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Immunotherapy has transformed the management of hepato-
cellular carcinoma (HCC), but effectiveness varies among
patients. This study aimed to identify biomarkers and
HCC subtypes responsive to immunotherapy. Patients were
classified into Immunity-High (Immunity-H) and Immunity-
Low (Immunity-L) subtypes using ssGSEA scores. Prognostic
genes were identified through Cox regression, and immune
cell infiltration was quantified with TIMER 2.0. Brother of
CDO (BOC) expression, analyzed via immunohistochemistry,
correlated with immunotherapy responses. Flow cytometry as-
sessed immune cell infiltration relative to BOC levels, while
CCK-8 and transwell assays evaluated BOC overexpression’s
effects on cell proliferation and invasiveness. Clinically,
immunity-H patients had better survival outcomes. Three hub
genes—BOC, V-Set and Transmembrane Domain Containing
1 (VSTM1), and PRDM12—were identified as significantly
associated with prognosis. Among these, BOC and VSTM1
demonstrated positive correlations with immune cell infiltra-
tion. Elevated expression of BOC was found to be predictive
of favorable responses to immunotherapy and was associated
with enhanced infiltration of T cells, dendritic cells, and B cells
in the tumor microenvironment. Conversely, BOC overexpres-
sion in liver cancer cell lines led to decreased cell proliferation
and invasiveness. This study underscores the prognostic signif-
icance of HCC subtypes defined by immunogenomic profiles
and identifies BOC as a potential biomarker for immuno-
therapy selection and outcome prediction.

INTRODUCTION
Hepatocellular carcinoma (HCC) is the third highest contributor to
cancer-related mortality worldwide.1 HCC is characterized by an
insidious onset, high recurrence rates, and poor prognosis, and it pre-
sents a formidable challenge in oncology. In addition to liver trans-
plantation and localized treatments such as ablation and transarterial
chemoembolization, systemic therapy remains a key option for pa-
tients with locally advanced or metastatic HCC. While sorafenib
and lenvatinib have traditionally been the first-line systemic thera-
pies, the development of immune checkpoint inhibitors (ICIs) has
significantly transformed the treatment landscape.2–4 Although
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immunotherapy has transformed the management of cancer, its ther-
apeutic impact on HCC is limited. The overall survival (OS) rate at
48 months post-treatment is only 25.2%.5 The main issues with the
application of immunotherapy in HCC patients are a poor treatment
response, accelerated tumor progression, and immune-related
adverse events.6 Although many biomarkers, including programmed
death-ligand 1 (PD-L1) expression, tumor mutation burden, and
different genomic changes, have been identified, their predictive util-
ity has been compromised due to the inherent heterogeneity of tu-
mors.7–11 These findings emphasize the urgent need to identify
more reliable biomarkers that can enhance the effectiveness of ICI
therapy and alleviate adverse reactions in HCC patients.

The tumor microenvironment (TME) has attracted considerable
attention in recent oncological research. The progression of HCC is
significantly influenced by the TME, which is composed of a complex
network of immune and nonimmune stromal cells.12 Previous studies
have shown that the composition and behavior of tumor-infiltrating
immune cells are key factors affecting patient prognosis and the effec-
tiveness of immunotherapy interventions.13,14 For example, a better
prognosis is usually associated with the presence of CD8+ T cells in
the TME, whereas a poorer prognosis is usually associated with the
presence of M2 polarized macrophages and other immunosuppres-
sive cells.15 Consequently, in-depth research on the TME is expected
to not only reveal the pathogenesis of HCC but also pave the way for
the discovery of new immunotherapy targets.

In this study, we classified HCC into Immunity-High (Immunity-H)
subtypes and Immunity-Low (Immunity-L) subtypes and then
analyzed 29 immune genome maps via single-sample gene set enrich-
ment analysis (ssGSEA). Next, we investigated the different molecular
characteristics anddifferences between these subtypes, investigating the
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Figure 1. Analysis flowchart

Clinical and gene expression data of 371 HCC samples from TCGA. Immune cell infiltration proportions and tumor purity for each sample were estimated using the

CIBERSORT and ESTIMATE algorithms. Immune cell infiltration data were further analyzed with TIMER 2.0. GSVA scores were calculated based on the expression levels of

29 immune-related gene sets, and samples were classified into Immunity-H and Immunity-L subtypes using hierarchical clustering. DEGs between normal and tumor

samples, as well as between Immunity-H and Immunity-L subtypes, then univariate Cox and LASSO-based Cox were used to identify DFS, PFS, and OS prognostic genes.

Core prognostic genes were determined by the intersection of DFS, PFS, and OS prognostic gene sets.
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distribution of immune cell infiltration, gene set enrichment, and the
efficacy of immunotherapy. Our research revealed that the expression
of Brother of Cell Adhesion Molecule-Related/Downregulated by On-
cogenes (CDO) (BOC) is positively correlated with the levels of CD4+

T cells, CD8+ T cells, dendritic cells (DCs), and B cells in HCC tumor
tissue. In addition, we observed a significant correlation between the
expression of BOC and improved immunotherapeutic efficacy.
Through further analysis and in vitro experiments, the expression of
BOC inHCCtumor tissuewas confirmed tobe directly positively corre-
lated with the presence of a series of immune cells, including CD4+

T cells, CD8+ T cells, DCs, and B cells. Furthermore, a significant asso-
ciationwas observedbetweenBOCexpressionandpositive outcomes in
patients receiving immunotherapy.Our findingswill facilitate the strat-
ification of HCC patients on the basis of immunogenomic signatures
and biomarkers, potentially offering a robust framework for tailoring
immunotherapeutic strategies.

