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In this paper, we review the connections and physiology of visual pathways to the

cerebellum in birds and consider their role in flight. We emphasize that there are two

visual pathways to the cerebellum. One is to the vestibulocerebellum (folia IXcd and X)

that originates from two retinal-recipient nuclei that process optic flow: the nucleus of

the basal optic root (nBOR) and the pretectal nucleus lentiformis mesencephali (LM).

The second is to the oculomotor cerebellum (folia VI-VIII), which receives optic flow

information, mainly from LM, but also local visual motion information from the optic

tectum, and other visual information from the ventral lateral geniculate nucleus (Glv). The

tectum, LM andGlv are all intimately connectedwith the pontine nuclei, which also project

to the oculomotor cerebellum. We believe this rich integration of visual information in the

cerebellum is important for analyzing motion parallax that occurs during flight. Finally, we

extend upon a suggestion by Ibbotson (2017) that the hypertrophy that is observed in LM

in hummingbirds might be due to an increase in the processing demands associated with

the pathway to the oculomotor cerebellum as they fly through a cluttered environment

while feeding.

Keywords: cerebellum, optic flow processing, lentiformis mesencephali, pontine nuclei, motion parallax, flight

control

Gibson (1954) emphasized that self-motion results in optic flow across the entire retina and
that such visual information can be used to control posture and locomotion. One of the classic
illustrations from Gibson (1979) to exemplify this is reproduced in Figure 1, which shows the optic
flowfield resulting from a bird in flight. Despite widespread evidence supporting the importance of
optic flow in modulating posture and locomotion across vertebrate species (e.g., Lee, 1980; Warren
et al., 2001), it is only recently that a few studies (Bhagavatula et al., 2011; Goller and Altshuler,
2014; Schiffner and Srinivasan, 2015; Dakin et al., 2016; Ros and Biewener, 2016) have explicitly
demonstrated that manipulation of the optic flow field can affect flight behavior of birds (Lee
and Reddish, 1981; but see, Davies and Green, 1990; Lee et al., 1991, 1993; Eckmeier et al., 2008).
Optic flow is analyzed by specialized visual pathways in the avian brain, which originate from two
retinal-recipient nuclei: the nucleus of the basal optic root (nBOR) of the Accessory Optic System,
and the pretectal nucleus lentiformis mesencephali (LM). Neurons in LM and nBOR have very
large receptive fields and exhibit direction-selectivity in response to optic flow stimuli (Burns and
Wallman, 1981; Morgan and Frost, 1981; Winterson and Brauth, 1985; Wylie and Crowder, 2000).
Such responses are unique to LM and nBOR cells, as other motion-sensitive cells in the visual
system respond best to small object-like stimuli, and have large-inhibitory surrounds such that
they do not respond to optic flow (Frost et al., 1990). Although LM and nBOR have been implicated
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FIGURE 1 | The optic flowfield during forward flight. Adapted from Gibson

(1979).

in the generation of the optokinetic response for retinal
image stabilization (Fite et al., 1979; Gioanni et al., 1983a,b),
their involvement in the visual control of flight has yet to
be demonstrated. However, Iwaniuk and Wylie (2007) noted
that the LM was 2 to 5X larger in hummingbirds compared
to other birds (Figures 2A,B). LM was also enlarged in
species that occasionally hover, such as the eastern spinebill
(Acanthorhynchus tenuirostris), a nectarivorous Australian
songbird. As hovering represents a specialized case of
stabilization, Iwaniuk and Wylie (2007) postulated that the
hypertrophy of the LM was to facilitate hovering. Subsequently,
Gaede et al. (2017) recorded from the LM in hummingbirds
and noted their response properties to largefield stimuli were
quite different from other birds. nBOR and LM have extensive
direct and indirect connections with the cerebellum (Clarke,
1977; Brecha et al., 1980; Gamlin and Cohen, 1988a; Wylie et al.,
1997; Pakan and Wylie, 2006), which is well established to be
involved in motor control (Ito, 1984). Pakan and Wylie (2006)
noted that nBOR and LM give rise to two optic flow pathways
to the cerebellum; to the posterior part, folia IXcd and X, which
collectively are know as the vestibulocerebellum (VbC), and to
the oculomotor cerebellum, which is comprised of folia VI-VIII
(see below). In this paper, we will expand upon the proposed
role of the LM and visual cerebellar pathways in avian flight by
exploring several questions: What other visual nuclei should
show hypertrophy in concert with the LM?Which part of the LM
is hypertrophied in hummingbirds? And finally, is the expansion
of the LM in hummingbirds driven by the visual demands of
behaviors other than hovering, as preciously suggested?

