06.019, M06.021, M06.022, M06.029, M06.031, M06.032, M06.039, M06.041, M06.042, M06.049, M06.051, M06.052, M06.059, M06.061, M06.062, M06.069, M06.071, M06.072, M06.079, M06.08, M06.09, M06.0A, M06.1, M06.20, M06.211, M06.212, M06.219, M06.221, M06.222, M06.229, M06.231, M06.232, M06.239, M06.241, M06.242, M06.249, M06.251, M06.252, M06.259, M06.261, M06.262, M06.269, M06.271, M06.272, M06.279, M06.28, M06.29, M06.30, M06.311, M06.312, M06.319, M06.321, M06.322, M06.329, M06.331, M06.332, M06.339, M06.341, M06.342, M06.349, M06.351, M06.352, M06.359, M06.361, M06.362, M06.369, M06.371, M06.372, M06.379, M06.38, M06.39, M06.4, M06.80, M06.811, M06.812, M06.819, M06.821, M06.822, M06.829, M06.831, M06.832, M06.839, M06.841, M06.842, M06.849, M06.851, M06.852, M06.859, M06.861, M06.862, M06.869, M06.871, M06.872, M06.879, M06.88, M06.89, M06.8A, M06.9, M07.60, M07.611, M07.612, M07.619, M07.621, M07.622, M07.629, M07.631, M07.632, M07.639, M07.641, M07.642, M07.649, M07.651, M07.652, M07.659, M07.661, M07.662, M07.669, M07.671, M07.672, M07.679, M07.68, M07.69, M08.00, M08.011, M08.012, M08.019, M08.021, M08.022, M08.029, M08.031, M08.032, M08.039, M08.041, M08.042, M08.049, M08.051, M08.052, M08.059, M08.061, M08.062, M08.069, M08.071, M08.072, M08.079, M08.08, M08.09, M08.0A, M08.1, M08.20, M08.211, M08.212, M08.219, M08.221, M08.222, M08.229, M08.231, M08.232, M08.239, M08.241, M08.242, M08.249, M08.251, M08.252, M08.259, M08.261, M08.262, M08.269, M08.271, M08.272, M08.279, M08.28, M08.29, M08.2A, M08.3, M08.40, M08.411, M08.412, M08.419, M08.421, M08.422, M08.429, M08.431, M08.432, M08.439, M08.441, M08.442, M08.449, M08.451, M08.452, M08.459, M08.461, M08.462, M08.469, M08.471, M08.472, M08.479, M08.48, M08.4A, M08.80, M08.811, M08.812, M08.819, M08.821, M08.822, M08.829, M08.831, M08.832, M08.839, M08.841, M08.842, M08.849, M08.851, M08.852, M08.859, M08.861, M08.862, M08.869, M08.871, M08.872, M08.879, M08.88, M08.89, M08.90, M08.911, M08.912, M08.919, M08.921, M08.922, M08.929, M08.931, M08.932, M08.939, M08.941, M08.942, M08.949, M08.951, M08.952, M08.959, M08.961, M08.962, M08.969, M08.971, M08.972, M08.979, M08.98, M08.99, M08.9A, M12.00, M12.011, M12.012, M12.019, M12.021, M12.022, M12.029, M12.031, M12.032, M12.039, M12.041, M12.042, M12.049, M12.051, M12.052, M12.059, M12.061, M12.062, M12.069, M12.071, M12.072, M12.079, M12.08, M12.09, M30.0, M30.1, M30.2, M30.3, M30.8, M31.0, M31.1, M31.2, M31.30, M31.31, M31.4, M31.5, M31.6, M31.7, M31.8, M31.9, M32.0, M32.10, M32.12, M32.13, M32.14, M32.15, M32.19, M32.8, M32.9, M33.00, M33.01, M33.02, M33.03, M33.09, M33.10, M33.11, M33.12, M33.13, M33.19, M33.20, M33.21, M33.22, M33.29, M33.90, M33.91, M33.92, M33.93, M33.99, M34.0, M34.1, M34.2, M34.81, M34.82, M34.83, M34.89, M34.9, M35.00, M35.01, M35.02, M35.03, M35.04, M35.09, M35.1, M35.2, M35.3, M35.5, M35.6, M35.8, M35.9, M36.0, M36.1, M36.8, M45.0, M45.1, M45.2, M45.3, M45.4, M45.5, M45.6, M45.7, M45.8, M45.9, M46.00, M46.01, M46.02, M46.03, M46.04, M46.05, M46.06, M46.07, M46.08, M46.09, M46.1, M46.50, M46.51, M46.52, M46.53, M46.54, M46.55, M46.56, M46.57, M46.58, M46.59, M46.80, M46.81, M46.82, M46.83, M46.84, M46.85, M46.86, M46.87, M46.88, M46.89, M46.90, M46.91, M46.92, M46.93, M46.94, M46.95, M46.96, M46.97, M46.98, M46.99, M49.80, M49.81, M49.82, M49.83, M49.84, M49.85, M49.86, M49.87, M49.88, M49.89, 701.0, 710.0, 710.1, 710.2, 710.3, 710.4, $710.5,710.6,710.7,710.8,710.9,714.0,714.1,714.2,714.3,714.4,714.5,714.6,714.7$, $714.8,714.9,720.0,720.1,720.2,720.3,720.4,720.5,720.6,720.7,720.8,720.9,725$.

Coagulopathy D61.09, D61.1, D61.2, D61.3, D61.810, D61.811, D61.818, D61.82, D61.89, D61.9, D65.X, D66.X, D67.X, D68.0, D68.1, D68.2, D68.311, D68.312, D68.318, D68.32, D68.4, D68.8, D68.9, D69.1, D69.3, D69.41, D69.42, D69.49, D69.51, D69.59, D69.6, D69.8, D69.9, D75.82,

O99.111, O99.112, O99.113, O99.119, O99.12, O99.13, 286.0, 286.1, 286.2, 286.3, 286.4, 286.5, 286.6, 286.7, 286.8, 286.9, 287.1, 287.3, 287.4, 287.5, 289.84, 649.30, 649.31, 649.32, 649.33, 649.34