RESULTS
Immunity subtype identification and clinical features of HCC

patients

Our analytical pipeline, as illustrated in Figure 1, commenced with
the extraction of gene expression data (quantified as fragments per
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kilobase million [FPKM]) from 371 HCC samples within The
Cancer Genome Atlas (TCGA) cohort. Subsequently, we performed
ssGSEA on 29 immunogenomic profiles. Unsupervised clustering
analysis, based on the resultant ssGSEA scores (Figures S1A–
S1D), revealed two distinct sample clusters, as evidenced by the
hierarchical clustering dendrogram and principal-component anal-
ysis plot (Figure S1E). These clusters were characterized by high
and low immune signatures, leading to the identification of two
discrete immune subtypes, which we designated Immunity-H and
Immunity-L, respectively.

The heatmap comparison revealed significantly higher ssGSEA scores
for immune-related gene sets in Immunity-H compared to
Immunity-L (Figure 2A; p < 0.001, Student’s t test). Further analysis
of additional immune signatures, including stromal score, immune
score, and the total Estimation of Stromal and Immune cells in Ma-
lignant Tumor Tissues Using Expression Data (ESTIMATE) score,
confirmed that all three metrics were markedly elevated in
Immunity-H (Figure 2B; all p < 0.001). Conversely, tumor purity
was found to be lower in Immunity-H than in Immunity-L (Figure 2C;
p < 0.001), suggesting distinct TMEs between the subtypes, with
Immunity-H exhibiting stronger antitumor immune signatures.



Figure 2. Hierarchical clustering of HCC samples base on 29 immunity-related gene sets

(A) The hierarchical clustering heatmap illustrates the GSVA enrichment scores for immunity-related gene sets in 371 HCC samples, categorized into Immunity-H and

Immunity-L subgroups. Atop the heatmap, color bars represent the tumor purity, ESTIMATE score, immune score, and stromal score, determined by the ESTIMATE al-

gorithm. (B and C) Comparative analysis of the immunity subtypes is presented through violin plots, showcasing differences in estimated scores, stromal scores, immune

scores, and tumor purity. (D–F) The Kaplan-Meier method provides survival analysis for DFS, PFS, and OS between the immunity subtypes, utilizing the log rank test for

statistical significance.
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Table S1 presents the clinical characteristics of 123 Immunity-H and
248 Immunity-L patients. No significant differences were observed in
age, gender, race, vascular invasion, or serum a-fetoprotein levels
(p > 0.05, chi-squared test), except for American Joint Committee
on Cancer (AJCC) stage. The AJCC stage analysis showed a higher
proportion of stage I/II in Immunity-H (97 [78.9%]) compared
to Immunity-L (160 [64.5%]), with fewer patients at stage III/IV
(Immunity-H: 20 [16.3%] vs. Immunity-L: 70 [28.2%]) and unspeci-
fied stages (Immunity-H: 6 [4.9%] vs. Immunity-L: 18 [7.3%]) (p =
0.018, chi-squared test).

Kaplan-Meier survival analysis indicated a significant clinical
advantage for Immunity-H patients, as evidenced by longer disease-
free survival (DFS), progression-free survival (PFS), and OS
(Figures 2D–2F; DFS: p = 0.005, PFS: p = 0.002, OS: p = 0.129; log
rank test). These findings align with previous reports suggesting
that enhanced antitumor immune signatures show a correlation
with improved survival outcomes.16

HCC immunity subtypes are tightly related to HLA and immune

checkpoint-related genes

Further analysis focused on the differential expression of human
leukocyte antigen (HLA) and immune checkpoint genes across the
identified subgroups. Notably, the Immunity-H subtype demon-
strated significantly elevated expression levels of multiple immune
checkpoint genes, including CTLA4, PD-L1 (CD274), PD-L2
(PDCDLG2), IDO1, and IDO2, compared to the Immunity-L subtype
(Figure S2A; all p < 0.001). A similar pattern was observed in the
expression profiles of HLA-related genes, encompassing HLA-A,
HLA-B, HLA-C, and HLA-DMA (Figure S2B; all p < 0.001). These
findings were consistent across all examined genes and statistically
significant. Collectively, these results highlight a robust association
between the identified immune subtypes and the expression patterns
of key immune-related genes in HCC, providing further molecular
characterization of the immunological differences between these
subtypes.

