

A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials

Binhui Pan^{1†}, Xiujie Liu^{2†}, Jiangmin Shi^{1†}, Yaoxuan Chen¹, Zhihua Xu¹, Dibang Shi¹, Gaoyi Ruan¹, Fangyan Wang³, Yingpeng Huang^{4*} and Changlong Xu^{1*}

¹ Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China, ² Institute of Ischemia/Reperfusion Injury, Wenzhou Medical University, Wenzhou, China, ³ Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China, ⁴ Department of Gastrointestinal Oncology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China

OPEN ACCESS

Edited by:

Yang Liu, Shantou University, China

Reviewed by:

Randa Salah Gomaa Mahmoud, Zagazig University, Egypt Hugo Tadashi Kano, São Paulo State University, Brazil

*Correspondence:

Changlong Xu xchlong@163.com Yingpeng Huang 171121477@qq.com

[†]These authors share first authorship

Specialty section:

This article was submitted to Nutrition and Metabolism, a section of the journal Frontiers in Nutrition

Received: 13 September 2021 Accepted: 10 November 2021 Published: 15 December 2021

Citation:

Pan B, Liu X, Shi J, Chen Y, Xu Z, Shi D, Ruan G, Wang F, Huang Y and Xu C (2021) A Meta-Analysis of Microbial Therapy Against Metabolic Syndrome: Evidence From Randomized Controlled Trials. Front. Nutr. 8:775216. doi: 10.3389/fnut.2021.775216 **Background and aims:** Metabolic syndrome (MetS), accompanied with significant intestinal dysbiosis, causes a great public health burden to human society. Here, we carried out a meta-analysis to qualify randomized controlled trials (RCTs) and to systematically evaluate the effect of microbial therapy on MetS.

Methods and results: Forty-two RCTs were eligible for this meta-analysis after searching the PubMed, Cochrane, and Embase databases. Pooled estimates demonstrated that treatment with microbial therapy significantly reduced the waist circumference (WC) (SMD = -0.26, 95% Cl -0.49, -0.03), fasting blood glucose (FBG) (SMD = -0.35, 95% CI -0.52, -0.18), total cholesterol (TC) (SMD = -0.36, 95% CI -0.55, -0.17), low-density lipoprotein cholesterol (LDL-C) (SMD = -0.42, 95% CI -0.61, -0.22), and triacylglycerol (TG)(SMD = -0.38, 95% CI -0.55, -0.20), but increased the high-density lipoprotein cholesterol (HDL-C) (SMD = 0.28, 95% Cl.03, 0.52). Sensitivity analysis indicated that after eliminating one study utilizing Bifidobacteriumlactis, results became statistically significant in diastolic blood pressure (DBP) (SMD = -0.24, 95% CI -0.41, -0.07) and in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (SMD = -0.28, 95% CI -0.54, -0.03), while the body mass index (BMI) showed significant difference after eliminating one study utilizing oat bran (SMD = -0.16, 95% Cl -0.31, -0.01). There was still no significant effect in systolic blood pressure (SBP) and in hemoglobin A1c (HbA1c%).

Conclusion: In patients with MetS, the conditioning with microbial therapy notably improves FBG, TC, TG, HDL-C, LDL-C, WC, BMI (except for the study using oat bran), HOMA-IR, and DBP (except for the Study using *Bifidobacteriumlactis*), however, with no effect in SBP and in HbA1c%.

Keywords: prebiotics, probiotics, synbiotics, microbial metabolites, metabolic syndrome, fecal microbiota transplantation

1

INTRODUCTION

Metabolic syndrome (MetS) is prevalent in the whole world and holds the largest burden of non-communicable diseases worldwide. It is a metabolic intertwined condition composed mainly of morbidities such as glucose intolerance, dyslipidemia, abdominal obesity, and high blood pressure (1). The development of this metabolic perturbation could double the risk of developing type 2 diabetes mellitus, obesity, cardiovascular disease, non-alcoholic steatohepatitis, and cancer (2, 3). According to the National Health and Nutrition Examination Survey in the U.S., the weighted MetS prevalence has steadily increased from 32.5% in 2011–2012, 34.6% in 2013– 2014, and to 36.9% in 2015–2016, respectively (4). Therefore, it is urgent to prevent and control the development of MetS.