Obesity

Weight loss

Blood loss anemia Deficiency anemia

Alcohol abuse

Drug abuse
E66.01, E66.09, E66.1, E66.2, E66.8, E66.9, O99.210, O99.211, O99.212, O99.213, O99.214, O99.215, R93.9, Z68.30, Z68.31, Z68.32, Z68.33, Z68.34, Z68.35, Z68.36, Z68.37, Z68.38, Z68.39, Z68.41, Z68.42, Z68.43, Z68.44, Z68.45, Z68.54, 278.0, 278.00, 278.01, 278.03, 649.10, 649.11, 649.12, 649.13, 649.14, 793.91, V85.30, V85.31, V85.32, V85.33, V85.34, V85.35, V85.36, V85.37, V85.38, V85.39, V85.41, V85.42, V85.43, V85.44, V85.45, V85.54

E40.X, E41.X, E42.X, E43.X, E44.0, E44.1, E45.X, E46.X, E64.0, O25.10, O25.11, O25.12, O25.13, O25.2, O25.3, R63.4, R64.X, 260.X, 261.X, 262.X, 263.X, 260.1, 260.2, 260.3, 260.4, 260.5, 260.6, 260.7, 260.8, 260.9, 261.0, 261.1, 261.2, 261.3, 261.4, 261.5, 261.6, 261.7, 261.8, 261.9, 262.0, 262.1, 262.2, 262.3, 262.4, 262.5, 262.6, 262.7, 262.8, 262.9, 263.0, 263.1, 263.2, 263.3, 263.4, 263.5, 263.6, 263.7, 263.8, 263.9, 783.21, 783.22

D50.0, O90.81, O99.02, O99.03, 280.0, 648.20, 648.21, 648.22, 648.23, 648.24
D50.1, D50.8, D50.9, D51.0, D51.1, D51.2, D51.3, D51.8, D51.9, D52.0, D52.1, D52.8, D52.9, D53.0, D53.1, D53.2, D53.8, D53.9, D63.0, D63.1, D63.8, D64.9, O99.011, O99.012, O99.013, O99.019, 280.1, 280.2, 280.3, 280.4, 280.5, 280.6, 280.7, 280.8, 280.9, 281.0, 281.1, 281.2, 281.3, 281.4, 281.5, 281.6, 281.7, 281.8, 281.9, 285.21, 285.22, 285.23, 285.24, 285.25, 285.26, 285.27, 285.28, 285.29, 285.9

F10.10, F10.11, F10.120, F10.121, F10.129, F10.130, F10.131, F10.132, F10.139, F10.14, F10.150, F10.151, F10.159, F10.180, F10.181, F10.182, F10.188, F10.19, F10.20, F10.21, F10.220, F10.221, F10.229, F10.230, F10.231, F10.232, F10.239, F10.24, F10.250, F10.251, F10.259, F10.26, F10.27, F10.280, F10.281, F10.282, F10.288, F10.29, F10.94, F10.950, F10.951, F10.959, F10.96, F10.97, F10.980, G62.1, I42.6, K29.20, K29.21, K70.10, K70.11, O99.310, O99.311, O99.312, O99.313, O99.314, O99.315, 291.0, 291.1, 291.2, 291.3, 291.5, 291.8, 291.81, 291.82, 291.89, 291.9, 303.00, 303.01, 303.02, 303.03, 303.04, 303.05, 303.06, 303.07, 303.08, 303.09, 303.10, 303.11, 303.12, 303.13, 303.14, 303.15, 303.16, 303.17, 303.18, 303.19, 303.20, 303.21, 303.22, 303.23, 303.24, 303.25, 303.26, 303.27, 303.28, 303.29, 303.30, 303.31, 303.32, 303.33, 303.34, 303.35, 303.36, 303.37, 303.38, 303.39, $303.40,303.41,303.42,303.43,303.44,303.45,303.46,303.47,303.48,303.49,303.50$, 303.51, 303.52, 303.53, 303.54, 303.55, 303.56, 303.57, 303.58, 303.59, 303.60, 303.61, 303.62, 303.63, 303.64, 303.65, 303.66, 303.67, 303.68, 303.69, 303.70, 303.71, 303.72, 303.73, 303.74, 303.75, 303.76, 303.77, 303.78, 303.79, 303.80, 303.81, 303.82, 303.83, $303.84,303.85,303.86,303.87,303.88,303.89,303.90,303.91,303.92,303.93,305.00$, 305.01, 305.02, 305.03

F11.10, F11.11, F11.120, F11.121, F11.122, F11.129, F11.13, F11.14, F11.150, F11.151, F11.159, F11.181, F11.182, F11.188, F11.19, F11.20, F11.21, F11.220, F11.221, F11.222, F11.229, F11.23, F11.24, F11.250, F11.251, F11.259, F11.281, F11.282, F11.288, F11.29, F12.10, F12.11, F12.120, F12.121, F12.122, F12.129, F12.13, F12.150, F12.151, F12.159, F12.180, F12.188, F12.19, F12.20, F12.21, F12.220, F12.221, F12.222, F12.229, F12.23, F12.250, F12.251, F12.259, F12.280, F12.288, F12.29, F13.10, F13.11, F13.120, F13.121, F13.129, F13.130, F13.131, F13.132, F13.139, F13.14, F13.150, F13.151, F13.159, F13.180, F13.181, F13.182, F13.188, F13.19, F13.20, F13.21, F13.220, F13.221, F13.229, F13.230, F13.231, F13.232, F13.239, F13.24, F13.250, F13.251, F13.259, F13.26, F13.27, F13.280, F13.281, F13.282, F13.288, F13.29, F14.10, F14.11, F14.120, F14.121, F14.122, F14.129, F14.13, F14.14, F14.150, F14.151, F14.159, F14.180, F14.181, F14.182, F14.188, F14.19, F14.20, F14.21, F14.220, F14.221, F14.222, F14.229, F14.23, F14.24, F14.250, F14.251, F14.259, F14.280, F14.281, F14.282, F14.288, F14.29, F15.10, F15.11, F15.120, F15.121, F15.122, F15.129, F15.13, F15.14, F15.150, F15.151, F15.159, F15.180, F15.181, F15.182, F15.188, F15.19, F15.20, F15.21, F15.220, F15.221, F15.222, F15.229, F15.23, F15.24, F15.250, F15.251, F15.259, F15.280, F15.281, F15.282, F15.288, F15.29, F16.10, F16.11,