Immune cell infiltration and GSEA were compared between the

two distinct immunity subtypes

Using the CIBERSORT algorithm, we evaluated the differences in the
TME between subtypes of HCC. Analysis of immune cell infiltration
(Figures 3A and S3A) demonstrated that the Immunity-H subtype
was characterized by significantly increased infiltration of plasma
B cells, activated CD4+ T cells, CD8+ T cells, gd T cells, follicular
helper T cells, M1 macrophages, activated natural killer (NK) cells,
and resting myeloid DCs (p < 0.05, Wilcoxon test). In contrast, the
Immunity-L subtype exhibited a higher concentration of naive B cells,
M2 macrophages, activated myeloid DCs, and CD4+ T cells (p < 0.05,
Wilcoxon test).

Corroborating these findings, the TIMER 2.0 database analysis of six
immune cell types (Figures S3B and S3C) indicated a similar pattern.
In Immunity-H, the infiltration levels of B cells, CD8+ T cells, and
macrophages were significantly increased (all p < 0.05, Wilcoxon
4 Molecular Therapy: Oncology Vol. 32 December 2024
test), whereas CD4+ T cells, neutrophils, and myeloid DCs showed
a significant decrease (all p < 0.05, Wilcoxon test).

Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG)
and Hallmark GSEA revealed that Immunity-H was associated with
an enriched immune activation pathway. This included pathways
such as interferon-g response, NK-mediated cytotoxicity, chemokine
signaling, primary immunodeficiency, and inflammatory response
(Figures 3B and 3C).

Analysis of genemutations and expression differences between

two immunity subtypes

To investigate the potential mechanisms underlying the distinction
between the two HCC immune subtypes, we analyzed the mutation
distribution of the top 20 genes exhibiting the highest mutation fre-
quency in HCC. This analysis was conducted by stratifying the data
between the immunity-H and immunity-L subtypes (Figure S4A).
Intriguingly, the immunity-H subtype exhibited a lower frequency
of titin (TNN) mutations. Although not reaching statistical signifi-
cance, patients harboring TNN mutations demonstrated a trend to-
ward poorer OS, PFS, and DFS (Figures S4B–S4D; p = 0.355, p =
0.121, and p = 0.293, respectively, using the log rank test).

Furthermore, we assessed the neoantigen landscape by comparing
SNVs, indel mutations, non-silent mutation frequencies, and silent
mutation frequencies across the two immune subtypes. Contrary to
expectations, these comparisons revealed no statistically significant
differences in gene mutation profiles between the immune subtypes
of liver cancer (Figures S4E–S4H; all p > 0.05, Wilcoxon test).

Advancing our investigation, we scrutinized the differential gene
expression between HCC and adjacent normal tissue. The heatmap
and volcano plot analyses disclosed that relative to adjacent non-
tumorous tissue, 4,942 genes were significantly upregulated (log2
fold change [FC] >1, false discovery rate [FDR] <0.05), while 540 genes
were substantially downregulated (log2 FC <�1, FDR <0.05) in HCC
(Figures S5A and S5B). Leveraging these 5,482 differentially expressed
genes (DEGs), we delved into the expression disparities between the
two immunity subtypes. The results elucidated that compared to
immunity-L, immunity-H is characterized by 174 significantly upre-
gulated genes (log2 FC >1, FDR <0.05) and 30 markedly downregu-
lated genes (log2 FC <�1, FDR <0.05) (Figures S5C and S5D).

To elucidate the biological processes differentially represented
between the HCC Immunity-H and Immunity-L subtypes, we per-
formed GSEA using Gene Ontology (GO) terms. This analysis re-
vealed a significant upregulation of immune-related pathways in
the Immunity-H subtype. Specifically, we observed enrichment in
pathways associated with the major histocompatibility complex
(MHC) class II protein complex, NK cell chemotaxis, complement re-
ceptor activity, and negative regulation of myeloid leukocyte-medi-
ated immunity (Figures 4A and 4B). These findings were statistically
significant (FDR <0.05) and provide strong support for enhanced
immune activation in the Immunity-H subtype. The differential



Figure 3. Differential analysis of immune cell infiltration and GSEA scores across immunity subtypes

(A) An assessment of 22 immune cell types was conducted to discern differences in infiltration between the immunity subtypes, utilizing the CIBERSORT algorithm and the

Wilcoxon test for analysis. (B and C) The heatmap depicts the GSVA scores for selected KEGG and Hallmark pathways, as compiled from MSigDB, across two immune

subtypes.
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enrichment of these immune-related processes underscores the
distinct immunological landscapes characterizing these two HCC
subtypes and offers potential mechanistic insights into their divergent
clinical behaviors.

HCC prognosis significant gene screening

To elucidate the mechanisms underlying HCC onset and progression,
we performed univariate Cox regression analysis on DFS, PFS, and
OS using 204 DEGs identified in our previous analysis. Genes with
significant prognostic value were further refined using least absolute
shrinkage and selection operator (LASSO)-based Cox regression,
yielding 15 genes associated with OS (Figures S6A–S6C), 17 with
PFS (Figures S6D–S6F), and 18 with DFS (Figures S6G–S6I). Notably,
three genes—BOC, V-Set and Transmembrane Domain Containing 1
(VSTM1), and PR/SET Domain 12 (PRDM12)—were consistently
implicated across all survival outcomes (Figure 4C).
Molecular Therapy: Oncology Vol. 32 December 2024 5
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Figure 4. GSEA of HCC immunity subtype-specific GO term and prognosis significant genes screening

