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The broad and potent tumor-reactivity of innate-like γδT cells makes them valuable addi-
tions to current cancer immunotherapeutic concepts based on adaptive immunity, such
as monoclonal antibodies and αβT cells. However, clinical success using γδT cells to treat
cancer has so far fallen short. Efforts of recent years have revealed a striking diversity in γδT
cell functions and immunobiology, putting these cells forward as true “swiss army knives”
of immunity. At the same time, however, this heterogeneity poses new challenges to the
design of γδT cell-based therapeutic concepts and could explain their rather limited clinical
efficacy in cancer patients. This review outlines the recent new insights into the different
levels of γδT cell diversity, including the myriad of γδT cell-mediated immune functions,
the diversity of specificities and affinities within the γδT cell repertoire, and the multitude
of complex molecular requirements for γδT cell activation. A careful consideration of the
diversity of antibodies and αβT cells has delivered great progress to their clinical success;
addressing also the extraordinary diversity in γδT cells will therefore hold the key to more
effective immunotherapeutic strategies with γδT cells as additional and valuable tools to
battle cancer.
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IMMUNOTHERAPY TO TREAT CANCER: THE ERA IS NOW
Current treatment options to fight cancer heavily rely on pharma-
ceutical and radiological interventions that are accompanied by
substantial off-tumor toxicity and lack of clinical efficacy. Cancer
immunotherapy aims to capture the specificity and memory of the
immune system and holds the promise of truly targeted treatment
with durable clinical responses. Recent advances in clinical trials
and the approval of more and more immunotherapeutic agents
by international regulatory agencies have given the field consider-
able momentum, a fact that is mirrored by the announcement of
cancer immunotherapy as the breakthrough of the year 2013 by
Science (1).

So far, the vast majority of efforts aimed at utilizing the immune
system to reject cancer have focused on components of adap-
tive immunity, including monoclonal antibodies and αβT cells.
The human immune system can theoretically generate up to
1011 unique antibodies and some 1015 unique αβT cell recep-
tors (αβTCRs) (2), and controlling this vast diversity in antigen
specificity for targeted immune interventions has been a major
challenge for clinical implementation. Although immunoglobu-
lins are still used in clinical practice for untargeted protection
against viral infections, such as in patients with general B-cell defi-
ciencies, the real breakthrough in clinical immunotherapy came
with mastering the genetic profile of defined monoclonal antibod-
ies. Among the first therapeutic antibodies to directly target cancer
were anti-CD20 (Rituxan or Rituximab) and anti-Her2 (Herceptin
or Trastuzumab) antibodies to treat B cell leukemias and breast
cancer, respectively. Treatment with these antibodies, recognizing
one particular antigen with a defined affinity, has underscored the
therapeutic potential of truly antigen-targeted immunotherapy, as

impressive clinical benefit has been reported across studies cover-
ing the last decade (3, 4). The clinical success of these pioneering
agents has in recent years led to the development and regulatory
approval of additional antibodies to target various cancers (5),
propelling antigen-specific antibody-based immunotherapy into
mainstream cancer treatment. Similar to the evolution of clini-
cal antibody treatment, first evidence for the anti-tumor potential
of adoptively transferred αβT cells originated from the transfer
of a very diverse immune population, the so called donor lym-
phocyte infusions, in the early 1990s, when allogeneic donor αβT
cells that were infused in patients after allogeneic stem cell trans-
plantation demonstrated potent anti-leukemia responses (6). By
now, these data have been complemented by remarkable clinical
results obtained with strategies that aim to mobilize the tumor-
reactivity of autologous T cells in cancer patients, either by the
adoptive transfer of ex vivo expanded tumor-infiltrating lympho-
cytes (TILs) (7, 8) or the infusion of monoclonal antibodies that
stimulate T cell activity, such as the recently approved anti-CTLA4
antibody Ipilimumab (9, 10). Additionally, the genetic engineering
of T cells with tumor-reactive αβTCRs (11, 12) or antibody-based
chimeric antigen receptors (CARs) (13) has gained increasing
interest in recent years, and the first clinical trials using adoptive
transfer of such gene-modified T cells have demonstrated potent
and lasting anti-tumor responses in selected patients (14–18).

