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Abstract

Standard approaches to evaluate the impact of single nucleotide polymorphisms (SNP) on
quantitative phenotypes use linear models. However, these normal-based approaches may not
optimally model phenotypes which are better represented by Gaussian mixture distributions (e.g.,
some metabolomics data). We develop a likelihood ratio test on the mixing proportions of two-
component Gaussian mixture distributions and consider more restrictive models to increase power
in light of a prioribiological knowledge. Data were simulated to validate the improved power of
the likelihood ratio test and the restricted likelihood ratio test over a linear model and a log
transformed linear model. Then, using real data from the Framingham Heart Study, we analyzed
20,315 SNPs on chromosome 11, demonstrating that the proposed likelihood ratio test identifies
SNPs well known to participate in the desaturation of certain fatty acids. Our study both validates
the approach of increasing power by using the likelihood ratio test that leverages Gaussian mixture
models, and creates a model with improved sensitivity and interpretability.
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1. Introduction

Genome-wide association studies (GWAS) continue to be viewed as a standard approach to
evaluating the genetic component of a variety of diseases and other phenotypes of interest
[1]. Standard approaches to the analysis of genotype associations with quantitative
phenotypes use linear models.

As suggested in Tintle et al. [2], bimodal distributions are frequently observed in continuous
phenotype samples of metabolites, challenging the normality assumption needed in many
existing GWAS analysis approaches. For example, red blood cell fatty acid levels have been
found to contribute to coronary heart disease [3]. As outlined in Tintle et al. [2], it is
biologically reasonable to consider one’s fatty acid levels as coming from a mixture of
Gaussian distributions, with each of the two or three mean fatty acid levels determined by
genetics, and variation around the mean level determined by other factors (e.g., diet;
lifestyle). While the standard way of analyzing fatty acids follows the typical GWAS linear
model approach, in cases where the distribution does not appear to be normally distributed, a
log transformation is sometimes used [4]. However, this log transformation may fail to
accurately capture the true distribution of the genotypic and phenotypic data since it ignores
the biological reasoning for observing a non-normal distribution. It may be more powerful to
directly model the normal mixture distribution and then test for genotype-phenotype
association.

Recently, Kim et al. proposed a likelihood ratio test to test for association between copy
number polymorphisms (CNP) with quantitative phenotypes and case control outcomes
which followed a mixture of Gaussian distributions [5]. The likelihood ratio test evaluates
possible differences in the mixing proportions of the Gaussian components by different copy
number. Kim et al. showed that the likelihood ratio test was more powerful than a 2 x d chi-
squared test with d equal to the number of CNP categories when the underlying data was
from a mixture distribution.

We propose adapting the Kim et al. likelihood ratio test to the standard genotype-phenotype
testing situation for phenotypes which are distributed as a mixture of Gaussian distributions,
like some metabolomics data (e.g., fatty acid levels). We will provide a theoretical
framework for the likelihood ratio test, evaluate its performance on simulated data and then
apply it to a real set of fatty acid data from the Framingham Heart Study.

2. Methods

2.1. Notation

Let X'be a quantitative phenotype that follows a two-component Gaussian mixture
distribution. Thus, X~ N (14, 62) + (1 = ) N (i, o) where Tt is the mixing parameter of
the Gaussian components. Let (4 and (4 be the mean parameters such that /4 # (&, and we
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assume a common variance o2 for both components. We assume 7z = o1 (g/N)+ p11(m/N)+
m1(mIN) where py (¢=0, 1, 2) is the proportion of genotype zin the first component of the
mixture distribution, 77, (=0, 1, 2) is the number of individuals with genotype £ and N is the
total number of individuals. We consider the null hypothesis Hg : po1 = 11 = o1 and the
alternative Hy: at least one is not equal. Let py;= to;= p1;= P2 (1=1,2) (see Figure 1 for a
visual representation). Let xz, (b=1, 2, ... ny and (¢=0, 1, 2) be a random variable
representing the phenotype for individual 5 who has genotype ¢ and let wbe a vector of all
Xy Across all the components, the mixing proportion for genotype #must sum to 1 such that

Pa+ pp=1(t=012).