(A and B) Enrichment plot (A) and (B) enrichment circle graph of top 5 GO terms enriched in the Immunity-H subtype. (C) Venn diagram illustrating the intersection of genes

associated with DFS, PFS, andOS. Three prognostic hub genes—BOC, PRDM12, and VSTM1—are shared among DFS, PFS, andOS. (D) The illustration presents the count

of datasets exhibiting statistically significant upregulation (indicated in red) or downregulation (shown in blue) in mRNA levels of VSTM1, PRDM12, and BOC within the

Oncomine database (p < 0.05, |log FC| >2).
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Expression patterns of these overlapping genes across various cancer
types were investigated using the Oncomine database. VSTM1 was
found to be frequently underexpressed in leukemia, while PRDM12
was often overexpressed in colorectal cancer. Interestingly, both
VSTM1 and PRDM12 have been infrequently reported in the
oncology literature and have not been previously associated with liver
cancer. In contrast, BOC is more commonly studied in tumor
research, showing high expression in brain, CNS, and kidney cancers,
but low expression in breast, bladder, prostate, and head and neck
tumors. Only one study has reported low BOC expression in liver
cancer (Figure 4D).

Analysis of the three pivotal genes using the TCGA database revealed
distinct expression profiles between cancerous and normal tissues, as
6 Molecular Therapy: Oncology Vol. 32 December 2024
well as across the two independent HCC immunity subtypes
(Figures S7A and S7B). BOC and PRDM12 were significantly upregu-
lated in tumor tissues, whereas VSTM1was downregulated (p < 0.001,
Student’s t test). Moreover, BOC and VSTM1 exhibited marked over-
expression in the immunity-H subtype, while PRDM12 expression
was significantly reduced (p < 0.001, Student’s t test).

Kaplan-Meier survival analysis and verification of BOC, VSTM1,

and PRDM12

We investigated the prognostic value of BOC, VSTM1, and PRDM12
gene expressions. Kaplan-Meier survival analyses for OS, PFS, and
DFS indicated that high expression levels of BOC were associated
with a favorable prognosis trend (Figures 5A–5C; BOC: p < 0.05,
log rank test). Conversely, high expression levels of PRDM12 and



Figure 5. Prognostic feature of three hub genes expression in HCC patients

(A–C) The DFS (A), (B) PFS, and (C) OS curves illustrate a comparison between HCC patients exhibiting high BOC gene expression (indicated in red) and those with low

expression (shown in dark green). (D–F) DFS (D), (E) PFS, and (F) OS curves display the comparison of HCC patients with high (red) vs. low (dark green) PRDM12 gene

expression. (G–I) DFS (G), (H) PFS, and (I) OS curves delineate the outcomes for HCC patients categorized by high (indicated in red) and low (shown in dark green) expression

levels of the BOC gene, as analyzed by the log rank test. The cutoff points for categorizing gene expression into high and low subgroups were determined using the R

package “survival” and “surv_cutpoint” function.
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VSTM1 were associated with an unfavorable prognosis trend
(Figures 5D–5I; PRDM12 and VSTM1: p < 0.05, log rank test).

Further validation using the International Cancer Genome Con-
sortium (ICGC) database confirmed similar trends for PRDM12
and BOC (Figures S8A and S8B; p = 0.007 and p = 0.065, log rank
test), while VSTM1 expression did not show a significant correlation
with HCC prognosis (Figure S8C; p = 0.692, log rank test), possibly
due to tumor heterogeneity and sample variability.

Our findings were corroborated by analysis of the GSE76427 dataset,
which demonstrated that patients with high BOC expression tended
toward better DFS and OS (Figures S8D and S8G; p = 0.155 and
p = 0.067, log rank test). Patients with high PRDM12 expression
Molecular Therapy: Oncology Vol. 32 December 2024 7
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Figure 6. Three hub genes expression was associated with the efficacy of immune checkpoint therapy

(A) Heatmap illustrating the correlation between the expression levels of BOC, VSTM1, and PRDM12 genes and the infiltration levels of six immune cell types. (B) Heatmap

showing the correlation between BOC, VSTM1, and PRDM12 gene expression and immune checkpoint gene expression (Spearman correlation test; *p < 0.05; **p < 0.01;

***p < 0.001). (C) Comparison of six immune cells infiltration in two immunity subtypes (Wilcoxon test; *p < 0.05; **p < 0.01; ***p < 0.001). (D and F) OS curves comparing

patients with (D) BOC gene and (F) VSTM1 gene high (red) and low (dark green) expression in the Liu et al. cohort. (E and G) PFS curves comparing patients with (E) BOC gene

and (G) VSTM1 gene high (red) and low (dark green) expression in the Liu et al. cohort.
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showed a tendency toward poorer DFS and OS (Figures S8E and
S8H; p = 0.079 and p = 0.059, log rank test). In contrast, high
VSTM1 expression was associated with worse DFS prognosis and
no significant difference in OS (Figures S8F and S8I; p = 0.048 and
p = 0.886, log rank test).