Importantly, understanding the diversity of adaptive immune
repertoires and utilizing very defined specificities for therapeu-
tic interventions has so far been not only the success but also
the downside of such therapies, resulting in highly personalized
cancer care that depends on antibody-based strategies (including
CAR-engineered T cells) with limited numbers of targetable tumor
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antigens and αβT cell products that are only clinically applicable to
HLA-matched patient populations. Moreover, clinical anti-tumor
efficacy of αβT cell-based approaches is so far mainly restricted to
particularly immunogenic tumor types, such as melanoma. Thus,
there is a compelling need to call to arms alternative immune
components for novel cancer immunotherapeutic concepts.

γδT CELLS: THE PROMISING OUTSIDERS
Unconventional γδT cells, a second lineage of T cells that express
a unique somatically recombined γδTCR, possess unique features
to confront the limitations of adaptive-based immunotherapeu-
tic strategies. γδT cells are rapidly activated upon encounter of
pathogen-derived antigens or self molecules that are upregu-
lated on infected or stressed cells, resembling the activation of
innate immune cells that sense molecular stress signatures (19,
20). Importantly, γδT cells are set apart from conventional αβT
cells by the fact that activation of γδT cells does not depend
on antigen presentation in the context of classical MHC mole-
cules. A preferential usage of distinct TCR γ and δ chains, which
together have the potential to form a tremendous repertoire of
~1020 uniquely recombined γδTCRs (2), has formed the basis for
the identification of two major γδT cell subsets. γδT cells that
carry Vγ9Vδ2+ TCRs are primarily found in peripheral blood,
where they constitute a minor fraction of total T cells and respond
to non-peptidic intermediates of the mevalonate pathway called
phosphoantigens. Other γδT cells express mainly Vδ1+ or Vδ3+

chains paired with diverse γ chains (also called Vδ2neg γδT cells)
and are highly enriched at mucosal sites and epithelial tissues.
The effector mechanisms of γδT cells are highly similar to those
of αβT cells and involve the secretion of high levels of cytokines
and lysis of target cells by the release of granzymes and perforin
and the engagement of FAS and TRAIL death receptors. Thus,
by combining the potent effector functions of adaptive αβT cells
with recognition modes that target unique classes of antigens in
an innate-like manner, γδT cells are regarded as valuable sentinels
that bridge innate and adaptive immunity.

Underlying the interest in γδT cells for use in cancer
immunotherapy is a long-standing body of evidence indicating
that γδT cells play important roles in tumor immunosurveillance.
Human γδT cells display potent in vitro cytotoxicity toward a sur-
prisingly large array of tumors, including cells derived from both
solid and hematological origin (20–22). Importantly, γδT cells are
also capable of targeting chemotherapy-resistant leukemic cells
(23) and to kill leukemic and colon cancer stem cells (24) and
Sebestyen and Kuball, unpublished observation). In vivo evidence
for the non-redundant relevance of γδT cells in tumor immune
surveillance stems from studies showing that γδT cell-deficient
mice are more susceptible for developing cancer (25–27). More-
over, tumor-infiltrating γδT cells (γδTIL) have been observed in
cancer patients with various cancers, and isolated γδTILs were
shown to efficiently kill autologous tumors ex vivo, while leav-
ing healthy cells unharmed (28–32). Important roles for γδT
cells in tumor host defense are furthermore suggested by clin-
ical data showing that high numbers of γδTILs in tumors of
melanoma patients and elevated levels of circulating γδT cells
in leukemia patients correlate with increased cancer-free survival
(33, 34). Taken together, these studies have established a wealth

of evidence for the broad tumor-targeting capabilities of γδT
cells and have sparked great interest in their application in cancer
immunotherapy.