2.2. Likelihood functions

2.2.1. Null and alternative likelihood function—The likelihood function under the
null hypothesis is:

no+ni+ns 2
Lo= ]] < Pi N (wy| s, 02)>
1

j=1 i=

@)

The likelihood function under the unrestricted alternative hypothesis is:

no 2 n1 2 n2 2
Ly= (H < pOiN(x0k|Nz’7‘72)>> <H <ZP1¢N(I1m|M1702)>> (H <ZP2¢N(95211|M702)>>
1 -1

k=1 \i= m=1 \g h=1 \i=1

O]

2.2.2. Restricted likelihood function—When there is a biological understanding of the
phenotype-genotype relationship, we recommend restricting the mixing proportions of the
test to fit the biological model. We demonstrate two possible models, but our general method
easily extends to other models. The first model (LRTpo; Table 1) we consider is that the
proportion of change between genotypes 0 and 1 is equal to the change between genotypes 1
and 2. Therefore, we can restrict our parameters of interest to

* 2 2
pgi:(p()l’ 1—]901)7 p’{i: (pOIq’ 1—(p01q)), and P2;= (p()lq ) 1_(p01q )> The second
restricted model (LRT,qq; Table 2) that we demonstrate describes an equal difference in
proportions between groups 0 and 1 and groups 1 and 2. We can restrict our parameters of

interest to pi,=(po1, 1—po1), p1;= (Por—q, 1—(por—q)) @d p3;= (po1—2q, 1—(por —2q))-
Therefore, the likelihood function under these restrictions is:
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<ZP§¢N(~’E2/1M702)

k=1 \i=1 m=1 h=1 \i=1

®)

2.2.3. Test statistics—Because pp =1 — py for all ¢, we can express each likelihood as a
function of the parameters /4, /b, 02, and the mixing proportion(s) associated with the M,
o) distribution. The resulting likelihood ratio test statistics are given by:

max maz
LRTS=2 In(Ly)— In(L
(p017p117p217ﬁt17u2,02 (L1) p¢17u1»M2,02 (Lo)) 4)
LRTS es=2( M m(Ly)— ™M (L)
po1,4, H1,, 42,0 Po1, U1, 42,0 (5)

Extending the argument provided by Kim et al. the LRTS under the null hypothesis follows
a central chi-squared distribution with the degrees of freedom equal to the difference in
parameters of the null and alternative models [5]. Therefore, under the null hypothesis, the
LRTS has a central chi-squared distribution with 2 degrees of freedom, and the LRTS;g
follows a central chi-squared distribution with 1 degree of freedom.

2.3. Simulation

Using R software, we simulated 1000 datasets with 10,000 individuals per data set. For each,
individual, the genotype for a single SNP was generated by assuming Hardy-Weinberg
equilibrium and minor allele frequency of either 0.05, 0.10, or 0.25. Trait values for
individuals were simulated from two component Gaussian mixture distributions with centers
one unit apart and equal variance of the components o2 = 0.5 or 0.75. For the mixing
proportions of individuals with genotype 0, we used g1 = 0.9 or 1 = 0.75. We used two
different biological models to simulate. In the proportional model we set gequal to 1, 0.9, or
0.75 so that the other mixing proportions were pj1 = po1gand 1 = o1 ¢P. In the additive
model we set g equal to 0.1 or 0.2 so that the mixing proportions were py1 = fp1 — gand 1
= po1 —2¢. Simulations were performed on all combinations of the parameters.

2.4, Statistical analysis

To evaluate the performance of these tests in direct comparison to the standard procedure of
linear and log-linear models, all tests were run on each simulated SNP and phenotype. Each
test produced a p-value, test statistic and parameter estimates. Type | error rates and power
estimates were calculated by dividing the number of observations less than a significance
level (Type I error 0.01, power 0.0001) by the total number of simulations. We used an
Expectation Maximization (EM) algorithm to find the global maximums of equations (4)

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 08.