Patients with BOC and VSTM1 high expression indicate better

immunotherapy efficacy

To elucidate the relationship between BOC, VSTM1, and PRDM12
genes and immunotherapy efficacy, we first examined their expres-
sion correlation with immune cell infiltration and immune check-
point molecule expression. TIMER analysis revealed significant
positive correlations between BOC and VSTM1 expression
levels and the presence of CD4+ T cells, CD8+ T cells, B cells, neutro-
phils, and macrophages (p < 0.05, Spearman’s correlation test).
Conversely, PRDM12 expression exhibited a significant inverse rela-
tionship with CD8+ T cells andmacrophages, as detailed in Figure 6A
(p < 0.05, Spearman’s correlation test). Consistent with these find-
ings, BOC and VSTM1 expression levels demonstrated significant
positive correlations with key immune checkpoint molecules,
including CTLA4, PD-L1, PD-L2, TIM-3, TIGIT (T cell immunor-
eceptor with immunoglobulin [Ig] and ITIM domains), and VSIR.
In contrast, PRDM12 expression showed significant negative corre-
8 Molecular Therapy: Oncology Vol. 32 December 2024
lations with these immune checkpoints (Figure 6B; p < 0.05, Spear-
man’s correlation test). These results collectively suggest divergent
roles for BOC and VSTM1 versus PRDM12 in modulating the tumor
immune microenvironment and checkpoint inhibitor expression
in HCC.

Subsequent analysis focused on the expression levels of PRDM12,
BOC, and VSTM1 in subgroups with high and low Tumor Inflamma-
tion Signature (TIS), which is known to be associated with the
response to immunotherapy. The findings indicated that BOC and
VSTM1 expressions were significantly elevated in the TIS-high sub-
group, while PRDM12 was markedly reduced (Figure 6C; p < 0.05,
Student’s t test), suggesting that high BOC and VSTM1 expressions
are indicative of a potential immunotherapy benefit, whereas
PRDM12 may signal poor immunotherapy efficacy.

In an independent immunotherapy cohort (Liu et al. cohort), we
confirmed the therapeutic advantage of BOC and VSTM1, as
PRDM12 data were not available. Patients with high expressions
of BOC and VSTM1 experienced improved OS outcomes
(Figures 6D and 6F; p = 0.035 and p = 0.147, log rank test) and favor-
able PFS outcomes (Figures 6E and 6G; p = 0.190 and p = 0.063, log
rank test).



www.moleculartherapy.org
Elevated BOC expression correlates with favorable anti-PD-1

therapy outcomes and enhanced CD8+ T cell infiltration in HCC

To evaluate the clinical relevance of BOC expression in immuno-
therapy response, we conducted a retrospective study on 10 patients
with HCC who received anti-PD1 monotherapy after surgical resec-
tion (Barcelona Clinic Liver Cancer stage A). The patient character-
istics are summarized in Table S2. Immunohistochemical (IHC)
staining was performed to assess BOC protein expression levels in tis-
sue sections from these patients (Figure 7A). Notably, patients with
high BOC expression (H-score >200) exhibited a lower 1-year recur-
rence rate (20%, 1/5) compared to those with low BOC expression
(H-score <200; 60%, 3/5), suggesting a positive correlation between
BOC expression and ICI efficacy in HCC patients.

To further investigate the relationship between BOC expression and
the tumor immune microenvironment, we analyzed fresh tissue spec-
imens from six HCC patients. BOC protein expression was assessed
by western blot (Figure 7B), and immune cell infiltration was quanti-
fied using flow cytometry. In tumors with high BOC protein expres-
sion (cases 1, 5, and 6), we observed significantly higher infiltration
rates of CD8+ T cells, DCs, CD4+ T cells, and B cells compared to tu-
mors with low BOC expression (cases 2–4) (Figures 7C and 7D).
These findings indicate a positive association between BOC expres-
sion levels and immune cell infiltration in the HCC TME.

Collectively, our data consistently demonstrate a positive correlation
between BOC expression and the infiltration of CD4+ T cells, CD8+

T cells, DCs, and B cells within the HCC TME. These results suggest
that BOC expression may serve as a potential biomarker for predict-
ing favorable responses to ICI therapy in HCC patients.

BOC overexpression attenuates proliferative and migratory

capacities in HCC cell lines

To delineate the functional role of BOC in HCC, we overexpress the
BOC gene in the Hep3B and MHCC97H cell lines. We confirmed the
successful upregulation of BOC expression via western blot, as de-
picted in Figure 8A. Cell viability was assessed utilizing a CCK-8
assay. The data indicated that BOC overexpression markedly sup-
pressed the proliferation of both Hep3B andMHCC97H cells, as illus-
trated in Figure 8B. Furthermore, enhanced BOC expression was
found to considerably diminish the migratory and invasive properties
of these HCC cell lines, as evidenced by transwell migration and in-
vasion assays, which is evidenced in Figures 8C and 8D.

DISCUSSION
The TME has been recognized increasingly as playing a crucial role
in influencing tumor progression and treatment responses.17,18

Genomic mapping has been instrumental in the identification of mo-
lecular subtypes across a spectrum of cancers.19,20 HCC is character-
ized by its marked heterogeneity and aggressive malignancy. In light
of the HIMALAYA study, the National Comprehensive Cancer
Network guidelines advocate for the combination of tremelimumab
and durvalumab for the treatment of HCC, but the objective response
rate remains modest at 20.1%.21 These findings highlight the impor-
tance of developing an immune-related classification for HCC to in-
crease the efficacy of immunotherapeutic interventions.