CLINICAL SUCCESS OF γδT CELLS: STUCK IN DIVERSITY?
Given the broad recognition of unique classes of tumor anti-
gens by γδT cells combined with their potent killing capacity,
it is no surprise that γδT cells have been the focus of attempts
to design novel cancer immunotherapeutic strategies. Of the two
major γδT cell subsets, clinical trials conducted so far have exclu-
sively focused on the stimulation of autologous Vγ9Vδ2+ γδT
cells that were either activated in vivo using so-called aminobis-
phosphonate compounds that specifically activate Vγ9Vδ2+ γδT
cells, or expanded ex vivo and reinfused into patients. Protocols
for the in vivo mobilization of Vγ9Vδ2+ T cells generally involved
repeated cycles of intravenous injection of synthetic phosphoanti-
gen (35) or aminobisphosphonates such as pamidronate (36) or
zoledronate (37–40), in combination with multiple IL2 injections
per cycle. In trials that explored the adoptive transfer autologous
Vγ9Vδ2+ T cells, patient PBMCs were cultured ex vivo for 2 weeks
in the presence of aminobisphosphonates (41–43) or synthetic
phosphoantigen (44, 45) in combination with IL2. Even though
these conditions promoted the expansion of Vγ9Vδ2+ T cells, ex
vivo expanded cell products contained rather low (on average 50–
60%) and highly variable percentages of Vγ9Vδ2+ T cells, and no
additional purification of Vγ9Vδ2+ T cells was performed prior
to reinfusion into patients. Patients received repeated infusions of
expanded cells, in some trials in combination with IL2. Treatment
using γδT cells was generally found to be safe using both in vivo
and ex vivo stimulation protocols, but clinical responses varied
widely across trials and were generally limited, even in patients
with cancers generally sensitive to immune responses such as renal
cell carcinoma [reviewed in Ref. (46–48)]. Important limitations
included (a) the need for a preselection of patients due to a wide
variability in in vitro cytotoxicity of patient γδT cells against autol-
ogous tumor tissue (36, 41, 44), and (b) limited in vivo or ex
vivo expansion potential of patient γδT cells (40, 41, 44, 45, 49).
Moreover, anti-tumor efficacy of γδT cells showed only marginal
improvement over standard treatment options (46). Thus, despite
the fact that these trials have established the anti-tumor potential
of γδT cells in cancer immunotherapy, current therapeutic strate-
gies using these cells clearly suffer from major shortcomings that
have so far prevented γδT cells to live up to their clinical promise.

A REMARKABLE DIVERSITY HAMPERS APPLICATION OF γδT
CELLS IN CANCER IMMUNOTHERAPY
Recent years have seen important progress in the understanding
of γδT cell immunobiology and have uncovered a striking diver-
sity in γδT cell functions and subsets. These new insights have
important implications for the use of γδT cells in the treatment of
cancer. To date, however, a profound appreciation of this γδT cell
diversity has lacked from γδT cell-based clinical concepts and this
is likely to contribute to the limited clinical results observed so far.
At least three levels of γδT cell heterogeneity can be distinguished
(Figure 1), including (a) a multitude of immune functions medi-
ated by γδT cells, (b) a diverse γδTCR repertoire that, also for
similar antigen-specificities, mediates different affinities, and (c)
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FIGURE 1 | A broad functional and clonal diversity challenges the clinical
success of γδT cells in cancer immunotherapy. New insights into γδT cell
biology have pointed to at least three levels of diversity that each have a major
impact on the design of successful γδT cell-based interventions to treat
cancer. A striking functional diversity has come to light by the identification of
new γδT cell subsets, such as regulatory (γδTreg) and IL17-producing (γδ-IL17)
γδT cells, that now complement the well-established subsets with antiviral or
anti-tumor functions. Within γδT cell populations that perform identical

functions, another level of diversity is created by the extraordinarily diverse
γδTCR repertoire that results in considerable variation in functional avidities of
individual γδT cells. Additional diversity within and across γδT cell populations
is represented by variable expression patterns of and complex activation
requirements for additional immune receptors, including TLRs, CD8αα, and
NK cell receptors such NKG2D, the natural cytotoxicity receptors (NCR)
NKp30, NKp44, and NKp46, and activating and inhibitory killer cell
immunoglobulin-like receptors (KIRs).

the complex and diverse molecular needs for target recognition
within the same and across different γδT cell populations. A thor-
ough consideration of these features will be of central importance
to improving the clinical efficacy of γδT cells in treating cancer.

γδT CELL FUNCTIONS: THE MORE THE BETTER?
γδT cells have, as discussed above, been attributed important and
valuable functions in tumor immunosurveillance, but reactivity
toward tumors is far from the only part that γδT cells play in
immunity. By now, it is evident that γδT cells perform a plethora of
functions that underline their involvement in diverse pathophysio-
logical conditions other than cancer, including host defense against
infectious pathogens such as bacteria, viruses, and parasites, the
modulation of the activity of other immune cells, and promoting
tissue regenerating after injury (20, 50).