F16.120, F16.121, F16.122, F16.129, F16.14, F16.150, F16.151, F16.159, F16.180, F16.183, F16.188, F16.19, F16.20, F16.21, F16.220, F16.221, F16.229, F16.24, F16.250, F16.251, F16.259, F16.280, F16.283, F16.288, F16.29, F18.10, F18.11, F18.120, F18.121, F18.129, F18.14, F18.150, F18.151, F18.159, F18.17, F18.180, F18.188, F18.19, F18.20, F18.21, F18.220, F18.221, F18.229, F18.24, F18.250, F18.251, F18.259, F18.27, F18.280, F18.288, F18.29, F19.10, F19.11, F19.120, F19.121, F19.122, F19.129, F19.130, F19.131, F19.132, F19.139, F19.14, F19.150, F19.151, F19.159, F19.16, F19.17, F19.180, F19.181, F19.182, F19.188, F19.19, F19.20, F19.21, F19.220, F19.221, F19.222, F19.229, F19.230, F19.231, F19.232, F19.239, F19.24, F19.250, F19.251, F19.259, F19.26, F19.27, F19.280, F19.281, F19.282, F19.288, F19.29, O99.320, O99.321, O99.322, O99.323, O99.324, O99.325, 292.0, 292.82, 292.89, 292.9, 304.00, 304.01, 304.02, 304.03, 304.04, 304.05, 304.06, 304.07, $304.08,304.09,304.10,304.11,304.12,304.13,304.14,304.15,304.16,304.17,304.18$, 304.19, 304.20, 304.21, 304.22, 304.23, 304.24, 304.25, 304.26, 304.27, 304.28, 304.29, $304.30,304.31,304.32,304.33,304.34,304.35,304.36,304.37,304.38,304.39,304.40$, $304.41,304.42,304.43,304.44,304.45,304.46,304.47,304.48,304.49,304.50,304.51$, $304.52,304.53,304.54,304.55,304.56,304.57,304.58,304.59,304.60,304.61,304.62$, 304.63, 304.64, 304.65, 304.66, 304.67, 304.68, 304.69, 304.70, 304.71, 304.72, 304.73, $304.74,304.75,304.76,304.77$, 304.78, 304.79, 304.80, 304.81, 304.82, 304.83, 304.84, $304.85,304.86,304.87,304.88,304.89,304.90,304.91,304.92,304.93,305.20,305.21$, $305.22,305.23,305.24,305.25,305.26,305.27,305.28,305.29,305.30,305.31,305.32$, $305.33,305.34,305.35,305.36,305.37,305.38,305.39,305.40,305.41,305.42,305.43$, $305.44,305.45,305.46,305.47,305.48,305.49,305.50,305.51,305.52,305.53,305.54$, $305.55,305.56,305.57,305.58,305.59,305.60,305.61,305.62,305.63,305.64,305.65$, 305.66, 305.67, 305.68, 305.69, 305.70, 305.71, 305.72, 305.73, 305.74, 305.75, 305.76, 305.77 , 305.78, 305.79, 305.80, 305.81, 305.82, 305.83, 305.84, 305.85, 305.86, 305.87, $305.88,305.89,305.90,305.91,305.92,305.93,648.30,648.31,648.32,648.33,648.34$