RESPONSE PROPERTIES OF NEURONS IN
NBOR AND LM

Neurons in nBOR and LM are ideally suited for the analysis
of optic flow because they have large receptive fields averaging
about 60◦ in diameter with some encompassing the entire
monocular visual field. These neurons are directionally selective

in response to large stimuli, such as random dot patterns,
checkerboards, and gratings. The response properties of nBOR
neurons have been investigated in chickens (Gallus gallus, Burns
and Wallman, 1981) and pigeons (Morgan and Frost, 1981;
Columba livia, Gioanni et al., 1984; Wylie and Frost, 1990),
and the responses are essentially identical. With respect to
direction preference, neurons that prefer upward, downward
and backward (i.e., nasal-to-temporal) motion are about equally
abundant in nBOR, but fewer (5–10%) prefer forward (i.e.,
temporal-to-nasal) motion (Frost et al., 1990). With respect to
stimulus speed, neurons are broadly tuned, but the majority
(∼75%) prefer slow velocities (<5◦/s) (Burns and Wallman,
1981; Crowder et al., 2003). Data from chickens, pigeons and
zebra finches (Taeniopygia guttata) suggest that the LM is
complementary to the nBOR regarding direction preference. In
LM, there is a clear directional bias to forward motion: about
half the neurons prefer motion in this direction and neurons
that prefer upward, downward and backward motion are equally
represented (McKenna and Wallman, 1985b; Winterson and
Brauth, 1985; Wylie and Frost, 1996; Wylie and Crowder, 2000;
Gaede et al., 2017) (Figure 2D). The bias toward neurons that
prefer forward motion has also been found in the homologs of
the LM in amphibians, reptiles, and mammals (Collewijn, 1975;
Katte and Hoffmann, 1980; Fan et al., 1995). With respect to
speed, as in nBOR, LM neurons are broadly tuned, but most
(about 65%) prefer faster stimuli (>5◦/s and up to 250◦/s).
Almost all (>95%) of the LM neurons that prefer slower
speeds prefer forward motion. Stated another way, there are two
groups of LM neurons: (i) slow neurons that prefer forward
motion; and (ii) fast neurons that prefer upward downward and
backward motion (Wylie and Crowder, 2000) (see Figure 2F).
There is also evidence suggesting that there is a separation of
directional response types within LM. Winterson and Brauth
(1985) noted that most cells in the LM parvocellularis, now
known as the lateral LM (LMl; Gamlin and Cohen, 1988b)
preferred forward motion, whereas cells that prefer upward,
downward, backward and forward motion are found in LM
magnocellularis, now known as the medial LM (LMm, Gamlin
and Cohen, 1988b). This is important because the LMm and LMl
project to different parts of the cerebellum (see below, Pakan and
Wylie, 2006).

THE LM IN HUMMINGBIRDS

As mentioned above, LM is hypertrophied in hummingbirds
(Iwaniuk and Wylie, 2007). In a more recent study, Gaede et al.
(2017) recorded from the LM of Anna’s hummingbird (Calypte
anna) and noted that the neuronal responses to largefield visual
stimuli differed in hummingbirds compared with other bird
species. First, a directional bias to forward motion was not
found, rather all directions were represented equally (Figure 2C).
Second, LM neurons in hummingbirds were tightly tuned to
stimulus velocity, and mainly to speeds higher than 48◦/s
(Figure 2E). In this regard, hummingbirds could be regarded as
visual “velocity specialist,” forgoing coarse coding common in
perceptual systems for a specificity code seen in other sensory
specialists, such as neurons tuned for auditory space in owls
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FIGURE 2 | Coronal sections through the pretectal nucleus lentiformis mesencephali (LM) in a hummingbird (Doryfera ludoviciae) (A, from Iwaniuk and Wylie, 2007,

with permission) and a pigeon (Columba livia) (B). (C,D) Respectively show the direction preferences of LM neurons in Anna’s hummingbird (Calypte anna) and zebra

finch (Taeniopygia guttata) (from Gaede et al., 2017, with permission). (E) Shows the speed tuning curve for a LM neuron in a Anna’s hummingbird (from the data set

of Gaede et al., 2017). The visual stimuli were largefield random dot patterns moving in the preferred direction. (F) Shows the speed tuning for 3 LM neurons in pigeon:

(from the data set of Crowder et al., 2003). One is a “slow” neuron that preferred forward (nasal to temporal) motion (solid line), whereas the other two are “fast”

neurons that preferred backward (lower dashed line) and downward (upper dashed line) motion. The visual stimulus were largefield sine wave gratings of an effective

spatial frequency (1 cycle per degree [cpd] for the slow neuron, 0.25cpd for the fast neurons) drifting in the preferred directions. Other abbreviations: Glv, ventral lateral

geniculate nucleus; LPC, nucleus laminaris precommissuralis; nRt, nucleus rotundas; TeO, optic tectum; SOp, stratum opticum; t-n, temporal to nasal; n-t, nasal to

temporal. Scale bars; 0.5mm in (A) 1mm in (B).

(Konishi, 2003; Lesica et al., 2010). Insofar as Winterson and
Brauth (1985) noted that LMl contained neurons that prefer
forward motion, whereas neurons representing all directions of

motion, (which prefer faster speeds), were found in LMm, we
speculate that the hypertrophy of the LM in hummingbirds may
be largely due to an expansion of the LMm.
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FIGURE 3 | (A) Shows a lateral view of the pigeon brain, to emphasize the relatively large size of the cerebellum (Cb). (B) Shows the numbered folia of the posterior

lobe. The vestibulocerebellum (VbC) includes folia IXcd and X, and the laterally protruding auricle (Au). (C) Shows a lateral view of the brain of a dragon lizard

(Ctenophorus nuchalis) emphasizing the small underdeveloped Cb) (from Wylie et al., 2016, with permission). (D) Shows a dorsal view of the brain (endocast) of a

flying reptile (Rhamphorhynchus muensteri) showing the large cerebellum (yellow) and the cerebellar flocculus (fl) (from Witmer et al., 2003, with permission). Other

abbreviations: TeO, optic tectum; Tel, telencephalon.

THE CEREBELLUM AND FLIGHT

It is not unreasonable to assume that flight demands acute

multisensory integration and sophisticated motor control. The

cerebellum is large and well developed in birds (Figure 3A) and
as the cerebellum is traditionally implicated in motor control
(Ito, 1984) and is clearly a site of multisensory integration
(Paulin, 1993; Bower, 1997) it is not surprising that it is thought
to be important for flight (Kornhuber, 1974). Husband and
Shimizu (2001) noted that the cerebellum is much larger in birds
compared to non-avian reptiles (Figures 3A–C). Witmer et al.
(2003) examined gross brain morphology from the endocasts of
extinct flying reptiles and noted that there was a large cerebellum,
in particular, the flocculus (fl) of the VbC (Figure 3D). However,
Walsh et al. (2013) urge caution in this regard, because they
found no correlation between the flying behavior and the size of
the flocculus in extant birds, and large cerebella are also present
in several bird-like non-flying dinosaurs. Nonetheless, Walsh
et al. acknowledge that the evolution of the large cerebellum may
have rendered birds flight ready. Finally, Feenders et al. (2008)
used the expression of immediate-early genes as an indicator of
neural activity during various behaviors. During flight, activity
was evident, especially in folia VI and IXcd. As mentioned, optic
flow pathways to the cerebellum in birds are precisely to these
two areas, the oculomotor cerebellum (folia VI–VII) and the VbC
(folia IXcd and X, see below, Figure 4). Thus, several lines of
evidence suggest a key role for the cerebellum in avian flight.