Rapid expansions of γδT cells are observed in human beings
infected with a variety of viruses or bacteria and γδT cells pos-
sess a potent capacity to directly kill infected cells (51). Moreover,
a proportion of γδT cells contribute to pathogen clearance by
the secretion of anti-microbial peptides such as granulysin and
cathelicidin (52–54). Intriguingly, the recognition of pathogens
may have important implications for γδT cell-mediated cyto-
toxicity against cancers, as subsets of γδT cells that respond to
cytomegalovirus (CMV) infection have been reported to cross-
recognize solid (55) as well as hematological (56) tumor cells
in vitro. A role for virus-induced γδT cells in the protection from
cancer in vivo is supported by observations that CMV infection
in kidney transplant recipients was observed to associate with
increased levels of γδT cells and concomitantly a reduced risk
of developing cancer (57). Also in leukemia patients treated with
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hematopoietic stem cell transplantation, CMV infection associates
with lower incidence of leukemic relapse after transplantation (58,
59) and work from our laboratory has demonstrated that tumor
surveillance by CMV-induced γδT cells is likely to play a major role
in this (56), emphasizing the clinical value of such dual-reactive
γδT cells in immunotherapy.

In addition to their strong reactivity to a wide variety of tumors
and pathogens, a valuable feature of γδT cells is their capability to
broaden immune responses by recruiting and activating additional
immune cell populations. For example, activated γδT cells have the
potential to orchestrate adaptive αβT cell responses, both directly
by functioning as antigen-presenting cells (60–62) as well as indi-
rectly via the interaction with dendritic cells (56, 63, 64). In addi-
tion, γδT cells have been reported to secrete cytokines to provide B
cell help in the production of antibodies (65, 66), to prime NK cells
to kill tumor cells (67), to rapidly recruit neutrophils via the secre-
tion of IL-17 (68, 69), and to synergize with monocytes to mount
anti-microbial αβT cell responses (70). However, in addition to the
immunostimulatory roles of γδT cells, their modulatory function
may be of regulatory nature as well, suggesting complex impli-
cations of γδT cells in mediating broader immune responses. For
example, depending on antigenic exposure,γδT cells may suppress
rather than promote antibody production by B cells (71, 72). Sim-
ilarly, γδT cells can strongly inhibit the proliferation of activated
αβT cells (73, 74), and a suboptimal maturation of DCs by γδT
cells (56) may induce tolerogenic rather than cytotoxic αβT cell
responses. Importantly, human and mouse IL17-producing γδT
cells have recently been demonstrated to facilitate tumor growth
by recruiting myeloid-derived suppressor cells to tumor sites (75,
76). With the recent identification of bona fide Foxp3-expressing
regulatory γδT cell subsets (77), it is thus becoming clear that,
depending on their local or temporal cytokine milieu, activated
γδT cells may suppress instead of activate local immune responses
(78). Indeed, even though the presence of γδT cells may corre-
late with increased survival of cancer patients in some studies (see
above), their infiltration into tumor sites may also associate with
worse clinical outcome of patients due to a immunosuppressive
phenotype of local γδT cells (79–81).

A VERY DIVERSE γδTCR REPERTOIRE PRODUCES RECEPTORS WITH
VARIABLE ANTI-TUMOR AFFINITIES
Like αβTCRs and B cell receptors, γδTCRs are generated during T
cell maturation through the somatic recombination of germline-
encoded variable (V), diversity (D), and joining (J) gene segments.
Despite the fact that the number of germline Vγ and Vδ genes
is far more limited than the repertoire of Vα and Vβ genes,
more extensive junctional diversification processes during TCR
γ and δ chain rearrangement leads to a potential γδTCR reper-
toire that is roughly 105-fold larger than that of αβTCRs (2).
Despite this extensive γδTCR repertoire, the diversity of antigens
that are recognized by γδTCRs appears to be surprisingly limited.
The vast majority of Vγ9Vδ2+ TCRs on circulating γδT cells are
restricted to sensing elevated levels of phosphoantigens (22, 82), a
process that has recently been demonstrated to involve the buty-
rophilin family member BTN3A1 (83, 84). Similarly, all antigens
of Vδ2neg γδTCRs identified so far, including MICA/B (85), CD1
(86, 87), and EPCR (88), belong to the family of non-classical

MHC homologs, although additional antigens are likely to still be
identified and may include MHC-unrelated molecules.