Notably, the sedentary lifestyles and the preference for nutrient-depleted, energy-dense, and highly refined foods have been considered as the main etiological factors. However, the corresponding prevention measures did not obtain anticipative results in practices. As the microbiota become the center of systematic diseases, published studies in the last decades have shown that the underlying mechanisms of MetS might have originated from flora disturbance. According to different fiber types (5, 6), fat composition (7, 8), food additives (9, 10), and microbiome could establish different sensitivity, and the individuals with MetS had a lower gut microbiota diversity than the healthy ones (11). *Proteobacteria* and *Firmicutes* (other than *Ruminococcaceae*) were reported to be positively associated with MetS, whereas the Bacteroidetes and *Ruminococcaceae* have a negative association (12).

Therefore, nowadays, microbial therapy that includes microbial agents and fecal microbiota transplantation (FMT), which could modulate intertwined microbiota, has emerged gradually as the new candidate to MetS treatment due to the recently published observations in both animal and human studies of its beneficial effects. In animal experiments, it has been demonstrated that oligofructosein, Lactobacillus fermentum TS1 and S2, pasteurized A. muciniphila, and a combination of Lactobacillus and Bacillus subtilis have shown tremendous potential, especially in lipid metabolism in treating MetS (13–16). In addition, microbial metabolites, such as short-chain fatty acids (SCFAs) contributing to improved glucose homeostasis and insulin sensitivity, were also identified as a therapeutic target for MetS (17, 18).

In the last few decades, FMTs ranging from the healthy to the target-therapy subjects, with the aim of correcting microbiota perturbation, have shown promising metabolic improvements. To begin with, FMT was broadly researched in *Clostridioides difficile* infection (19, 20). Considering that altered gut microbiome may be one of the factors contributing to inflammatory bowel disease (IBD), FMT later became of increasing importance in IBD remission (21–23). More recently, emerging evidence has indicated that MetS is another potential target for FMT therapy. One of the randomized controlled trials enrolled 68 bariatric patients with MetS who were randomly allocated to FMT or placebo group (24). Improvements were seen in Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), insulin sensitivity, and diastolic blood pressure (DBP). Another pilot FMT trial reported that patients in the FMT arm had a decrease in both glucose and insulin level compared to baseline, suggesting a protective role of FMT in MetS (25).

These data suggested that microbial therapy could exert a remarkable benefit to a host with MetS risk factors. However, due to the variety in microbial therapy type and dosage, the interplay between microbial therapy and MetS has not yet been systematically expounded. We decoupled the risk factors for analyses and investigated whether there was a microbial therapy link to hyperglycemia, dyslipidemia, hypertension, and anthropometric parameters; thus, systematically addressing the compelling published studies regarding the effect of microbial therapy on specific risk factors.

METHODS

Search Strategy

The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed in this metaanalysis (26). A search of the electronic literature up to May 2021 was conducted using the Pubmed database, the Cochrane Library, and the Embase database. The search strategy was developed with the following keywords and synonyms for related terms: intervention ("prebiotics" OR "probiotics" OR "synbiotics" OR "short-chain fatty acids" OR "niacin" OR "bile acids" OR "bacterial metabolites" OR "fecal microbiota transplantation) AND disease ("metabolic syndrome"). The RCTs examining the effect of microbial therapy on MetS were eligible for this analysis. There was no language restriction. The initial search after importing the located results from the database into the EndNote was derived from the titles and abstracts evaluation in accordance to the appropriateness of our selection criteria. Sequentially, full texts examination was conducted for a better choice to our study question. Two reviewers independently carried it out and then recorded the concrete inclusion or exclusion felts. Any disagreement was resolved by conversation. The bibliographies of all identified related papers were carefully checked to perform a recursive search. We also contacted authors of studies that have incomplete information in available databases to complete the partial texts, which will then maximize our chances to get eligible research.