THE OPTIC FLOW PATHWAY TO THE
VESTIBULOCEREBELLUM

The first optic flow pathway to the cerebellum is to the VbC,
folia IXcd and X (Figure 4A). The VbC is divided into the
lateral flocculus (fl), which includes the lateral protrusion of the
cerebellum known as the auricle (see Figure 3B), and the medial
VbC comprised of the ventral uvula and nodulus. Optic flow
information reaches the VbC directly, as mossy fibers (MFs) that
originate from neurons in both nBOR and LM and terminate
in folium IXcd, but not X (see Figures 4A,B for details and
the relative position of each nuclei in the brain of the pigeon)
(Clarke, 1977; Brecha et al., 1980; Gamlin and Cohen, 1988a). The
majority (∼75%) of the LM projection is from LMl (Pakan and
Wylie, 2006). nBOR and LM also project indirectly to the VbC
via the medial column of the inferior olive (mcIO), whose cells
ascend to the VbC as climbing fibers (CFs) (Arends and Voogd,
1989; Lau et al., 1998; Wylie, 2001). This indirect projection from
the LM arises from fusiform cells that lie in a thin strip along
the border between LMm and LMl (Pakan et al., 2006). These
two different pathways(CF andMF),also originate from cells with
different speed preferences: the CF pathway originates from the
slow cells in the nBOR and LM, whereas the MF pathway is fed
by both slow and fast cells in nBOR and LM (Winship et al.,
2005). This CF pathway to the VbC has been studied in detail
in several mammalian species (e.g., Graf et al., 1988), and is
critical for retinal image stabilization and the modification of the
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FIGURE 4 | Visual cerebellar pathways in birds. (A) Shows in red the optic flow pathways from the nucleus of the basal optic root (nBOR) and pretectal nucleus

lentiformis mesencephalic (LM) to the vestibulocerebellum (VbC; folia IXcd and X), black arrows show projections to the medial column of the inferior olive (mcIO).

(B) Shows schematic drawings of coronal sections at three different anteroposterior levels (1–3 in A) of the pigeon’s brain to show the relative position of the different

nuclei involve in visual pathways to the cerebellum in birds. Coordinates in the pigeon brain atlas of Karten and Hodos (1967) are shown. Adapted from Karten and

Hodos (1967). (C) Shows the sagittal optic flow “zones” in the VbC. (D) Shows in green and black the extensive pretecto-ponto-cerebellar connectivity to the

oculomotor cerebellum (OCb, folia VI–VII). The larger arrows with solid lines represent heavier projections, whereas the smaller arrows with dotted lines represent

weaker projections. See text for details. Other abbreviations: CFs, climbing fibers; Glv, ventral lateral geniculate nucleus; HA, horizontal axis (neurons); LMl, lateral

LMm, medial LM; MFs, mossy fibers; PL, lateral pontine nucleus; PM, medial pontine nucleus; VA, vertical axis (neurons).

vestibular ocular reflex by visual-information (Ito, 1998). This is
a highly conserved pathway, as the physiology and anatomy of
this CF pathway to the flocculus is strikingly similar in birds and
mammals (Voogd and Wylie, 2004).

The CFs give rise to the complex spike activity (CSA) of
Purkinje cells in mammals, birds and likely other vertebrates
(Eccles et al., 1966; Wylie and Frost, 1991). Depicted in
Figure 4C, the VbC in birds is organized into several optic flow
“zones” (Voogd and Bigaré, 1980), which lie in the sagittal plane
and cut across IXcd and X. The CSA in the flocculus responds
most strongly to rotational optic flow about either the vertical axis
(VA neurons) or an horizontal axis oriented 45◦ to the midline
(HA neurons) (Wylie and Frost, 1993). In pigeon, there are two
VA zones interdigitated with two HA zones (Winship and Wylie,
2003). In the uvula/nodulus, the CSA responds most strongly
to optic flow resulting from translation (Wylie et al., 1993). As
depicted in Figure 4C, there are four response types organized
into three sagittal zones. In the most medial zone, CSA responds
most stronglyto optic flow resulting from translation backwards
along an horizontal axis 45◦ to the midline such that there is

a focus of contraction at 45◦ contralateral azimuth (contraction
neurons). Medial to this is a zone where the CSA responds most
strongly to optic flow resulting from either (i) forward translation
along an horizontal axis 45◦ to the midline such that there is
a focus of expansion at 45◦ ipsilateral azimuth, or (ii) upward
translation along the vertical axis. Finally, lateral to this is a
zone where the CSA responds to the optic flow resulting from
downward translation along the vertical axis (Wylie et al., 1998;
Graham andWylie, 2012). Thus, the VbC is well suited to analyze
the optic flow resulting from self-translation and self-rotation as
birds fly through the world. This is combined with vestibular
information derived from separate end organs for analyzing
rotation (semicircular canals) and translation (otolith organs)
(Pakan et al., 2008).