An important question is why this rather narrow antigen
restriction of γδT cells is confronted with such a broad γδTCR
diversity, instead of a rather oligoclonal or invariant repertoire as
expressed by for example NKT cells (89). One possible explanation
may be that the extensive γδTCR repertoire of γδT cells allows an
important fine-tuning of γδTCR-mediated target cell recognition.
Indeed, we have shown recently that phosphoantigen-responsive
Vγ9Vδ2+ γδT cell clones differed widely in their functional avidity
toward tumor cells (90). γδTCR transfer and mutation experi-
ments showed that this variability in the ability to respond to
tumor cells was mediated primarily through diverse sequence
compositions that dictate the affinities of individual clone-derived
Vγ9Vδ2+ TCRs. A similar γδTCR-mediated heterogeneity in anti-
tumor specificity can be observed in the Vδ2neg subset of γδT
cells, as we recently demonstrated that individual Vδ1+ γδT cell
clones display γδTCR-mediated reactivity against diverse arrays of
tumor cells (56). Moreover, γδTCRs of other Vδ1+ clones were
not involved in tumor recognition but mediated interactions with
dendritic cells, demonstrating that a diverse γδTCR repertoire can
mediate not only a fine-tuning of anti-tumor avidity but also
different functions. Accordingly, diverse γδT cell functions that
segregate with γδTCR composition have been observed for the
human Vγ9Vδ2+ and Vδ2neg subsets, as Vγ9Vδ2 γδT cells have
been generally ascribed potent cytotoxic effector functions, while
Vδ2neg γδT cells rather have immunomodulatory roles (91, 92).
However, these observations are contrasted by reports showing
a superior tumor-homing and -killing capacity of Vδ2neg γδTILs
over Vγ9Vδ2 γδTILs in some cancers (30, 93), further underlining
the heterogeneous and context-dependent nature of both γδT cell
subsets.

γδT CELL ACTIVATION: A COMPLEX INTERPLAY BETWEEN RECEPTORS
Alongside the γδTCR, γδT cells can be activated through a variety
of activating and inhibitory NK receptors (48, 94) and toll-like
receptors (TLR) (95), emphasizing the innate-like nature of these
unconventional T cells. Depending on the pathophysiological
context, these receptors can provide costimulation to γδTCR-
mediated activation signals or can activate γδT cells independent
of γδTCR triggering, adding yet another level of heterogeneity and
complexity to γδT cell biology. The best-studied receptor with
dualistic roles in γδT cell activation is NKG2D, a natural cyto-
toxicity receptor (NCR) that is expressed on NK cells, most γδT
cells and CD8+ αβT cells. NKG2D recognizes the non-classical
MHC homologs MICA/B and ULBPs, the expression of which
is upregulated on many different tumors (96, 97). On Vγ9Vδ2+

γδT cells, NKG2D can amplify γδTCR-mediated effector func-
tions in response to MICA/B-positive target cells (98, 99). In
other cases, however, sole signaling through NKG2D has been
proposed to be sufficient for activating γδT cells, without requir-
ing γδTCR engagement (100, 101). However, as most of these
studies have used TCR blocking antibodies and not receptor gene-
transfer experiments, the impact of TCR affinity and signaling
in NKG2D-triggered γδT cell activation might have been under-
estimated (Gründer and Kuball, unpublished observation). Fac-
tors that determine the directly stimulatory versus costimulatory
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function of NKG2D are not known, but may involve signaling
by polymorphic receptors such as inhibitory NK receptors (100).
Apart from serving as ligand for NKG2D, MICA/B is also recog-
nized by selected Vδ1+ γδTCRs (85). In fact, overlapping binding
epitopes for NKG2D and γδTCRs on MICA/B result in compet-
itive binding of both receptors for MIC ligands, suggestive of
complex, temporally regulated interactions of both receptors for
MIC ligands (102). Similarly, engagement of the NCRs NKp30,
NKp44, and NKp46 on γδT cells can be sufficient for eliciting
anti-tumor cytotoxicity, but interestingly only after expression
of these receptors on γδT cells has been induced via triggering
of the γδTCR (103). Differential involvement of the γδTCR and
additional receptors has also been reported in pathophysiological
processes other than cancer, as work by us and others has demon-
strated that reactivity of γδT cells against CMV-infected cells may
involve γδTCR-dependent (55, 104) and -independent (56) path-
ways, suggesting multimodal pathogen-sensing mechanisms that
may involve NK receptors (48).

