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Abstract

Standard approaches to evaluate the impact of single nucleotide polymorphisms (SNP) on 

quantitative phenotypes use linear models. However, these normal-based approaches may not 

optimally model phenotypes which are better represented by Gaussian mixture distributions (e.g., 

some metabolomics data). We develop a likelihood ratio test on the mixing proportions of two-

component Gaussian mixture distributions and consider more restrictive models to increase power 

in light of a priori biological knowledge. Data were simulated to validate the improved power of 

the likelihood ratio test and the restricted likelihood ratio test over a linear model and a log 

transformed linear model. Then, using real data from the Framingham Heart Study, we analyzed 

20,315 SNPs on chromosome 11, demonstrating that the proposed likelihood ratio test identifies 

SNPs well known to participate in the desaturation of certain fatty acids. Our study both validates 

the approach of increasing power by using the likelihood ratio test that leverages Gaussian mixture 

models, and creates a model with improved sensitivity and interpretability.
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1. Introduction

Genome-wide association studies (GWAS) continue to be viewed as a standard approach to 

evaluating the genetic component of a variety of diseases and other phenotypes of interest 

[1]. Standard approaches to the analysis of genotype associations with quantitative 

phenotypes use linear models.

As suggested in Tintle et al. [2], bimodal distributions are frequently observed in continuous 

phenotype samples of metabolites, challenging the normality assumption needed in many 

existing GWAS analysis approaches. For example, red blood cell fatty acid levels have been 

found to contribute to coronary heart disease [3]. As outlined in Tintle et al. [2], it is 

biologically reasonable to consider one’s fatty acid levels as coming from a mixture of 

Gaussian distributions, with each of the two or three mean fatty acid levels determined by 

genetics, and variation around the mean level determined by other factors (e.g., diet; 

lifestyle). While the standard way of analyzing fatty acids follows the typical GWAS linear 

model approach, in cases where the distribution does not appear to be normally distributed, a 

log transformation is sometimes used [4]. However, this log transformation may fail to 

accurately capture the true distribution of the genotypic and phenotypic data since it ignores 

the biological reasoning for observing a non-normal distribution. It may be more powerful to 

directly model the normal mixture distribution and then test for genotype-phenotype 

association.

Recently, Kim et al. proposed a likelihood ratio test to test for association between copy 

number polymorphisms (CNP) with quantitative phenotypes and case control outcomes 

which followed a mixture of Gaussian distributions [5]. The likelihood ratio test evaluates 

possible differences in the mixing proportions of the Gaussian components by different copy 

number. Kim et al. showed that the likelihood ratio test was more powerful than a 2 x d chi-

squared test with d equal to the number of CNP categories when the underlying data was 

from a mixture distribution.

We propose adapting the Kim et al. likelihood ratio test to the standard genotype-phenotype 

testing situation for phenotypes which are distributed as a mixture of Gaussian distributions, 

like some metabolomics data (e.g., fatty acid levels). We will provide a theoretical 

framework for the likelihood ratio test, evaluate its performance on simulated data and then 

apply it to a real set of fatty acid data from the Framingham Heart Study.

2. Methods

2.1. Notation

Let X be a quantitative phenotype that follows a two-component Gaussian mixture 

distribution. Thus, X ~ πN (μ1, σ2) + (1 − π) N (μ2, σ2) where π is the mixing parameter of 

the Gaussian components. Let μ1 and μ2 be the mean parameters such that μ1 ≠ μ2, and we 

Westra et al. Page 2

Pac Symp Biocomput. Author manuscript; available in PMC 2018 January 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assume a common variance σ2 for both components. We assume π = p01(n0/N)+ p11(n1/N)+ 

p21(n2/N) where pt1 (t = 0, 1, 2) is the proportion of genotype t in the first component of the 

mixture distribution, nt (t = 0, 1, 2) is the number of individuals with genotype t, and N is the 

total number of individuals. We consider the null hypothesis H0 : p01 = p11 = p21 and the 

alternative Ha: at least one is not equal. Let pϕi = p0i = p1i = p2i (i =1,2) (see Figure 1 for a 

visual representation). Let xtb (b = 1, 2, … nt) and (t = 0, 1, 2) be a random variable 

representing the phenotype for individual b who has genotype t, and let w be a vector of all 

xtb. Across all the components, the mixing proportion for genotype t must sum to 1 such that 

pt1 + pt2 =1 ( t= 0,1,2).

2.2. Likelihood functions

2.2.1. Null and alternative likelihood function—The likelihood function under the 

null hypothesis is:

(1)

The likelihood function under the unrestricted alternative hypothesis is:

(2)

2.2.2. Restricted likelihood function—When there is a biological understanding of the 

phenotype-genotype relationship, we recommend restricting the mixing proportions of the 

test to fit the biological model. We demonstrate two possible models, but our general method 

easily extends to other models. The first model (LRTpro; Table 1) we consider is that the 

proportion of change between genotypes 0 and 1 is equal to the change between genotypes 1 

and 2. Therefore, we can restrict our parameters of interest to 

, and . The second 

restricted model (LRTadd; Table 2) that we demonstrate describes an equal difference in 

proportions between groups 0 and 1 and groups 1 and 2. We can restrict our parameters of 

interest to , and . 