)



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Westra et al.

Page 5

and (5). One hundred random start points (RSP) were used for the null likelihood, and 50
RSP and one start point from the maximum of the null were used in the alternative [5]. The
EM algorithm ran until a tolerance of 10> was reached or until 600 and 300 iterations were
performed for the null and alternative models respectively.

2.5. Real data application

3. Results

We analyzed 20315 SNPs on chromosome 11 for 5936 individuals from the Framingham
Heart Study using the proposed LRTy, test. We looked exclusively at members in the
offspring and generation 3 cohorts, all of whom are of European descent. Detailed
descriptions of the sample are available elsewhere [6] [9]. We looked at the red blood cell
fatty acid level ratio of arachidonic acid (AA) to dihomo-gamma-linoleneic acid (DGLA).
These fatty acid levels were analyzed by gas chromatography as previously described [6].
The desaturation of AA to DGLA occurs primarily via enzymatic activity in the FADS gene
complex on chromosome 11. We will use a Bonferroni correction to control the probability
of type | errors at 2.47x1076 (0.05/20315).

3.1. Verifying the null distribution and type | error rate

To confirm that the null distribution of the unrestricted model is a chi-square distribution
with two degrees of freedom and that the null distribution of the restricted model is a chi-
square distribution with one degree of freedom, we examined simulations when g= 1. In
addition to examining the novel tests proposed here (LRTpro, LRTaqq) We also explored the
type | error rates of the linear model, log-linear model, and LRT across these same
simulations. As shown in Table 3 the type | error rate was controlled by all tests.

3.2. Power estimates

There were 48 simulations where the alternative hypothesis was true. As summarized in
Table 4 (full detailed results are in Supplemental Table 1), the LRT o has empirical power
equal to or greater than all the other tests in all situations. LRT,qq Was the second most
powerful test in all 48 simulations. When comparing a linear model to the unconstrained
LRT test directly there were 21 simulations where they had different power. In two-thirds of
these cases (14 out of 21), LRT had higher power than the linear model. The log-linear
model never had an empirical power higher than any other test.

The choice of 0.0001 as a cutoff for our power estimates is arbitrary as Figure 2
demonstrates. The LRTy, tends to have a smaller p-value than the linear model for all
thresholds since almost all of the points are above the gray line.

3.3. Robustness of model selection

Since choosing a restriction based on prior knowledge as is done in both LRT . and LRT,qq
may not be possible in every circumstance, it may not be necessary to choose the exact
model. Table 4 shows that LRT o and LRToqq were the most powerful tests even when the
other model was simulated. These two restrictions are of similar patterns, but the increase of
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power is substantial. Therefore, choosing a model at least similar to the true model can
increase the power of the test.

3.4. Parameter estimation

In order to conduct the LRT, estimates of the underlying parameters of the two-component
distribution are obtained. Table 5 illustrates the accuracy and precision of the resulting
estimates across a range of simulation settings for the LRT, approach, with full results for
all tests in supplemental tables 2 and 3. In general, LRTy, and LRT,qq Yielded unbiased and
accurate estimates across settings. In Table 5, one can see that LRTy, accurately predicted
the means of the components both across a wide range of settings and with low variation of
the estimate. LRT o estimated well even when the data was simulated from the additive
model. Similar results are obtained when estimating the mixing proportion (see Table 6) and
the standard deviation of the components (see supplemental table 4).

3.5. Real data results

After analyzing 20321 SNPs on Chromosome 11 in relation to the AA/DGLA ratio, the
LRT o test identified 28 SNPs as significantly associated after applying a Bonferonni
multiple testing correction. These 28 SNPs came from 5 different regions on chromosome
11, all of which validated previous GWAS findings. Nineteen significant SNPs are in the
well documented [10] [12]FADS region (bp = 61622896— 61978819). Genes in this region
that contain significant SNPs include DAGLA, MYRF, FADS1, FADS2, FADS3, and
RAB3IL1 all of which have strong biological basis for desaturation activity [10].