Recently, we have found additional evidence for a complex
interplay between receptors in the response of γδT cells against
tumor cells by demonstrating that CD8αα, that serves as corecep-
tor for selected γδTCRs as reported by us recently (56), mediates
γδTCR costimulation in a manner that depends on the particu-
lar tumor cell target (Scheper and Kuball, unpublished observa-
tion). Expression of CD8αα on T cells engineered to express a
tumor-reactive γδTCR was a prerequisite for recognition of all
tested tumor cell lines, but coexpression of signaling-deficient
CD8α variants or mutants with single residue substitutions in the
extracellular domain of CD8α alongside the γδTCR differentially
impacted T cell reactivity toward the different tumor targets. Even
though CD8αα+ γδT cells were first identified over 20 years ago,
when CD8αα was found to be commonly expressed on Vδ1+ γδT
cells in the intestine but not circulatingVγ9Vδ2+ T cells (105, 106),
the functional implications of CD8αα expression on γδT cells have
remained rather controversial. A number of studies have reported
regulatory functions for CD8αα+ γδT cells, being capable of for
example inhibiting inflammatory responses in celiac disease (107)
but also to suppress αβT cell-mediated responses against tumor
cells (80). On the other hand, and in line with our data (56), stim-
ulated CD8αα+ γδT cells have been reported to be as capable as
CD8αα− γδT cells of secreting high levels of Th1 cytokines such
as IFNγ (108). Moreover, cytokines produced by CD8αα+ but not
CD8αα− γδT cells have been implicated in the controlling of R5-
tropic HIV replication and persistence (109). Thus, CD8αα+ γδT
cells appear to perform diverse functions depending on the context
in which they are activated.

Taken together, the emerging insights into the molecular
requirements for γδT cell activation and the interplay between
different receptors in this process have substantially furthered our
understanding of the response of γδT cells against cancer cells,
but also unveil substantial challenges to the design of uniform γδT
cell-based strategies for cancer immunotherapy.

SUCCESSFUL TRANSLATION USING γδT CELLS: PICKING THE
RIGHT ONES
Beyond doubt, the implications of the functional and clonal het-
erogeneity of γδT cells for their application in the treatment of

cancer are substantial, and a failure to fully recognize this diversity
in clinical concepts and trial designs is likely the most impor-
tant contributing factor in the limited clinical results observed
with γδT cells to date. Current clinical protocols based on the
broad activation of unselected γδT cells are likely to induce γδT
cell populations with diverse specificities, avidities, and functions,
including regulatory. Consequently, high-avidity γδT cells with
strong tumor-reactivity and a desired functional profile may rep-
resent only a relatively minor population of such cell products.
In addition, stimulation of γδT cells using agents that primarily
depend on strong γδTCR-mediated activation, such as the use of
aminobisphosphonate and phoshoantigen compounds to expand
Vγ9Vδ2+ γδT cells in trials pursued to date, most likely selects for
γδT cells with low affinity Vγ9Vδ2+ γδTCRs and thus, low activity
on primary tumor cells. Moreover, γδTCR-based activation strate-
gies do not necessarily mobilize γδT cells that express a repertoire
of NK receptors and TLRs required to potently respond to the
multimolecular stress signature of tumor cells. Thus, the selection
of optimally tumor-reactive γδT cell populations will likely be a
critical parameter in the design of improved cancer immunother-
apeutic concepts. In principal, this would favor strategies aimed
at ex vivo rather than in vivo expansion of γδT cells, since the
first allows a careful monitoring and culture-dependent skewing
of γδT cell phenotype and functionality that is far more chal-
lenging to accomplish using in vivo stimulation protocols. With
the clinical data available so far, it is difficult to corroborate this
by comparing clinical responses observed in both types of tri-
als, as studies using adoptive transfer of ex vivo generated γδT
cells have so far relied on similar stimulation protocols (aminobis-
phosphonate or phosphoantigen in combination with IL-2) and
the potential for extended in vitro manipulation for enhanced
anti-tumor efficacy has not yet been investigated (41–45, 49, 110).
Importantly, ex vivo manipulation of patient γδT cells could also
include a valuable enrichment of tumor-specific γδT cells with
high functional avidity, for instance using selection techniques
based on the upregulation of activation markers or the produc-
tion of cytokines such as IFNγ by γδT cells after in vitro coculture
with autologous tumor cells. Nevertheless, γδTCR repertoires vary
widely among individuals (111, 112), and generating sufficient
numbers of γδT cells that recognize tumors with high avidity
may therefore be challenging in certain patients. Similarly, NK
receptor and TLR repertoires as well as CD8α expression levels
differ considerably between γδT cell subsets (56, 103, 105, 113)
and between individuals (95, 114, 115), putting additional con-
straints on the generation of γδT cell products potently capable of
rejecting cancer.