Therefore, the likelihood function under these restrictions is:
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(3)

2.2.3. Test statistics—Because pt2 =1 − pt1 for all t, we can express each likelihood as a 

function of the parameters μ1, μ2, σ2, and the mixing proportion(s) associated with the N(μ1, 

σ2) distribution. The resulting likelihood ratio test statistics are given by:

(4)

(5)

Extending the argument provided by Kim et al. the LRTS under the null hypothesis follows 

a central chi-squared distribution with the degrees of freedom equal to the difference in 

parameters of the null and alternative models [5]. Therefore, under the null hypothesis, the 

LRTS has a central chi-squared distribution with 2 degrees of freedom, and the LRTSres 

follows a central chi-squared distribution with 1 degree of freedom.

2.3. Simulation

Using R software, we simulated 1000 datasets with 10,000 individuals per data set. For each, 

individual, the genotype for a single SNP was generated by assuming Hardy-Weinberg 

equilibrium and minor allele frequency of either 0.05, 0.10, or 0.25. Trait values for 

individuals were simulated from two component Gaussian mixture distributions with centers 

one unit apart and equal variance of the components σ2 = 0.5 or 0.75. For the mixing 

proportions of individuals with genotype 0, we used p01 = 0.9 or p01 = 0.75. We used two 

different biological models to simulate. In the proportional model we set q equal to 1, 0.9, or 

0.75 so that the other mixing proportions were p11 = p01q and p21 = p01q2. In the additive 

model we set q equal to 0.1 or 0.2 so that the mixing proportions were p11 = p01 − q and p21 

= p01 −2q. Simulations were performed on all combinations of the parameters.

2.4. Statistical analysis

To evaluate the performance of these tests in direct comparison to the standard procedure of 

linear and log-linear models, all tests were run on each simulated SNP and phenotype. Each 

test produced a p-value, test statistic and parameter estimates. Type I error rates and power 

estimates were calculated by dividing the number of observations less than a significance 

level (Type I error 0.01, power 0.0001) by the total number of simulations. We used an 

Expectation Maximization (EM) algorithm to find the global maximums of equations (4) 
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and (5). One hundred random start points (RSP) were used for the null likelihood, and 50 

RSP and one start point from the maximum of the null were used in the alternative [5]. The 

EM algorithm ran until a tolerance of 10−5 was reached or until 600 and 300 iterations were 

performed for the null and alternative models respectively.

2.5. Real data application

We analyzed 20315 SNPs on chromosome 11 for 5936 individuals from the Framingham 

Heart Study using the proposed LRTpro test. We looked exclusively at members in the 

offspring and generation 3 cohorts, all of whom are of European descent. Detailed 

descriptions of the sample are available elsewhere [6] [9]. We looked at the red blood cell 

fatty acid level ratio of arachidonic acid (AA) to dihomo-gamma-linoleneic acid (DGLA). 

These fatty acid levels were analyzed by gas chromatography as previously described [6]. 

The desaturation of AA to DGLA occurs primarily via enzymatic activity in the FADS gene 

complex on chromosome 11. We will use a Bonferroni correction to control the probability 

of type I errors at 2.47x10−6 (0.05/20315).

3. Results

3.1. Verifying the null distribution and type I error rate

To confirm that the null distribution of the unrestricted model is a chi-square distribution 

with two degrees of freedom and that the null distribution of the restricted model is a chi-

square distribution with one degree of freedom, we examined simulations when q = 1. In 

addition to examining the novel tests proposed here (LRTpro, LRTadd) we also explored the 

type I error rates of the linear model, log-linear model, and LRT across these same 

simulations. As shown in Table 3 the type I error rate was controlled by all tests.

3.2. Power estimates

There were 48 simulations where the alternative hypothesis was true. As summarized in 

Table 4 (full detailed results are in Supplemental Table 1), the LRTpro has empirical power 

equal to or greater than all the other tests in all situations. LRTadd was the second most 

powerful test in all 48 simulations. When comparing a linear model to the unconstrained 

LRT test directly there were 21 simulations where they had different power. In two-thirds of 

these cases (14 out of 21), LRT had higher power than the linear model. The log-linear 

model never had an empirical power higher than any other test.

The choice of 0.0001 as a cutoff for our power estimates is arbitrary as Figure 2 

demonstrates. The LRTpro tends to have a smaller p-value than the linear model for all 

thresholds since almost all of the points are above the gray line.

3.3. Robustness of model selection

Since choosing a restriction based on prior knowledge as is done in both LRTpro and LRTadd 

may not be possible in every circumstance, it may not be necessary to choose the exact 

model. Table 4 shows that LRTpro and LRTadd were the most powerful tests even when the 

other model was simulated. These two restrictions are of similar patterns, but the increase of 
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power is substantial. Therefore, choosing a model at least similar to the true model can 

increase the power of the test.