In our investigation, we delineated two discrete immune subtypes of
HCC, each associated with a distinct immune microenvironment.
The Immunity-H subtype was distinguished by a profusion of infil-
trating immune cells, notably CD8+ T cells, and stromal elements,
coupled with low tumor purity and a significant prognostic outlook.
In addition, the overexpression of HLA and immune checkpoint
genes was observed in the Immunity-H subtype. Therefore, we postu-
late that patients with Immunity-H subtype HCC are more likely to
respond to immunotherapy strategies. To investigate the potential
mechanisms of the different HCC immune subtypes, comparative
gene expression analysis was conducted. This analysis involved
HCC and normal tissues, as well as the two immune subtypes. A total
of 204 genes were significantly differentially expressed in the
two immune subtypes, and GO enrichment analysis revealed
that immune-related pathways were significantly enriched in the
Immunity-H subtype. These findings confirm the activation of the
immune microenvironment in the Immunity-H subtype.

Accumulating evidence suggests that enhanced immune activation is
prognostically favorable across various tumor types.22,23 In our inves-
tigation, patients assigned to the Immunity-H subgroup exhibited
better DFS, PFS, and OS. To identify genes with significant prognostic
value, we conducted univariate Cox and LASSO-based Cox analyses
on DFS, PFS, and OS with 204 DEGs. This analysis identified BOC,
VSTM1, and PRDM12 as key prognostic genes. Kaplan-Meier sur-
vival curves revealed that high expression of BOC was correlated
with improved DFS, PFS, and OS, whereas elevated levels of
VSTM1 and PRDM12 were indicative of poorer outcomes.

This study revealed a significant positive relationship between the
expression of BOC and the abundance of immune cells and the
expression of immune checkpoint-related molecules. Conversely,
PRDM12 expression exhibited an inverse relationship. These findings
suggest that high BOC expression may serve as a biomarker of a
favorable prognosis and as a predictor of an enhanced response to
immunotherapy. Conversely, high PRDM12 expression may be asso-
ciated with a poor prognosis and diminished immunotherapy
efficacy. Interestingly, while high VSTM1 expression constitutes a
prognostic risk factor, it may also indicate a better response to immu-
notherapy. Previous reports have linked VSTM1 to T helper 17 cell
activation.24 Given the emerging role of VSTM3 (TIGIT) as an
immune checkpoint that modulates T cell functions and tumor
immunotherapy, our results suggest that VSTM1 could be a novel im-
mune checkpoint with significant implications for future HCC
immunotherapy.

The cell adhesion molecule BOC, a member of the Ig superfamily, ex-
erts a significant positive regulatory effect on myogenic differentia-
tion.25 Furthermore, BOC functions as a receptor for the sonic
Hedgehog (HH) signal, playing a pivotal role in regulating axon guid-
ance.26 The interaction between all mammalian HH proteins and cell
Molecular Therapy: Oncology Vol. 32 December 2024 9
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Figure 7. Elevated BOC expression correlates with favorable anti-PD-1 therapy outcomes and enhanced CD8+ T cell infiltration in HCC

(A) Representative images of the BOC protein’s IHC staining density within the tissue specimens from 10 individuals with HCC, where each patient’s staining outcome is

evaluated by H-score, factoring in the cell percentage at distinct staining strengths. Scale bars, 25 mm. (B) Western blot showed the expression levels of BOC in tissues of six

patients. (C and D) Flow cytometry analysis revealed the infiltration levels of CD8+ T cells, CD4+ T cells, B cells, and DCs in the tissues of the six patients. Results are expressed

as mean ± SEM. p values were obtained through a two-sided unpaired Student’s t test.
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Figure 8. BOC overexpression attenuates proliferative and migratory capacities in HCC cell lines

(A) Western blot demonstrated the expression levels of BOC in MHCC97H (oeNC), Hep3B (oeNC), MHCC97H (oeBOC), and Hep3B (oeBOC) cells. oeBOC, overexpressed

BOC; oeNC, overexpressed negative control. (B) CCK8 assay results showing cell viability for MHCC97H, Hep3B, MHCC97H (oeBOC), and Hep3B (oeBOC). (C and D)

Transwell assays reveal the migration and invasion capabilities of MHCC97H and Hep3B cell lines between NC and BOC overexpression groups. Scale bars, 50 mm. Results

are expressed as mean ± SEM. p values were obtained through a two-sided unpaired Student’s t test.
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adhesion molecules, including CDO and BOC, is highly conserved.27