To overcome the limitations of patient γδT cell repertoires,
γδTCRs with broad tumor-specificity could be identified in vitro
and genetically introduced into patient-derived immune cells.
Recent work by our group has demonstrated that gene-transfer
of tumor-specific Vγ9Vδ2+ and Vδ1+ γδTCRs can be used to
efficiently reprogram conventional αβT cells to recognize a wide
variety of tumor cells (56, 90, 97). By exploiting the abundance
and superior proliferation potential of αβT cells, large numbers
of autologous γδTCR-engineered T cells with defined tumor-
specificity can be generated ex vivo and subsequently reinfused
into cancer patients. In contrast to αβTCR gene-transfer strategies,
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introduced TCR γ and δ chains do not dimerize with endogenous
αβTCR chains (97) and therefore do not lead to the formation
of unwanted TCRs with unpredictable, and potentially danger-
ous, specificities. Moreover, since antigen recognition by γδTCRs
does not depend on classical MHC molecules, well-characterized
γδTCRs that mediate superior anti-tumor functional avidities can
be applied to a broad patient population without the require-
ment for HLA matching. Additionally, transgenic expression of
γδTCRs downregulates surface expression of endogenous αβTCR
chains (56, 90, 97), enabling the use of engineered cell product
even in an allogeneic “off-the-shelf” fashion. The ex vivo genera-
tion of γδTCR-engineered T cells furthermore allows additional
manipulation of cell products, such as the selection of T cells with
highest γδTCR expression levels or T cells which express ben-
eficial TLRs or NK receptors. Importantly, such strategies can
take advantage of the valuable lessons that have been learned
from efforts to apply conventional αβT cells and their recep-
tors in cancer immunotherapy, such as evidence for the effect
of the differentiation status on in vivo persistence and func-
tion of clinical T cells (116). Our group has initiated the first
clinical trial using γδTCR-gene-modified T cells to treat cancer
patients (scheduled to start in 2015). Donor T cells engineered
with a well-characterized tumor-reactive Vγ9Vδ2+ γδTCR (90)
will be administered to leukemia patients after allogeneic stem
cell transplantation as part of an engineered donor lymphocyte
infusion. Ex vivo manipulations of gene-modified T cell products
will include the depletion of cells that express only low levels of
the clinical γδTCR and adapted culturing conditions to prevent
terminal differentiation of engineered T cells before infusion into
patients.

CLOSING REMARKS
Even though γδT cells have traditionally been regarded as a
homogeneous immune population, important advances in the
understanding of γδT cell immunobiology have revealed a strik-
ing diversity in functionality and molecular activation modes.
These new insights are generally met with great enthusiasm as
they give acclaim to γδT cells for their non-redundant involve-
ment in so many pathophysiological and homeostatic processes.
However, this pleiotropy of γδT cells is likely an important factor
that stifles the clinical success of their application to treat cancer. As
for adaptive immune interventions, it may be absolutely manda-
tory to carefully consider the plethora of γδT cell functions, the
diversity in γδTCR specificities and affinities as well as the com-
plex requirements for proper γδT cell activation. At the end, such
broadly tumor-reactive γδT cells might be highly effective only
under very defined molecular and pathophysiological conditions
and therefore less broadly applicable as initially thought, though
a valuable addition to current therapeutic options. This new con-
cept represents a major challenge in the design of next generation
γδT cell-based immunotherapies, and clinical trials that incorpo-
rate these exciting insights will need to be pursued to confirm the
clinical potential of γδT cells in the treatment of cancer.
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