3.4. Parameter estimation

In order to conduct the LRT, estimates of the underlying parameters of the two-component 

distribution are obtained. Table 5 illustrates the accuracy and precision of the resulting 

estimates across a range of simulation settings for the LRTpro approach, with full results for 

all tests in supplemental tables 2 and 3. In general, LRTpro and LRTadd yielded unbiased and 

accurate estimates across settings. In Table 5, one can see that LRTpro accurately predicted 

the means of the components both across a wide range of settings and with low variation of 

the estimate. LRTpro estimated well even when the data was simulated from the additive 

model. Similar results are obtained when estimating the mixing proportion (see Table 6) and 

the standard deviation of the components (see supplemental table 4).

3.5. Real data results

After analyzing 20321 SNPs on Chromosome 11 in relation to the AA/DGLA ratio, the 

LRTpro test identified 28 SNPs as significantly associated after applying a Bonferonni 

multiple testing correction. These 28 SNPs came from 5 different regions on chromosome 

11, all of which validated previous GWAS findings. Nineteen significant SNPs are in the 

well documented [10] [12]FADS region (bp = 61622896– 61978819). Genes in this region 

that contain significant SNPs include DAGLA, MYRF, FADS1, FADS2, FADS3, and 

RAB3IL1 all of which have strong biological basis for desaturation activity [10].

As an example interpretation of the results in Table 7, we first note that the significant tests 

all show similar estimates of the two components of the AA/DGLA ratio (mean of 

component one between 0.16 and 0.18; mean of component two between 0.097 and 0.101; 

SD of each component between 0.023 and 0.024). When an individual is genotyped and is 

the common homozygote at rs174549, they have a 3.6% chance of having their AA/DGLA 

ratio in the first component. However, if the individual has one less common allele, his 

chance increases to 18.3%, and with a second copy of the minor allele, it will increase to 

93.7%.

4. Discussion

GWAS typically utilize linear models, thus making an assumption about the underlying 

normality of the data. When data is not normal, a Gaussian mixture distribution may 

represent a statistically justified and biologically interpretable model of the data. We 

proposed a constrained likelihood ratio test, which across many simulation settings, was 

more powerful than the standard linear model and gave accurate parameter estimates. When 

applied to a real dataset, the method identified biologically relevant SNPs in the well 

understood FADS region, along with parameter estimates to aid in biological interpretability 

of the impact of the SNP.

The general LRT framework proposed here shows reasonably good performance compared 

to the additive linear model, but can be improved upon by further constraining the model and 

‘saving’ a degree of freedom. Our simulations suggest relatively robust performance of the 
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constrained methods (LRTpro and LRTadd) to misspecification of the true model though 

additional simulations across a wider range of misspecifications are needed.

We note that, due to the use of the EM algorithm to generate parameter estimates for use in 

the LRT, computational time for our proposed methods (3 minutes per test on a single 

processor with a sample size of 10,000) are much greater than that of the traditional linear 

model. Nevertheless, with the increasing computational power and the limited number of 

high minor allele frequency SNPs, it is plausible to run GWAS with this method and is a 

reasonable option for candidate gene approaches. Further work is necessary to investigate 

potential areas of computational improvement.

Numerous areas of future work and extension are possible. First, extensions of this work are 

needed to incorporate covariates and family structure into the method. Standard methods 

(e.g., first modeling the phenotype by covariates and/or family structure and then modeling 

the residuals) make normality assumptions and, so, may not be optimal candidates for 

extension in this Gaussian mixture modeling framework. Imputed data often provides 

dosages instead of discrete genotypes. Work is needed to extend this framework to allow for 

dosages in this testing framework. Further applications to genome wide data is necessary to 

fully understand the impact of this new method. Finally, extensions for multiple-marker 

testing and relaxing the equal variance assumption are also targets for further exploration.

We have developed a likelihood ratio test that analyzes the differences in mixing proportions 

between genotypes. The method and null distribution were validated through simulation. 

There was notable power increase over the more commonly used linear model, especially 

when we further increased power by restricting the model to incorporate prior biological 

belief. We have shown that this method is able to accurately predict model parameters. The 

model was applied to real data, and it replicated many previous findings while also 

providing more interpretable results. Further work is necessary to apply the model to a wider 

range of real metabolomics data and to investigate extensions of the model to handle 

covariates and imputed genotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
visually illustrates the null and alternative models. The black, light grey, and dark grey two-

component mixture distributions are the phenotype distributions for the less common 

homozygote, the heterozygote and the more common homozygote, respectively. In the null 

model, 75% of the observations in each genotype are in the component with the smaller 

mean. In the alternative model, the mixing proportion for the component density with the 

smaller mean varies across genotypes.
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Figure 2. 
P-value comparison between LRTpro and the linear model.
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Table 1

LRTpro

Genotype Component 1 of Mixture Distribution Component 2 of Mixture Distribution

0 p01 1 − p01

1 p01q 1 − (p01q)

2 p01q2 1 − (p01q2)
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Table 2

LRTadd

Genotype Component 1 of Mixture Distribution Component 2 of Mixture Distribution

0 p01 1 − p01

1 p01 − q 1 − (p01 − q)

2 p01 − 2q 1 − (p01 − 2q)
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