As an example interpretation of the results in Table 7, we first note that the significant tests
all show similar estimates of the two components of the AA/DGLA ratio (mean of
component one between 0.16 and 0.18; mean of component two between 0.097 and 0.101;
SD of each component between 0.023 and 0.024). When an individual is genotyped and is
the common homozygote at rs174549, they have a 3.6% chance of having their AA/DGLA
ratio in the first component. However, if the individual has one less common allele, his
chance increases to 18.3%, and with a second copy of the minor allele, it will increase to
93.7%.

4. Discussion

GWAS typically utilize linear models, thus making an assumption about the underlying
normality of the data. When data is not normal, a Gaussian mixture distribution may
represent a statistically justified and biologically interpretable model of the data. We
proposed a constrained likelihood ratio test, which across many simulation settings, was
more powerful than the standard linear model and gave accurate parameter estimates. When
applied to a real dataset, the method identified biologically relevant SNPs in the well
understood FADS region, along with parameter estimates to aid in biological interpretability
of the impact of the SNP.

The general LRT framework proposed here shows reasonably good performance compared
to the additive linear model, but can be improved upon by further constraining the model and
‘saving’ a degree of freedom. Our simulations suggest relatively robust performance of the
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constrained methods (LRT o and LRTqq) to misspecification of the true model though
additional simulations across a wider range of misspecifications are needed.

We note that, due to the use of the EM algorithm to generate parameter estimates for use in
the LRT, computational time for our proposed methods (3 minutes per test on a single
processor with a sample size of 10,000) are much greater than that of the traditional linear
model. Nevertheless, with the increasing computational power and the limited number of
high minor allele frequency SNPs, it is plausible to run GWAS with this method and is a
reasonable option for candidate gene approaches. Further work is necessary to investigate
potential areas of computational improvement.

Numerous areas of future work and extension are possible. First, extensions of this work are
needed to incorporate covariates and family structure into the method. Standard methods
(e.g., first modeling the phenotype by covariates and/or family structure and then modeling
the residuals) make normality assumptions and, so, may not be optimal candidates for
extension in this Gaussian mixture modeling framework. Imputed data often provides
dosages instead of discrete genotypes. Work is needed to extend this framework to allow for
dosages in this testing framework. Further applications to genome wide data is necessary to
fully understand the impact of this new method. Finally, extensions for multiple-marker
testing and relaxing the equal variance assumption are also targets for further exploration.

We have developed a likelihood ratio test that analyzes the differences in mixing proportions
between genotypes. The method and null distribution were validated through simulation.
There was notable power increase over the more commonly used linear model, especially
when we further increased power by restricting the model to incorporate prior biological
belief. We have shown that this method is able to accurately predict model parameters. The
model was applied to real data, and it replicated many previous findings while also
providing more interpretable results. Further work is necessary to apply the model to a wider
range of real metabolomics data and to investigate extensions of the model to handle
covariates and imputed genotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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© | |

[ ] (]

| |

(o ] L]

o e

L] (o]

a | o

= I T I 2 T T T

2 0 2 4 6 2 0 2 4 6
Figure 1.

visually illustrates the null and alternative models. The black, light grey, and dark grey two-
component mixture distributions are the phenotype distributions for the less common
homozygote, the heterozygote and the more common homozygote, respectively. In the null
model, 75% of the observations in each genotype are in the component with the smaller
mean. In the alternative model, the mixing proportion for the component density with the
smaller mean varies across genotypes.
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P-value comparison of LRTpro and Linear model
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P-value comparison between LRT o and the linear model.
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Table 1
I—RTpro

Genotype Component 1 of Mixture Distribution ~ Component 2 of Mixture Distribution

0 Por 1-po1
1 Porq 1- (o9
2 PP 1= (o)
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Table 2
LRT a4

Genotype Component 1 of Mixture Distribution ~ Component 2 of Mixture Distribution

0 Por 1-mm
1 Por—q 1-(Po1-9
2 Po1 =29 1-(no1—29)
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