This measure was also applied for fully published studies that randomized MetS patients to receive microbial therapy or placebo, but did not refer to data concerning subsequent available intervention results, so as to get the data at the most recent point of follow-up.

Abbreviations: MetS, metabolic syndrome; RCTs, randomized controlled trials; WC, waist circumference; SMD, standard mean difference; FBG, fasting blood glucose; TC, total cholesterol; LDL—C, low—density lipoprotein cholesterol; TG, triacylglycerol; HDL—C, high—density lipoprotein cholesterol; DBP, diastolic blood pressure; HOMA—IR, Homeostatic Model Assessment of Insulin Resistance; BMI, body mass index; SBP, systolic blood pressure; HbA1c%, hemoglobin A1c; FMT, fecal microbiota transplantation; SCFAs, short-chain fatty acids.

Selection Criteria

Randomized controlled trials (RCTs) conducted in MetS human subjects with the intervention of microbial therapy were considered as our inclusion criteria. The MetS diagnosis must meet at least three of the following five criteria in accordance with the International Diabetes Federation Guidelines: (1) Increased waist circumference (WC) with ethnic-specific WC cut-points (White and all other ethnic groups—men \geq 94 cm; women \geq 80 cm. South Asians, Chinese, and Japanese—men > 90 cm; women \geq 80 cm); (2) Triglyceride (TG) \geq 150 mg/dl (1.7 mmol/L) or treatment for elevated triglycerides; (3) High-density lipoprotein cholesterol (HDL-C) < 40 mg/dl (1.03 mmol/l) in men or < 50 mg/dl (1.29 mmol/L) in women, or treatment for low HDL; (4) Systolic blood pressure (SBP) \geq 130, diastolic blood pressure (DBP) \geq 85, or treatment for hypertension; and (5) Fasting blood-glucose (FBG) \geq 100 mg/dl (5.6 mmol/L) or after 2 h glucose loading blood glucose was \geq 7.8 mmol/L or was previously diagnosed with type 2 diabetes. Availability in data for quantitative calculation was the final eligible criteria. Animal experiments, in vitro studies, reviews and meta-analysis, letters, and comments were excluded for this analysis.

Outcome Assessment

The overriding outcome assessment was the effect of the microbial therapy on MetS included BMI(kg/m²), body weight (kg), WC (cm), hip circumference (cm), waist-to-hip ratio, body fat mass (BFM), body fat percentage (BFP) (%), blood pressure (BP) including SBP and DBP (mmHg), FBG (mmol/L), insulin resistance (HOMA-IR) or S (%), TC (mmol/L), HDL-C (mmol/L), low density lipoprotein cholesterol (LDL-C) (mmol/L), TG(mmol/L), and/or HbA1c%. These were some of the commonly used indicators related to our topic.

Data Extraction

All relevant data from each article were independently examined and extracted by the two authors as dichotomous outcomes to estimate reliability, and some of the concrete information needed were as follows: (1) characteristics of the studies (i.e., the first author, publication year, and number of included participants), (2)' characteristics of the participants (i.e., age, sex, and BMI), (3) information on interventions (i.e., route of administration, dosage, duration of treatment, length of follow-up, and set of control group), and (4) outcome variables (i.e., anthropometric parameters, lipid profile, and glucose metabolism). Disagreements were resolved by consensus and no divergence required adjudication.

Quality Assessment

One author critically appraised all eligible studies to determine the risk of bias, while a second author critically appraised a random sample of included studies to check for consistency. Conflicts in the quality assessment were resolved by a mutual discussion *via* reference to the original paper. The methodological quality of RCTs was independently assessed by two reviewers using the Cochrane Risk Assessment Scale mentioned in the Cochrane handbook where six items, including selection bias (random sequence generation and allocation concealment), performance bias (blinding of participants and personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete outcome data), reporting bias (selective reporting), and other biases, were evaluated. Reviewers appraising each criterion demonstrated if the included study has conformed to each bias minimization item by recording "high risk," "low risk," or "unclear."