THE OPTIC FLOW PATHWAY TO THE
OCULOMOTOR CEREBELLUM

A second optic flow pathway to the cerebellum of birds is to
folia VI-VIII of the posterior lobe, which are collectively known
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as the “oculomotor cerebellum” (OCb; Voogd and Barmack,
2006). This region of the cerebellum has been implicated in
flight insofar as the “strong fliers” as defined by Larsell (1967)
tend to have a large posterior lobe, in particular folia VI and
VII, and these folia are significantly smaller in flightless birds
(Iwaniuk et al., 2007). The LM and nBOR project as MFs to
folia VI-VIII (Clarke, 1977; Brecha et al., 1980; Figure 4D). The
projection from nBOR is relatively small, but the projection
from LM is massive and originates mainly in LMm (∼75%)
(Pakan and Wylie, 2006). As shown in Figure 4D, folia VI-VII
are part of a much more extensive visuo-motor network that
incorporates visual information from several indirect sources.
These folia also receive heavy MF projections from the medial
and lateral pontine nuclei (MP, LP) (Brodal et al., 1950; Freedman
et al., 1975; Clarke, 1977; Pakan and Wylie, 2006). The pontine
nuclei in turn receive projections from several retino-recipient
sources including nBOR (although this is minor; Wylie et al.,
1997), the optic tectum, which sends projection mainly to LP
(Hunt and Künzle, 1976; Wylie et al., 2009), and LM, which
projects mostly to MP (Clarke, 1977; Gamlin and Cohen,
1988a), and Glv (Marín et al., 2001). Glv itself receives input
from the optic tectum (Hunt and Künzle, 1976; Wylie et al.,
2009; Vega-Zuniga et al., 2014), and in turn projects heavily
to LM, mainly to LMm (Vega-Zuniga et al., 2016), providing
some interconnectivity among these retinorecipient regions
before sending efferents to MP and folia VI-VIII. Because this
system receives direct and indirect input from several visual
regions, it is well suited for integrating different types of visual
information. Whereas the LM is concerned with optic flow,
neurons in the tectum respond to small moving stimuli (Frost
and Nakayama, 1983; Frost et al., 1990). The exact nature of
visual processing in Glv remains elusive, however, electrical
stimulation of the Glv elicits discrete, precise orienting head
movements (Vega-Zuniga et al., 2011). All of this information is
integrated in the pontine nuclei and folia VI-VIII, but for what
purpose?

The integration of local motion and optic flow information
in primate visual cortex is implicated in “steering” to avoid
obstacles during locomotion through cluttered environments
(Page and Duffy, 2008; Elder et al., 2009). Similarly, Hellmann
et al. (2004) suggested that the tecto-pontine pathway in
birds is involved in avoidance behavior. Thus, perhaps this
network integrating optic flow and local motion signals
is important for obstacle avoidance as birds fly through
cluttered environments. For example, during translation, a
radial optic flow pattern would result, which would be
detected by neurons in LM and nBOR. In addition, self-
motion would cause motion parallax of stationary objects at
different depths. Such local motion relative to the background,
is the ideal stimulus to activate deep tectal cells (Frost and
Nakayama, 1983), which project to the pontine nuclei (Hellmann
et al., 2004). This combination of local motion and optic
flow during self-translation would then be analyzed by the
pretecto-ponto-cerebellar system to folia VI-VIII (Figure 4D),
allowing a flying bird to then adjust its direction and velocity
accordingly.