The HH signaling pathway is implicated in the accelerated progres-
sion of malignancies and poor prognosis.28 Notably, BOC overexpres-
sion has been linked to the metastatic invasion of breast cancer cells
into the cerebral domain.29 In pancreatic cancer, the targeted deletion
of BOC in fibroblasts, in which it acts as a receptor for the HH
signaling pathway, can significantly diminish the pathway’s primary
signal responsiveness. This attenuation has the potential to prevent
the progression of malignancy, suggesting offering a promising
avenue for therapeutic intervention.30
Despite the promising insights of our study, we acknowledge certain
inherent limitations that warrant further discussion. The retrospec-
tive nature of our analysis, which relied on data extracted from public
databases, presents several challenges. The datasets we used may not
include the full spectrum of HCC responses to immunotherapy due to
the limited scope and the potential for selection bias. This limitation
highlights the need for future studies that incorporate larger, more
diverse patient cohorts and prospective data collection to validate
our findings. Additionally, our approach for identifying immune
cell types within the TME was based on marker gene expression,
Molecular Therapy: Oncology Vol. 32 December 2024 11
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which, while frequently used, may not precisely reflect the actual
cellular abundance or heterogeneity.31 Advanced techniques, such
as single-cell RNA sequencing, would provide more granular infor-
mation on the immune landscape and could be used to confirm the
accuracy of our classifications. Moreover, although our findings high-
light the prognostic potential of BOC, VSTM1, and PRDM12, the
functional roles of these genes in HCC and their interactions within
the immune microenvironment remain to be fully elucidated. Further
in vivo experiments and mechanistic studies are necessary to explore
these pathways and validate their relevance in clinical settings.
Finally, the predictive value of our proposed immune-related classifi-
cation for HCC, particularly for guiding immunotherapy strategies,
requires rigorous testing in clinical trials. Until such validation is per-
formed, the clinical applicability of our findings should be interpreted
with caution.

Nonetheless, this study has significant potential to impact the field of
HCC immunotherapy by offering a novel immune-related classifica-
tion that could be pivotal in tailoring more effective treatment strate-
gies. The identification of BOC and VSTM1 as key prognostic genes
not only increases our understanding of the molecular mechanisms
underlying HCC but also provides new directions for the develop-
ment of targeted therapies. By linking these biomarkers with the
immunemicroenvironment, our research paves the way for the devel-
opment of more personalized and precise treatment modalities. How-
ever, this study also highlights critical knowledge gaps that need to be
addressed. The retrospective nature of our analysis, which relied
heavily on publicly available datasets, highlights the need for more
comprehensive and diverse HCC immunotherapy datasets. Addition-
ally, further investigations are needed to understand how BOC influ-
ences the effectiveness of immunotherapy in HCC patients. In the
future, well-designed in vitro and in vivo experiments should be con-
ducted to explore and validate its role, with the ultimate goal of trans-
lating these findings into clinical practice. Other research should
apply single-cell sequencing technologies to validate our findings
in vivo and refine our proposed classification system. We anticipate
a rapidly evolving landscape in the study of HCC and its immune
microenvironment. Over the next 5 years, advances in immunoge-
nomics and high-throughput sequencing technologies are likely to
uncover new biomarkers and therapeutic targets. The integration of
multi-omics approaches could lead to the development of more
robust and nuanced immune classifications, enhancing the precision
of immunotherapy treatments. Additionally, as the role of the TME in
mediating treatment responses becomes clearer, we anticipate the
emergence of novel combination therapies that synergize immuno-
therapy with other modalities.

In summary, our research delineated two distinct immune subtypes of
HCC, each characterized by a unique immunogenomic profile. We
elucidated the potential of BOC as a novel biomarker of the prognosis
and response to immunotherapy of HCC. However, the findings are
preliminary and need to be validated in clinical trials; additionally,
further investigation into the underlying molecular mechanisms is
warranted.
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MATERIALS AND METHODS
Data collection and operation

For this study, mRNA expression data in FPKM format, along with
clinical information, were obtained from TCGA database, comprising
371 HCC cases and 50 normal samples. Additionally, extensive sur-
vival data for 72 HCC cases were acquired from the ICGC database.
The analysis was further enriched by incorporating 115 HCC samples
from the GSE76427 dataset available on the GEO platform.

Identification of HCC immunity subtypes

Extending prior investigations, 29 immunogenomic profiles were
meticulously chosen to ascertain the immune status in individual pa-
tients.32 Abundance levels in each HCC sample were quantified
through ssGSEA, utilizing the Gene Set Variation Analysis (GSVA)
package.33,34 Hierarchical clustering analysis, conducted with the
consensusclusterplus R package, enabled the stratification of patients
into subgroups of high and low immunity, based on their ssGSEA
scores corresponding to these immune profiles.35,36

Assessment of ESTIMATE score, TIS, and immune cell

infiltration

The ESTIMATE algorithm was performed to quantify the immune
and stromal cell populations within the TME, which yielded immune
scores, stromal scores, and composite ESTIMATE scores.37 These
scores reflected the degree of immune and stromal cell infiltration
as well as tumor purity. Additionally, the TIS, a genomic marker pre-
dictive of immunotherapy response,38 was applied to assess potential
immunotherapeutic responses in our cohort. The fractions of tumor-
infiltrating immune cells were evaluated via the CIBERSORT and
TIMER 2.0 algorithms.39,40 The KEGG pathways and Hallmark
gene sets were sourced from the Molecular Signatures Database
(MSigDB). The GSEA was conducted using the GSVA package.34,41,42

Kaplan-Meier survival analysis between immunity subtypes and

identification of core prognostic genes

Prognostic differences in DFS, PFS, and OS between the two immune
subtypes were assessed using Kaplan-Meier survival curves, generated
with the survival package in R. DEGs were identified by comparing
tumor tissues with normal counterparts and between immune sub-
types. The criteria for DEG selection were set at |log2 FC| >1 and
FDR <0.05. Subsequently, genes with significant prognostic potential
were identified through a two-step process: first, a univariate Cox
regression analysis was performed, followed by a LASSO-based Cox
regression analysis using the glmnet package in R. This approach
allowed for the identification of key genes associated with patient
outcomes while minimizing overfitting.43 The intersection of genes
significantly correlated with DFS, PFS, and OS facilitated the delinea-
tion of core prognostic genes.