Statistical Analysis

RevMan 5.3 was used for calculation. SMD with 95% CIs at endpoint data from intervention and control groups were measured for continuous variables through DerSimonian and Laird random effects meta-analysis, therefore reflecting the efficacy of microbial therapy treatment. The heterogeneity between the study-specific estimates was qualitatively assessed with Cochran's Q test and further quantified by the I^2 statistics, while the former demonstrated the inconsistency among results and the latter indicated the proportion attributed to the heterogeneity rather than sampling error of total variation in the study estimates. In this, value of p < 0.10 or a value of >50% was considered suggestive of significant heterogeneity. When noted heterogeneity existed, possible explanations were investigated via subgroup analyses according to some variables, such as the type of microbial therapy. Sensitivity analysis was also conducted by removing one study in turn to estimate the weight of each study in heterogeneity. These measures may partly explain the observed variability so the final conclusion should be made with caution. Publication bias was conducted using Begg's and Egger's tests. If there were ≥ 10 eligible studies in our eventual analysis, funnel plots would be employed for evidence of asymmetry and, hence, would be a possible publication bias. Review Manager Version 5.3 was used for generating these analyses. A value $p \le 0.05$, except for heterogeneity, was considered to have statistical significance.

RESULTS

Identification of Eligible Studies

A flow diagram outlining the overall search strategy and selection procedure in this meta-analysis is shown in **Figure 1**. Among the 9,986 records identified in our initial search, there were 3,840 duplications removed. After being screened for titles and abstracts, 6,024 studies were excluded since they delivered inconformity of information to our subject. For the remaining 122 papers correlated to the topic, 80 studies were ineligible due to its dissociation to the topic (n = 41), irrelevant intervention (n = 12), null outcome of interest to review (n = 8), overlapping data (n = 4), reviews and meta-analysis (n = 11), and conference abstract (n = 4). Finally, the search strategy has returned 42 studies for qualitative synthesis in this meta-analysis.

Characteristics of Included Studies

The characteristics of included studies are shown in **Table 1**. Among 42 eligible studies, 14 studies intervened with prebiotics (24, 29–39, 46, 47), 10 with probiotics (40, 41, 43, 48–54), 6 with synbiotics (24, 44, 55–58), 10 with microbial metabolites (27, 28, 59–66), and the remaining 4 with fecal microbiota transplantation (FMT) (24, 25, 45, 67). Among these studies,

Mocanu et al. (24) not only explored the respective but also the synergetic efficiency of FMT and the prebiotics on MetS. The earliest paper was published in 2007, while the latest was in 2021. Most studies included were carried out in the Western countries, except for 10 studies that were mainly focused on Asian populations (two in China, two in Korea, one in Palestine, five in Iran) (29, 31, 37, 40, 44, 53, 55, 56, 58, 66). Exceptionally, other researchers such as Bernini et al. (52) utilized Lactobacillus as probiotic intervention and chose Bifidobacteriumlactis, while Leila et al. (53) used Lactobacillus and Bifidobacterium for observation (52). For microbial metabolites, one study used whey protein (27), another study utilized Lactobacillus plantarum fermented barley (66), which is abundant of biologically active ingredients, and other studies employed niacin as bacterial metabolites. Prebiotics were implicated in researches, such as isomaltulose (46), glucose polysaccharide (37), and resistant starch (24, 32). For FMT intervention, the participants were randomized in receiving the intervention from single lean vegan-donors.

Quality of Included Studies

As shown in **Table 2**, the allocation concealment, blinding of participants and personnel, and incomplete data outcome were the main fields that are reaching a high risk of bias. Nevertheless, most studies were at low risk of bias and of high methodological quality. In 42 trials that reported the effect of microbial therapy on MetS, 20 were judged as fully marked by authors, whereby 12

studies scored 6 points, 6 studies scored 5 points, 3 studies scored 4 points, and only 1 study scored 3 points.