Psychoses

F06.0, F06.1, F06.2, F06.30, F06.33, F11.150, F11.151, F11.159, F11.250, F11.251, F11.259, F11.950, F11.951, F11.959, F12.150, F12.151, F12.159, F12.250, F12.251, F12.259, F12.950, F12.951, F12.959, F13.150, F13.151, F13.159, F13.250, F13.251, F13.259, F13.950, F13.951, F13.959, F14.150, F14.151, F14.159, F14.250, F14.251, F14.259, F14.950, F14.951, F14.959, F15.150, F15.151, F15.159, F15.250, F15.251, F15.259, F15.950, F15.951, F15.959, F16.150, F16.151, F16.159, F16.250, F16.251, F16.259, F16.950, F16.951, F16.959, F18.150, F18.151, F18.159, F18.250, F18.251, F18.259, F18.950, F18.951, F18.959, F19.150, F19.151, F19.159, F19.250, F19.251, F19.259, F19.950, F19.951, F19.959, F20.0, F20.1, F20.2, F20.3, F20.5, F20.81, F20.89, F20.9, F21.X, F22.X, F23.X, F24.X, F25.0, F25.1, F25.8, F25.9, F28.X, F29.X, F30.10, F30.11, F30.12, F30.13, F30.2, F30.3, F30.4, F30.8, F30.9, F31.0, F31.10, F31.11, F31.12, F31.13, F31.2, F31.30, F31.31, F31.32, F31.4, F31.5, F31.60, F31.61, F31.62, F31.63, F31.64, F31.70, F31.71, F31.72, F31.73, F31.74, F31.75, F31.76, F31.77, F31.78, F31.81, F31.89, F31.9, F32.4, F32.5, F33.40, F33.41, F33.42, F34.0, F34.8, F34.81, F34.89, F34.9, F39.X, F44.89, F84.3, 295.00, 295.01, 295.02, 295.03, 295.04, 295.05, 295.06, 295.07, 295.08, 295.09, 295.10, 295.11, 295.12, 295.13, 295.14, 295.15, 295.16, 295.17, 295.18, 295.19, 295.20, 295.21, 295.22, 295.23, 295.24, 295.25, 295.26, 295.27, 295.28, 295.29, 295.30, 295.31, 295.32, 295.33, 295.34, 295.35, 295.36, 295.37, 295.38, 295.39, 295.40, 295.41, 295.42, 295.43, 295.44, 295.45, 295.46, 295.47, 295.48, 295.49, 295.50, 295.51, 295.52, 295.53, 295.54, 295.55, 295.56, 295.57, 295.58, 295.59, 295.60, 295.61, 295.62, 295.63, 295.64, 295.65, 295.66, 295.67, 295.68, 295.69, 295.70, 295.71, 295.72, 295.73, 295.74, 295.75, 295.76, 295.77, 295.78, 295.79, 295.80, 295.81, 295.82, 295.83, 295.84, 295.85, 295.86, 295.87, 295.88, 295.89, 295.90, 295.91, 295.92, 295.93, 295.94, 295.95, 295.96, 295.97, 295.98, 295.99, 296.00, 296.01, 296.02, 296.03, 296.04, 296.05, 296.06, 296.07, 296.08, 296.09, 296.10, 296.11, 296.12, 296.13, 296.14, 296.15, 296.16, 296.17, 296.18, 296.19, 296.20, 296.21, 296.22, 296.23, 296.24, 296.25, 296.26, 296.27, 296.28, 296.29, 296.30, 296.31, 296.32, 296.33, 296.34, 296.35, 296.36, 296.37, 296.38, 296.39, 296.40, 296.41, 296.42, 296.43, 296.44, 296.45, 296.46, 296.47, 296.48, 296.49, 296.50, 296.51, 296.52, 296.53, 296.54, 296.55, 296.56, 296.57, 296.58, 296.59, 296.60, 296.61, 296.62, 296.63, 296.64, 296.65, 296.66, 296.67, 296.68, 296.69, 296.70, 296.71, 296.72,
296.73, 296.74, 296.75, 296.76, 296.77, 296.78, 296.79, 296.80, 296.81, 296.82, 296.83, 296.84, 296.85, 296.86, 296.87, 296.88, 296.89, 296.90, 296.91, 296.92, 296.93, 296.94, 296.95, 296.96, 296.97, 296.98, 296.99, 297.00, 297.01, 297.02, 297.03, 297.04, 297.05, 297.06, 297.07, 297.08, 297.09, 297.10, 297.11, 297.12, 297.13, 297.14, 297.15, 297.16, 297.17, 297.18, 297.19, 297.20, 297.21, 297.22, 297.23, 297.24, 297.25, 297.26, 297.27, 297.28, 297.29, 297.30, 297.31, 297.32, 297.33, 297.34, 297.35, 297.36, 297.37, 297.38, 297.39, 297.40, 297.41, 297.42, 297.43, 297.44, 297.45, 297.46, 297.47, 297.48, 297.49, 297.50, 297.51, 297.52, 297.53, 297.54, 297.55, 297.56, 297.57, 297.58, 297.59, 297.60, 297.61, 297.62, 297.63, 297.64, 297.65, 297.66, 297.67, 297.68, 297.69, 297.70, 297.71, 297.72, 297.73, 297.74, 297.75, 297.76, 297.77, 297.78, 297.79, 297.80, 297.81, 297.82, 297.83, 297.84, 297.85, 297.86, 297.87, 297.88, 297.89, 297.90, 297.91, 297.92, 297.93, 297.94, 297.95, 297.96, 297.97, 297.98, 297.99, 298.00, 298.01, 298.02, 298.03, 298.04, 298.05, 298.06, 298.07, 298.08, 298.09, 298.10, 298.11, 298.12, 298.13, 298.14, 298.15, 298.16, 298.17, 298.18, 298.19, 298.20, 298.21, 298.22, 298.23, 298.24, 298.25, 298.26, 298.27, 298.28, 298.29, 298.30, 298.31, 298.32, 298.33, 298.34, 298.35, 298.36, 298.37, 298.38, 298.39, 298.40, 298.41, 298.42, 298.43, 298.44, 298.45, 298.46, 298.47, 298.48, 298.49, 298.50, 298.51, 298.52, 298.53, 298.54, 298.55, 298.56, 298.57, 298.58, 298.59, 298.60, 298.61, 298.62, 298.63, 298.64, 298.65, 298.66, 298.67, 298.68, 298.69, 298.70, 298.71, 298.72, 298.73, 298.74, 298.75, 298.76, 298.77, 298.78, 298.79, 298.80, 298.81, 298.82, 298.83, 298.84, 298.85, 298.86, 298.87, 298.88, 298.89, 298.9, 298.90, 299.10, 299.11

Depression

F06.31, F06.32, F06.34, F32.0, F32.1, F32.2, F32.3, F32.8, F32.81, F32.89, F32.9, F33.0, F33.1, F33.2, F33.3, F33.8, F33.9, F34.1, 300.4, 301.12, 309.0, 309.1, 311.