OPTIC FLOW PATHWAYS TO THE
CEREBELLUM OF MAMMALS

The visual pathways that convey optic flow information to the
cerebellum of mammals are similar to those in birds and have
been studied extensively (Simpson, 1984; Voogd and Barmack,
2006). A detailed review of this literature is beyond the scope of
this review but a brief summary follows. As in mammals (and
other vertebrates), optic flow is analyzed in specialized optic
pathways, which begin in two retinorecipient nuclei, the medial
and dorsal terminal nuclei of the AOS (homolog to nBOR of
birds) and the nucleus of the optic tract (NOT; homolog to LM of
birds). These two nuclei are also highly conserved among other
vertebrates (Simpson, 1984; McKenna and Wallman, 1985a).
Similar to birds, in mammals two regions of the cerebellum
ultimately receive visual inputs from these two nuclei, the
oculomotor cerebellum (folia VI-VIII) and the VbC (Reviewed
in Voogd and Barmack, 2006). However, in contrast to birds,
in most mammals optic flow information does not reach the
cerebellum directly as mossy fibers from the terminal nuclei and
NOT, but rather indirectly through different relay nuclei (see
Simpson, 1984; Pakan et al., 2010). As in birds, these nuclei do
project to regions of the inferior olive which then projects as
climbing fibers to the VbC (Giolli et al., 2006). In the case of
the oculomotor cerebellum of mammals, visual projections arise
from the pontine nuclei, which like in birds receive projections
from the accessory optic system, the NOT, the ventral geniculate,
pretectum and the superior colliculus (reviewed in Voogd and
Barmack, 2006). The existence of very similar optic flow pathway
to the cerebellum of mammals strongly suggest that these are
ancestral characters of at least all land vertebrates, and that like
the expansion of the cerebellum, they precede the evolution of
flight in birds.

CONCERTED EVOLUTION OF THE LM
WITH OTHER VISUAL NUCLEI

Jerison’s principle of proper mass states that an increase in
the size of a brain nucleus is associated with an increase in
the processing power needed to meet behavioral requirement
(Jerison, 1973). The classic example is the increased size of the
hippocampus in food caching birds (Sherry et al., 1989). Iwaniuk
and Wylie (2007) suggested the increase in size of the LM in
hummingbirds and other birds is related to an increased need
for stabilization during hovering. Although through evolution
a single brain nucleus can increase (or decrease) in size, so
called “mosaic evolution,” more often large parts of the brain or
whole systems evolved together: “concerted evolution” (Striedter,
2005). Gutiérrez-Ibáñez et al. (2014) showed in birds that an
increase in size of one visual nucleus is associated with increased
in other visual nuclei, but the strength of the correlations varied
greatly across pairs of visual nuclei. This is shown in Figure 5,
where we show the correlation of the relative sizes of various
visual nuclei across 77 species of birds (data are from Gutiérrez-
Ibáñez et al. (2014), plus unpublished measurements of pontine
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FIGURE 5 | Correlations of the relative size of the pretectal nucleus

mesencephali (LM) with the medial and lateral pontine nuclei (PM, PL) and

other visual nuclei including the nucleus of the basal optic root (nBOR), the

ventral lateral geniculate nucleus (Glv) and the optic tectum. The size of the

arrows represents the strength of the correlation. These data are from

Gutiérrez-Ibáñez et al. (2014); Gutierrez-Ibanez et al. (2017). See text for

details.

nuclei). Note that while the correlation between the LM and
nBOR is of a significant magnitude (0.25), the correlation is
higher between the LM and PM (0.39) and highest between LM
and Glv (0.62). The correlations between LM and PL and LM
and the optic tectum are also comparatively low (0.2 and 0.29,
respectively). The correlation between PM and Glv is also high
(0.54). Thus, the LM tends to increase in size with Glv and
the PM, more so than other structure shown in Figures 4A,D.
This covariation likely reflects the aforementioned connections
among these nuclei and that these regions evolve in a correlated
fashion due to increased information processing requirements of
one or all nuclei. Based on our findings in hummingbirds, we
propose that LM may be the region undergoing direct selection
and that the associated changes in Glv and PM are through
correlated evolution, as a result of increasing input and output
requirements of LM. This preliminary hypothesis could be tested
using evolutionary path analysis (von Hardenberg and Gonzalez-
Voyer, 2013) to tease apart directionality of correlated size
changes.