Correlation analysis between three hub gene expression and

immune cell infiltration and the validation of immunotherapy

response

Spearman’s correlation analysis was employed to analyze the linkage
between the expression levels of three hub genes and the fraction of
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immune cells, as well as their expression with immune checkpoint
genes. The immunotherapy response prediction of three hub genes
was validated in an advanced or metastatic urothelial carcinoma
cohort undergoing anti-PD-L1 therapy (Liu et al. cohort).44 IHC
staining and scoring were performed to determine the correlation be-
tween BOC expression levels and the efficacy of ICIs in patients with
HCC. HCC tissue specimens were procured from individuals under-
going curative resection at Xijing Hospital. None of the patients
received preoperative anticancer therapies. The ethics committee of
Xijing Hospital granted ethical clearance (ethics no.: KY20232147-
C-1) for the research. All participants provided informed consent,
as per the requisite ethical guidelines. The IHC protocol was meticu-
lously followed using formalin-fixed, paraffin-embedded HCC sam-
ples. BOC antibodies (ABclonal, China) were used, and the presence
of antigen was visualized with 3,30-diaminobenzidine (brand name
DAB+) chromogen. In the quantitative analysis, the focus was on
determining the proportion of positively stained cells and evaluating
the staining intensity observed in representative fields. To quantify
BOC expression in HCC tissues, the H-score methodology was em-
ployed. The intensity of staining was categorized as follows: 0 (no
staining), 1+ (weak staining), 2+ (moderate staining), and 3+ (strong
staining).45 A visual appraisal was conducted to determine the per-
centage of cells within each staining intensity level. The H-score
was computed using the formula H = 100 � (% of 1+ cells) +
200 � (% of 2+ cells) + 300 � (% of 3+ cells). Scores ranged from
0 to 300, with an H-score <200 indicating low BOC expression and
a score of R200 signifying high BOC expression.
Cell studies

The evaluation of cell migration and invasion was conducted using
transwell chambers featuring an 8-mm pore size (Corning, USA)
and matrix gel (R&D Systems, USA). In the upper chamber, 50,000
cells were introduced in 200 mL serum-free medium. The lower cham-
ber received 600 mL complete culture medium containing 10% fetal
bovine serum. Following 24 h of incubation at 37�C, migrated cells
on the bottom surface of the membrane were subjected to fixation
and staining with crystal violet, and their quantification was carried
out with the aid of an Olympus microscope.
Western blots

Cells were lysed using radioimmunoprecipitation assay buffer (Bio-
sharp, China) supplemented with protease inhibitors (NCM, China).
Protein concentrations were determined using the bicinchoninic acid
(BCA) assay (Pierce BCA, Thermo Scientific, USA) according to the
manufacturer’s instructions. Equal amounts of protein were sepa-
rated by SDS-PAGE and transferred onto polyvinylidene difluoride
membranes. Non-specific binding was blocked by incubating the
membranes with 5% non-fat milk in Tris-buffered saline containing
0.1% Tween 20 for 90 min at room temperature. The membranes
were then probed with primary antibodies overnight at 4�C, followed
by incubation with horseradish peroxidase-conjugated secondary an-
tibodies for 1 h at room temperature. Protein bands were visualized
using an enhanced chemiluminescence detection system and imaged.
Flow cytometry

Upon acquisition of human HCC tissue samples, dissociation into
single-cell suspensions was achieved using the Human Tumor Tissue
Dissociation Kit (Miltenyi Biotec, Germany) in accordance with the
manufacturer’s protocol, employing the GentleMACS Octo Dissocia-
tor with Heaters (Miltenyi Biotec). Following dissociation, protein
extraction and flow cytometry analysis were performed on single-
cell suspensions derived from the tissues of six patients to quantify
the proportions of CD4+ T cells, CD8+ T cells, DCs, and B cells after
fluorescent antibody (BioLegend, USA) labeling. These populations
were subsequently identified and quantified via flow cytometry using
a Beckman Coulter system (USA).

Statistical analyses

Comparative analysis of clinical characteristics across immune sub-
types was facilitated by the chi-squared test. The Spearman correla-
tion test was utilized to assess associations among numerical vari-
ables. For the comparison of variable groups, the selection between
the parametric Student’s t test and the nonparametric Wilcoxon
test was based on the data distribution. All bioinformatic analyses
were executed using R software (version 4.0.5), considering a two-
sided p-value below 0.05 as indicative of statistical significance in
all tests.
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