Cerebrovascular disease

Cerebrovascular disease sequelae

G45.0, G45.1, G45.2, G45.3, G45.4, G45.8, G45.9, G46.0, G46.1, G46.2, G46.3, G46.4, G46.5, G46.6, G46.7, G46.8, H34.00, H34.01, H34.02, H34.03, H34.10, H34.11, H34.12, H34.13, H34.211, H34.212, H34.213, H34.219, H34.231, H34.232, H34.233, H34.239, I60.00, I60.01, I60.02, I60.10, I60.11, I60.12, I60.2, I60.20, I60.21, I60.22, I60.30, I60.31, I60.32, I60.4, I60.50, I60.51, I60.52, I60.6, I60.7, I60.8, I60.9, I61.0, I61.1, I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, I61.9, I62.00, I62.03, I62.1, I62.9, I63.00, I63.011, I63.012, I63.013, I63.019, I63.02, I63.031, I63.032, I63.033, I63.039, I63.09, I63.10, I63.111, I63.112, I63.113, I63.119, I63.12, I63.131, I63.132, I63.133, I63.139, I63.19, I63.20, I63.211, I63.212, I63.213, I63.219, I63.22, I63.231, I63.232, I63.233, I63.239, I63.29, I63.30, I63.311, I63.312, I63.313, I63.319, I63.321, I63.322, I63.323, I63.329, I63.331, I63.332, I63.333, I63.339, I63.341, I63.342, I63.343, I63.349, I63.39, I63.40, I63.411, I63.412, I63.413, I63.419, I63.421, I63.422, I63.423, I63.429, I63.431, I63.432, I63.433, I63.439, I63.441, I63.442, I63.443, I63.449, I63.49, I63.50, I63.511, I63.512, I63.513, I63.519, I63.521, I63.522, I63.523, I63.529, I63.531, I63.532, I63.533, I63.539, I63.541, I63.542, I63.543, I63.549, I63.59, I63.6, I63.8, I63.81, I63.89, I63.9, I65.01, I65.02, I65.03, I65.09, I65.1, I65.21, I65.22, I65.23, I65.29, I65.8, I65.9, I66.01, I66.02, I66.03, I66.09, I66.11, I66.12, I66.13, I66.19, I66.21, I66.22, I66.23, I66.29, I66.3, I66.8, I66.9 I69.30, I69.31, I69.310, I69.311, I69.312, I69.313, I69.314, I69.315, I69.318, I69.319, I69.320, I69.321, I69.322, I69.323, I69.328, I69.331, I69.332, I69.333, I69.334, I69.339, I69.341, I69.342, I69.343, I69.344, I69.349, I69.351, I69.352, I69.353, I69.354, I69.359, I69.361, I69.362, I69.363, I69.364, I69.365, I69.369, I69.390, I69.391, I69.392, I69.393, I69.398, I69.80, I69.81, I69.810, I69.811, I69.812, I69.813, I69.814, I69.815, I69.818, I69.819, I69.820, I69.821, I69.822, I69.823, I69.828, I69.831, I69.832, I69.833, I69.834, I69.839, I69.841, I69.842, I69.843, I69.844, I69.849, I69.851, I69.852, I69.853, I69.854, I69.859, I69.861, I69.862, I69.863, I69.864, I69.865, I69.869, I69.890, I69.891, I69.892, I69.893, I69.898, I69.90, I69.91, I69.910, I69.911, I69.912, I69.913, I69.914, I69.915, I69.918, I69.919, I69.920, I69.921, I69.922, I69.923, I69.928, I69.931, I69.932, I69.933, I69.934, I69.939, I69.941, I69.942, I69.943, I69.944, I69.949, I69.951, I69.952, I69.953, I69.954, I69.959, I69.961, I69.962, I69.963, I69.964, I69.965, I69.969, I69.990, I69.991, I69.992, I69.993, I69.998, P91.821, P91.822, P91.823, P91.829

```
Other thyroid E04.0, E04.1, E04.2, E04.8, E04.9, E05.00, E05.01, E05.10, E05.11, E05.20, E05.21, E05.30,
disorders
    E05.31, E05.40, E05.41, E05.80, E05.81, E05.90, E05.91, E06.0, E06.1, E06.2, E06.3, E06.4,
    E06.5, E06.9, O90.5
Dementia F01.50, F01.51, F02.80, F02.81, F03.90, F03.91, G30.0, G30.1, G30.8, G30.9, G31.01,
    G31.09, G31.1, G31.2, G31.81, G31.82, G31.83, G31.85, G31.89, G31.9
Non-ST elevated I21.4
myocardial
infarction, type
1
Coronary artery
0210X, 0211X, 0212X, 0213X, 06BQ0ZZ, 5A1221Z, 02120Z9, 021009W, 06BQ0ZZ, 5A1221Z
bypass grafting
Angiography 93454, 93455, 93456, 93457, 93458, 93459, 93460, 93461
Percutaneous 92920, 92924, 92933, 92928, 92937, 92941, 92943, 92921, 92925, 92929, 92934, 92938,
coronary
92944, 92973, }9297
intervention
Cardiogenic R57.0
shock
Heart assist Z95.81
device
```

ICD-10 indicates International Classification of Diseases, Tenth Revision
ICD-9 indicates International Classification of Diseases, Ninth Revision
CPT 10 indicates Current Procedural Terminology, Tenth Revision

Table S2: Baseline characteristics of individuals included in the main cohort vs excluded for missingness.

	Main cohort ($\mathrm{n}=87,094$)	Excluded for missing race or income ($n=30,339$)*
Age, mean (SD)	73.8 (11.6)	72.1 (11.6)
Sex, n ($\mathrm{n} \%$)		
Female,	38683 (44.4\%)	13747 (45.3\%)
Male,	48411 (55.6\%)	16592 (54.7\%)
Medicare, n (\%)	72681 (83.5\%)	26446 (87.2\%)
Number of Elixhauser comorbidities, median (Q1, Q3)	$9(5,12)$	$8(5,11)$
Hypertension	82381 (94.6\%)	28567 (94.2\%)
Diabetes	49168 (56.5\%)	17029 (56.1\%)
Stroke	28134 (32.3\%)	9060 (29.9\%)
Continuous enrollment time, median (Q1, Q3)	60.7 (34.4, 106.5)	36.5 (20.3, 70.8)
Coronary Angiography, n (\%)	48296 (55.5\%)	16584 (54.7\%)
Percutaneous Coronary Intervention, n (\%)	25826 (29.7\%)	8785 (29\%)

*Number excluded for missingness is slightly different from flow chart due to ordering; some of excluded individuals would have been excluded for other reasons.

Table S3 Greedy Propensity Score Matching Analysis by Race and Ethnicity for Coronary Angiography and Percutaneous Coronary Intervention.		
Coronary angiography		
Race	OR (95\% CI)	P-value
Asian	0.97 (0.86, 1.09)	0.61
Black	0.92 (0.87, 0.97)	<0.01
Hispanic	0.89 (0.84, 0.94)	<0.01
White	Referent	
Percutaneous coronary intervention		
Race		
Asian	1.04 (0.92, 1.17)	0.56
Black	0.84 (0.79, 0.88)	<0.01
Hispanic	0.87 (0.82, 0.93)	<0.01
White	Referent	
Adjusted for age, sex, comorbidities, education, and insurance		
Caliper = 0.2,		
1:2 matching (1 individuals from either Black race, Asian or Hispanic ethnicity to 2		

Table S4. Odd of Percutaneous Coronary Intervention among those who had coronary angiography ($n=48296$).

Race	Model 1* OR (95\% CI)	p-value	Model 2 † OR $(95 \% \mathrm{CI})$	p-value	Model 3 ‡ OR $(95 \% \mathrm{CI})$	p- value
Asian	$1.01(0.90,1.13)$	0.88	$1.00(0.90,1.13)$	0.94	$1.00(0.89,1.12)$	0.99
Black	$0.8(0.76,0.85)$	<0.01	$0.84(0.79,0.88)$	<0.01	$0.85(0.80,0.90)$	<0.01
Hispanic	$0.87(0.82,0.92)$	<0.01	$0.87(0.82,0.92)$	<0.01	$0.88(0.83,0.94)$	<0.01
White	Referent	-	Referent	-	Referent	-

Modeling the odds of receipt of Percutaneous Coronary Angiography
*Model 1 adjusted for age and/or age and sex in the overall categories
\dagger Model 2 adjusted for Model 1 plus Elixhauser Comorbidities Index
\ddagger Model 3 adjusted for Model 2 plus income and education level

Table S5. Association of Race and Ethnicity with Coronary Angiography and Percutaneous Coronary Intervention stratified by sex ($n=87094$) following presentation with non-ST segment elevation myocardial infarction.