Effect of Microbial Therapy on Blood Glucose Control

Twenty-two studies enrolling overall 1,454 participants have investigated the effect of microbial therapy on FBG (Figure 2), and an intervention group established more pronounced decline in FBG (SMD = -0.35, 95% CI -0.52, -0.18, P < 0.0001) with moderate heterogeneity ($I^2 = 57\%$). Publication bias was not reported in Begg's test (p = 0.141) but was reported in Egger's test (p = 0.026). The studies led by Abutair (29) and Allegretti et al. (25) have a high risk of bias. Even so, concomitant with the statistical decline in FBG, fasting insulin (Supplementary Figure 1) (42), which determines the ability of insulin resistance, did not show statistical difference (SMD = -0.22, 95% CI -0.49, 0.05, P = 0.10), similar to HOMA-IR (SMD = -0.23, 95% CI -0.49, 0.02, P = 0.08) (Supplementary Figure 2) (42). Sensitivity analysis indicated that when dropped one study from Luciana et al. used Bifidobacterium lactis for probiotic intervention, rather than Lactobacillus mainly in the other studies, the pooled outcome of HOMA-IR was -0.28 (95% CI -0.54, -0.03). Additionally, the result of HbA1c% (Supplementary Figure 3) (42), which reveals the level of blood glucose control in the last 3 months, was not statistically different to the control group (SMD = -0.11, 95% CI -0.50, 0.29, P = 0.60). This may be attributed to the short intervention duration in most studies.

TABLE 1 | Characteristics of included studies.