HYPERTROPHY OF THE LM FOR THE
ANALYSIS OF OPTIC FLOW AND MOTION
PARALLAX

We have established that LM is enlarged in hummingbirds
and, as depicted in Figure 4, that the LM feeds two
cerebellar pathways. One is to the VbC (IXcd) that arises
mainly from LMl and also from nBOR (Figure 4A). The
second is to folia VI-VIII where there is an integration
of optic flow signals from LMm and local motion from a
tecto-pontine circuit and involving Glv (Figure 4D). We
suggest that the hypertrophy of LM in hummingbirds

may be due to an expansion LMm given the following
facts.

(i) Across birds, an increase in the size of the LM is associated
with increases in the size of Glv and the PM, more so than
nBOR (Figure 5).

(ii) Related, the Glv projects mainly to LMm as opposed to LMl
(Vega-Zuniga et al., 2016).

(iii) Some neurons in LM prefer fast speeds, whereas others
prefer slow speeds. Invariably, the slow neurons prefer
temporal-to-nasal motion, whereas the fast neurons
prefer various direction of motion (Wylie and Crowder,
2000). As most neurons in LMl prefer temporal-to-
nasal motion, one can infer that the fast and slow
neurons are more associated with LMm and LMl,
respectively.

(iv) Xiao and Frost (2013) showed that the fast LM neurons
respond best to motion parallax.

(v) Finally, Gaede et al. (2017) showed that neurons in LM
of hummingbirds respond differently than other species
in two respects. First, there was no bias to neurons that
prefer temporal-to-nasal motion, as has been observed
in the LM of other birds. Second, the LM neurons
in hummingbirds preferred faster velocities than other
birds. Indeed, the LM neurons in hummingbirds were
rather tightly tuned to fast velocities. This bias away
from neurons that prefer temporal-to-nasal motion, and
toward fast velocities suggests that the hummingbird LM
is processing stimuli typically processed by the LMm in
pigeons.

As previously mentioned, Iwaniuk and Wylie (2007) suggested
that the hypertrophy of LM in hummingbirds is driven by
the increased need to use optic flow to drive the optokinetic
response, which facilitates stabilization during hovering. This
argument was supported by an expansion of LM in other birds
capable of hovering (e.g., kingfishers), although the increase
in the size of LM in these species was smaller than in
hummingbirds. However, Ibbotson (2017) suggested that the
selectivity of hummingbird LM neurons to fast velocities may
be related to flying in dense vegetation, as images that are
close to the animal will move very quickly across the retina.
The five points laid out above suggest that the expansion of
LM in hummingbirds could be driven by a differential increase
in the size of LMm, where neurons tend to be tuned to
higher speeds (Winterson and Brauth, 1985) but also motion
parallax, which would occur as they fly through cluttered
environments. As Iwaniuk and Wylie (2007) measured LM
as whole, there is no evidence that the expansion of LM in
hummingbirds is due to a relative increase in the size of LMm
vs. LMl. It would be interesting to see if this is the case and
if hummingbirds show an increase in the magnitude of the
projection from the LMm to the oculomotor cerebellum. In
summary, the hypertrophy of LM in hummingbirds may not
be related to hovering alone, but could also be related to an
increase in the processing demands associated with the pathway
to the oculomotor cerebellum as they fly through a cluttered
environment while feeding.
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CONCLUSIONS

In this paper we have reviewed evidence that visual cerebellar
pathways are involved in the control of flight. Moreover, there
are two pathways involved: a pathway to the VbC involved in the
processing of optic flow resulting from self-translation and self-
rotation, and a pathway to folia VI-VIII that integrates optic flow
and local motion information such as that which occurs during
self-motion through cluttered environments. These pathways
are fed by different parts of the LM, LMl, and LMm, that
have different response properties to optic flow stimuli. Further,
we suggest that the hypertrophy of the LM observed in
hummingbirds may be driven more so by an hypertrophy of the
LMm to support an increased demand of integrating local motion
and optic flow signals to process motion parallax in cluttered
environment. Hummingbirds spend much of their time feeding,
and clearly they will be faced with optic flow and motion parallax
as they forage through a patch of flowers. In this respect, we
completely concur with Ibbotson (2017) who stated: “It is likely

that their [hummingbirds] habit of flying close to flowers in dense
vegetation has tuned the hummingbird LM to its specific visual
environment.” Hummingbirds may, in fact, be an especially
powerful group in which to gain a deeper understanding of the
role that optic flow processing plays in flight behavior of birds.
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