Race	$\begin{gathered} \text { Model 1* } \\ \text { OR (95\% CI) } \end{gathered}$	p-value	$\begin{gathered} {\text { Model } \mathbf{2}^{\dagger}}^{\text {OR }(95 \% \mathrm{Cl})} \end{gathered}$	p-value	$\begin{gathered} \text { Model 3 }{ }^{\ddagger} \\ \text { OR (} 95 \% \mathrm{Cl} \text {) } \end{gathered}$	p-value
Coronary Angiography						
Female vs Male (overall)	0.76 (0.74, 0.78)	<0.01	0.76 (0.74, 0.79)	<0.01	0.77 (0.75, 0.80)	<0.01
Asian	0.91 (0.84, 1.00)	0.04	0.95 (0.87, 1.05)	0.31	0.95 (0.87, 1.05)	0.31
Female	0.96 (0.84, 1.10)	0.56	0.99 (0.85, 1.14)	0.85	1.00 (0.86, 1.16)	0.98
Male	0.88 (0.79, 0.99)	0.03	0.94 (0.83, 1.06)	0.29	0.93 (0.82, 1.05)	0.23
Black	0.79 (0.76, 0.82)	<0.01	0.92 (0.88, 0.96)	<0.01	0.93 (0.89, 0.98)	<0.01
Female	0.86 (0.81, 0.91)	<0.01	0.96 (0.91, 1.02)	0.23	0.96 (0.90, 1.02)	0.20
Male	0.72 (0.68, 0.76)	<0.01	0.87 (0.81, 0.93)	<0.01	0.90 (0.84, 0.96)	<0.01
Hispanic	0.86 (0.82, 0.90)	<0.01	0.89 (0.85, 0.93)	<0.01	0.88 (0.84, 0.93)	<0.01
Female	0.92 (0.86, 0.98)	0.01	0.92 (0.86, 0.99)	0.02	0.91 (0.84, 0.98)	<0.01
Male	0.81 (0.76, 0.86)	<0.01	0.87 (0.81, 0.92)	<0.01	0.87 (0.81, 0.93)	<0.01
White	Referent	-	Referent	-	Referent	-
Percutaneous Coronary Intervention						
Female vs Male	0.69 (0.67, 0.71)	<0.01	0.70 (0.68, 0.73)	<0.01	0.71 (0.69, 0.73)	<0.01
Asian	0.94 (0.86, 1.04)	0.22	0.96 (0.87, 1.05)	0.38	0.96 (0.87, 1.05)	0.37
Female	1.08 (0.93, 1.26)	0.30	1.08 (0.92, 1.27)	0.33	1.10 (0.94, 1.29)	0.24
Male	0.87 (0.78, 0.98)	0.02	0.90 (0.80, 1.01)	0.08	0.89 (0.79, 1.00)	0.05
Black	0.74 (0.71, 0.78)	<0.01	0.84 (0.80, 0.88)	<0.01	0.86 (0.81, 0.90)	<0.01
Female	0.81 (0.76, 0.87)	<0.01	0.87 (0.81, 0.93)	<0.01	0.86 (0.80, 0.93)	<0.01
Male	0.69 (0.65, 0.74)	<0.01	0.81 (0.76, 0.86)	<0.01	0.84 (0.78, 0.89)	<0.01
Hispanic	0.82 (0.78, 0.86)	<0.01	0.84 (0.80, 0.88)	<0.01	0.85 (0.81, 0.89)	<0.01
Female	0.88 (0.81, 0.95)	<0.01	0.85 (0.78, 0.92)	<0.01	0.85 (0.78, 0.92)	<0.01
Male	0.79 (0.74, 0.84)	<0.01	0.83 (0.78, 0.89)	<0.01	0.85 (0.80, 0.91)	<0.01
White	Referent	-	Referent	-	Referent	-

Modeling the odds of receipt of Coronary Angiography or PCI
*Model 1 adjusted for age and/or age and sex in the overall categories
\dagger Model 2 adjusted for Model 1 plus Elixhauser Comorbidities Index
\ddagger Model 3 adjusted for Model 2 plus income and education level

Table S6. Association of Race and Ethnicity with Coronary Angiography and Percutaneous Coronary Intervention stratified by sex and annual household income following presentation with non-ST segment elevation myocardial infarction.												
Coronary Angiography												
	<\$40,000	Pvalue	\$40-<\$50,000	Pvalue	\$50-<\$60,000	Pvalue	\$60-<\$75,000	P- value	\$75-<\$100,000	Pvalue	\$ $\geq 100,000$	P-value
Asian	0.84 (0.70, 1.01)	0.06	1.34 (0.95, 1.88)	0.10	1.18 (0.86, 1.62)	0.31	0.71 (0.54, 0.92)	0.01	1.07 (0.86, 1.34)	0.56	0.97 (0.81, 1.16)	0.74
Female	0.90 (0.69, 1.17)	0.43	1.16 (0.70, 1.91)	0.56	1.11 (0.69, 1.79)	0.65	0.84 (0.56, 1.27)	0.42	1.12 (0.76, 1.66)	0.56	1.07 (0.79, 1.46)	0.66
Male	0.78 (0.60, 1.01)	0.06	1.53 (0.96, 2.46)	0.08	1.25 (0.81, 1.93)	0.31	0.62 (0.44, 0.89)	0.01	1.04 (0.79, 1.37)	0.77	0.94 (0.76, 1.17)	0.59
Black	0.93 (0.87, 0.99)	0.01	0.89 (0.78, 1.02)	0.10	0.93 (0.80, 1.07)	0.30	0.94 (0.81, 1.10)	0.46	0.94 (0.80, 1.11)	0.45	1.01 (0.84, 1.22)	0.91
Female	0.94 (0.87, 1.02)	0.15	0.89 (0.73, 1.07)	0.22	0.98 (0.80, 1.21)	0.85	1.10 (0.87, 1.37)	0.43	0.98 (0.77, 1.25)	0.86	1.05 (0.78, 1.42)	0.74
Male	0.88 (0.80, 0.97)	0.01	0.89 (0.74, 1.08)	0.23	0.88 (0.72, 1.08)	0.21	0.84 (0.68, 1.02)	0.08	0.92 (0.74, 1.14)	0.44	1.01 (0.79, 1.30)	0.92
Hispanic	0.84 (0.78, 0.90)	<0.01	0.88 (0.76, 1.01)	0.07	0.87 (0.76, 1.01)	0.06	0.89 (0.78, 1.03)	0.11	0.94 (0.82, 1.08)	0.36	0.97 (0.85, 1.12)	0.71
Female	0.90 (0.81, 1.00)	0.05	0.87 (0.70, 1.08)	0.21	0.94 (0.76, 1.17)	0.60	0.85 (0.68, 1.06)	0.15	0.87 (0.70, 1.08)	0.21	1.08 (0.85, 1.38)	0.51
Male	0.78 (0.70, 0.87)	<0.01	0.89 (0.74, 1.07)	0.21	0.83 (0.69, 1.00)	0.05	0.93 (0.78, 1.12)	0.45	1.00 (0.84, 1.19)	0.99	0.93 (0.79, 1.11)	0.43
White	Referent											
Percutaneous Coronary Intervention												
Asian	0.82 (0.67, 1.01)	0.06	1.28 (0.91, 1.80)	0.15	1.22 (0.89, 1.69)	0.22	0.86 (0.65, 1.14)	0.31	0.99 (0.79, 1.24)	0.93	0.95 (0.80, 1.13)	0.57
Female	1.02 (0.77, 1.36)	0.87	1.09 (0.64, 1.87)	0.76	1.49 (0.92, 2.43)	0.11	1.15 (0.74, 1.78)	0.53	0.97 (0.64, 1.47)	0.88	1.14 (0.82, 1.59)	0.45
Male	0.67 (0.50, 0.89)	0.01	1.44 (0.93, 2.23)	0.11	1.07 (0.70, 1.64)	0.77	0.73 (0.51, 1.06)	0.10	1.00 (0.77, 1.30)	0.98	0.90 (0.73, 1.10)	0.28
Black	0.81 (0.76, 0.87)	<0.01	0.90 (0.78, 1.04)	0.14	0.99 (0.85, 1.15)	0.86	0.83 (0.71, 0.97)	0.02	0.93 (0.79, 1.09)	0.38	0.90 (0.75, 1.08)	0.25
Female	0.81 (0.74, 0.89)	<0.01	0.94 (0.76, 1.16)	0.58	1.01 (0.80, 1.27)	0.95	1.00 (0.79, 1.28)	0.10	0.84 (0.64, 1.09)	0.20	0.99 (0.73, 1.36)	0.97
Male	0.79 (0.71, 0.87)	<0.01	0.85 (0.69, 1.03)	0.10	0.96 (0.79, 1.18)	0.69	0.73 (0.59, 0.89)	<0.01	0.99 (0.80, 1.22)	0.91	0.87 (0.70, 1.10)	0.24
Hispanic	0.81 (0.75, 0.88)	<0.01	0.93 (0.80, 1.08)	0.32	0.87 (0.75, 1.01)	0.07	0.87 (0.75, 1.00)	0.05	0.81 (0.71, 0.94)	<0.01	0.90 (0.78, 1.03)	0.12
Female	0.92 (0.82, 1.03)	0.15	0.80 (0.63, 1.03)	0.09	0.92 (0.73, 1.17)	0.51	0.82 (0.64, 1.05)	0.12	0.56 (0.43, 0.73)	<0.01	0.89 (0.68, 1.16)	0.38
Male	0.71 (0.63, 0.80)	<0.01	1.02 (0.84, 1.23)	0.87	0.84 (0.70, 1.02)	0.07	0.90 (0.75, 1.07)	0.22	0.97 (0.81, 1.15)	0.69	0.90 (0.77, 1.06)	0.22
White	Referent											

Odds ratios compared to individuals of White race (overall categories)
Adjusted for age, Elixhauser Comorbidities Index, educational attainment, and/or sex

Coronary Angiography (interaction p-value=0.216)												
	<\$40,000	\mathbf{P}-value	$\begin{aligned} & \$ 40- \\ & <\$ 50,000 \end{aligned}$	Pvalue	$\begin{aligned} & \$ 50- \\ & <\$ 60,000 \end{aligned}$	Pvalue	$\begin{aligned} & \$ 60- \\ & <\$ 75,000 \end{aligned}$	Pvalue	$\begin{aligned} & \text { \$75- } \\ & <\$ 100,000 \end{aligned}$	Pvalue	\$100,000+	Pvalue
Asian	$\begin{aligned} & 0.84(0.67, \\ & 1.06) \end{aligned}$	0.14	$\begin{aligned} & 1.21(0.78, \\ & 1.88) \end{aligned}$	0.41	$\begin{aligned} & 1.53(1.02, \\ & 2.28) \end{aligned}$	0.04	$\begin{aligned} & 0.71 \text { (} 0.51, \\ & 0.99) \end{aligned}$	0.04	$\begin{aligned} & 1.08(0.82, \\ & 1.42) \end{aligned}$	0.59	$\begin{aligned} & 0.93(0.74, \\ & 1.16) \end{aligned}$	0.52
Black	$\begin{aligned} & 0.91 \text { (} 0.85, \\ & 0.98 \text {, } \end{aligned}$	<0.01	$\begin{aligned} & 0.86 \text { (} 0.73 \text {, } \\ & 1.01) \end{aligned}$	0.06	$\begin{aligned} & 0.91(0.76, \\ & 1.08) \end{aligned}$	0.26	$\begin{aligned} & 0.82 \text { (} 0.69, \\ & 0.99) \end{aligned}$	0.04	$1(0.82,1.22)$	0.98	$1(0.79,1.27)$	0.99
Hispanic	$\begin{aligned} & 0.84 \text { (} 0.77 \text {, } \\ & 0.92) \end{aligned}$	<0.01	$\begin{aligned} & 0.87 \text { (0.73, } \\ & 1.03) \end{aligned}$	0.10	$\begin{aligned} & 0.89(0.76, \\ & 1.06) \end{aligned}$	0.19	$\begin{aligned} & 0.88 \text { (} 0.74 \text {, } \\ & 1.04 \text {, } \end{aligned}$	0.13	$\begin{aligned} & 0.99 \text { (} 0.83 \text {, } \\ & 1.17) \end{aligned}$	0.90	$1(0.84,1.19)$	0.98
White	Referent											
Percutaneous Coronary Intervention (interaction p-value=0.367)												
Asian	$\begin{aligned} & 0.89(0.7, \\ & 1.15) \end{aligned}$	0.37	$\begin{aligned} & 1.3(0.84, \\ & 1.99) \end{aligned}$	0.24	$\begin{aligned} & 1.35(0.9, \\ & 2.03) \end{aligned}$	0.15	$\begin{aligned} & 0.97(0.69, \\ & 1.36) \end{aligned}$	0.84	$\begin{aligned} & 1.13(0.86, \\ & 1.49) \end{aligned}$	0.38	$\begin{aligned} & 0.99(0.8, \\ & 1.23) \end{aligned}$	0.93
Black	$\begin{aligned} & 0.79(0.74, \\ & 0.86) \end{aligned}$	<0.01	$\begin{aligned} & 0.87 \text { (0.73, } \\ & 1.03) \end{aligned}$	0.11	$\begin{aligned} & 1.02 \text { (} 0.85, \\ & 1.22 \text {, } \end{aligned}$	0.82	$\begin{aligned} & 0.74 \text { (} 0.61 \text {, } \\ & 0.89) \end{aligned}$	<0.01	$\begin{aligned} & 0.95 \text { (} 0.78 \text {, } \\ & 1.16 \text {) } \end{aligned}$	0.62	$\begin{aligned} & 0.9(0.71 \\ & 1.13) \end{aligned}$	0.36
Hispanic	$\begin{aligned} & 0.83(0.76, \\ & 0.92) \end{aligned}$	<0.01	$\begin{aligned} & 0.91 \text { (} 0.75, \\ & 1.09) \end{aligned}$	0.29	$\begin{aligned} & 0.91 \text { (} 0.76 \text {, } \\ & 1.09 \text {) } \end{aligned}$	0.29	$\begin{aligned} & 0.89(0.75, \\ & 1.06) \end{aligned}$	0.19	$\begin{aligned} & 0.86(0.72, \\ & 1.02) \end{aligned}$	0.08	$\begin{aligned} & 0.92 \text { (0.78, } \\ & 1.09) \end{aligned}$	0.34
White	Referent											

Odds ratios compared to individuals of White race (overall categories)
Adjusted for age, sex, Elixhauser Comorbidities Index, and educational attainment

Table S8. Odds of Coronary Angiography and Percutaneous Coronary Intervention by Race and Ethnicity and annual household income category.

<\$40,000			\$40,000-\$49,999		\$50,000-\$59,999		\$60,000-\$74,999		\$75,000-\$99,999		$\geq \$ 100,000$	
Coronary Angiography												
	95\% CI	p-value	e $95 \% \mathrm{Cl}$	p-value	95\% Cl	$\begin{gathered} \mathrm{p}- \\ \text { value } \end{gathered}$						
Asian	0.73 (0.61, 0.88)	<0.01	1.19 (0.85, 1.67)	0.32	1.15 (0.84, 1.57)	0.40	0.68 (0.52, 0.88)	<0.01	1.03 (0.82, 1.28)	$0.83 \quad 0$	0.97 (0.81, 1.16)	0.74
Black	0.81 (0.75, 0.87)	<0.01	0.79 (0.70, 0.91)	<0.01	0.90 (0.78, 1.04)	0.15	0.90 (0.78, 1.05)	0.19	0.90 (0.77, 1.06)	0.21	1.01 (0.84, 1.22)	0.91
Hispanic	0.73 (0.67, 0.80)	<0.01	0.78 (0.68, 0.90)	<0.01	0.85 (0.74, 0.98)	0.02	0.86 (0.75, 0.98)	0.03	0.90 (0.78, 1.03)	0.13	0.97 (0.85, 1.12)	0.71
White	0.87 (0.83, 0.92)	<0.01	0.89 (0.83, 0.96)	<0.01	0.97 (0.91, 1.05)	0.47	0.96 (0.90, 1.02)	0.20	0.96 (0.90, 1.02)	0.18	Referent	-
Percutaneous Coronary Intervention												
Asian	0.78 (0.63, 0.96)	0.02	1.19 (0.85, 1.67)	0.30	1.14 (0.82, 1.56)	0.44	0.86 (0.65, 1.14)	0.29	0.98 (0.78, 1.22)	0.84	0.95 (0.80, 1.13)) 0.57
Black	0.77 (0.71, 0.83)	<0.01	0.83 (0.73, 0.96)	0.01	0.91 (0.79, 1.06)	0.24	0.83 (0.71, 0.97)	0.02	0.92 (0.78, 1.08)	0.30	0.90 (0.75, 1.08)) 0.25
Hispanic	0.77 (0.70, 0.84)	<0.01	0.86 (0.75, 1.00)	0.05	0.81 (0.70, 0.94)	<0.01	0.86 (0.75, 0.99)	0.04	0.80 (0.70, 0.92)	<0.01	0.90 (0.78, 1.03)) 0.12
White	0.95 (0.90, 1.00)	0.06	0.93 (0.87, 1.00)	0.06	0.93 (0.86, 1.00)	0.04	1.00 (0.93, 1.06)	0.87	0.99 (0.93, 1.05)	0.68	Referent	-

Odds ratios compared to individuals of White race with annual household income $\geq \$ 100,000$
Adjusted for age, sex, Elixhauser Comorbidities Index, and educational attainment

Figure $\mathbf{S 1}$.

The figure presents a flow diagram for study inclusion and identifies the step-wise exclusion criteria applied for selecting the dataset ($n=87094$) for analysis: missing or unknown income or race or ethnicity ($n=32,555$); heart assist device or shock present at admission ($n=2,446$); less than 6-months of enrollment ($n=1,208$); age <18 of age or unknown/missing sex $(n=9)$.

Figure S2.

The figure presents the association of Race and Ethnicity with receipt of Coronary Angiography and Percutaneous Coronary Intervention stratified by sex and annual household income following presentation with non-ST segment elevation myocardial infarction.

[^0]: Correspondence to: Jared W. Magnani, MD, MSc, Department of Medicine, Division of Cardiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213. Email: magnanij@pitt.edu

 Supplementary Material for this article are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.025758
 For Sources of Funding and Disclosures, see page 9
 © 2022 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

 JAHA is available at: www.ahajournals.org/journal/jaha