References	Country	Intry Participants Number (F/M) age		Intervention of experimental group	Duration	Comparison	Outcome
Depommier et al. (15)	Germany	50 (28/22)	35.1 (21–45)	Extended-release niacin; 1,000 mg a day	52 weeks	Placebo	hsCRP↓, LDL-C↓, TG↓, clMT↓, HDL-C↑, FMD↑, FPG(-), glycosylated hemoglobin(-)
Gouni-Berthold et al. (27)	Germany	180 (85/95)	52.9 ± 10.3;53.9 ± 9.5	Whey protein; 150 g(7 g MPM) twice a day	3 months	Placebo	TG↓, LDL-C↓, FPG↓, HDL-C↑, ApoB(-), TC(-), INS(-), HbA1c(-), WC(-), SBP(-), DBP(-), hsCRP(-)
Gregory (2012)	America	60 (24/36)	46 (40–69)	Extended-release niacin; 2 g a day	16 weeks	Placebo	TG↓, LDL-C↓, VLDL-C↓, TC↓, HDL-C↑
Martin (2018)	France	19 (0/19)	47 ± 13	Extended-release niacin; 2 g a day	8 weeks	Placebo	$\label{eq:transform} \begin{array}{l} TG\downarrow, LDL-C\downarrow, ApoB\downarrow, TC\downarrow, hsCRP\downarrow, IL-7\downarrow, \\ VEGF\downarrow, EGF\downarrow, FPG\uparrow, HDL-C\uparrow, INS\uparrow, ApoAl(-), \\ IL-6(-), IL-1\alpha(-), TNF-\alpha(-) \end{array}$
Linke et al. (28)	Germany	60 (18/42)	45.2 ± 3.9	Extended-release niacin; 1,000 mg a day	6 months	No intervention	hsCRP↓, HDL-C↑, TG(-), LDL-C(-), TC(-), FPG(-), WC(-), HbA1c(-), HOMA-IR(-)
Harold (2010)	America	1613 (506/1107)	57.9/57.7/58.7/ 56.5/57.3/57.5	Extended-release niacin; 1,000 mg a day(T1); 2,000 mg a day(T2)	4 weeks(T1) 20 weeks(T2)	Placebo	HDL-C(-), TG(-), LDL-C(-), SBP(-), DBP(-)
Aaron (2019)	America	35 (24/11)	59.7 ± 10.9 52.3 ± 5.6	Acipimox; 250 mg every 6 h	7 days	Placebo	FFA↓, HDL-C(-), TC(-), TG(-), hsCRP(-), TNFR2(-), MPO(-), HOMA-IR(-), baseline brachial artery diameter(-), flow-mediated dilation(-), nitroglycerin-mediated dilation(-)
Eric (2008)	America	15 (0/15)	$46 \pm 8(32, 57)$	Extended-release niacin; 2 g a day	6 weeks	High-fat meal	TG↓, INS↑
Sony (2017)	America	2067	(18, 45)	Extended-release niacin; 1,500–2,000 g a day	12 months	Statin+placebo	Lp(a)↓, HDL-C(-), TG(-), LDL-C(-), TC(-), HbA1c(-)
Abutair (29)	Palestine	36 (18/18)	47.05 (3.6); 47.50 (4.2)	Psyllium; 10.5 g a day	8 weeks	No intervention	TG↓, LDL-C↓, WC↓, TC↓, FPG↓, SBP↓, DBP↓, HDL-C(-)
Dall'Alba et al. (30)	Brazil	44 (27/17)	62 ± 9	Partially hydrolysed guar gum;10 g a day	6 weeks	No intervention	WC↓, HbA1c↓, UAE↓, TG(-), TC(-), FPG(-), SBP(-), DBP(-), LDL-C(-), HDL-C(-), SBP(-), DBP(-), hsCRP(-), GFR(-)
Daniel (2011)	Germany	20(0/20)	50.7 ± 9.8 (32, 64)	Palatinose (isomaltulose); 50 g	Once	Conventional carbohydrate (glucose syrup/sucrose)	FPG↓, INS↓, TG(-), TC(-), FFA(-), LDL-C(-), HDL-C(-), VLDL-C(-)
Jarrar et al. (31)	The United Arab Emirates	80	28.3 ± 11.8; 25.6 ± 9.9	Gum Arabic; 20 g a day	12 weeks	Placebo (pectin)	HDL-C↑, FPG↓, WC(-), TC(-), LDL-C(-), SBP(-), DBP(-)
Johnston et al. (32)	The United Kingdom	20 (8/12)	(21, 70)	Fiber supplement (resistant starch); 40 g a day	12 weeks	Placebo	Insulin sensitivity↑, HOMA(-)
Kassi (33)	Greece	38 (24/14)	47.3 ± 10.3	Stevia rebaudiana; 4 times a week	4 months	Sweet snack	SBP↓, ox-LDL↓, DBP(-), WC(-), FPG(-), TC(-), HbA1c(-)
Katcher (34)	America	50 (25/25)	(20–65)	Whole-grain; 4–7 servings a day	12 weeks	Refined-grain	$\label{eq:crp} \begin{array}{l} CRP \downarrow, WC \downarrow, LDL\text{-}C \downarrow, TC \downarrow, HDL\text{-}C \downarrow, INS \downarrow, \\ SBP(\text{-}), DBP(\text{-}), FPG(\text{-}), IL\text{-}6(\text{-}), TNF\text{-}\alpha(\text{-}) \end{array}$
Lankinen et al., (35)	Finland	106 (54/52)	59 ± 7	Whole-grain; 8–8.5 g/100 g of dietary fiber+16–18 g/100 g of fat a day	12 weeks	Refined-grain	INS(-), FPG(-), HOMA-IR(-), TC(-), HbA1c(-)
Leão et al., (36)	Brazil	154 (113/41)	47.6 ± 12.6	Oat bran (3 g β -glucan); 40 g a day	6 weeks	Low-calorie diet	WC↓, TG↓, HDL-C↓, FPG↓, SBP↓, DBP↓

Microbial Therapy Against Metabolic Syndrome

Pan et al.

TABLE 1 | Continued

References	Country	Par Numb	ticipants er (F/M) age	Intervention of experimental group	Duration	Comparison	Outcome
Lefranc (37)	China	120 (0/120)	(20–35)	NUTRIOSE(a glucose polysaccharide); 34 g a day	12 weeks	Standard maltodextrin	₩C↓
Louise (2019)	Denmark	27	(18, 60)	Wheat bran extract (10.4 g/d AXOS); 30 g fiber intake a day	4 weeks	self	WC(-), TG(-), TC(-), FPG(-), SBP(-), DBP(-), LDL-C(-), VLDL-C(-), HDL-C(-), SBP(-), DBP(-), HOMO-IR(-), ApoB(-), INS(-), hsCRP(-)
Mocanu et al., (24)	Canada	68 (60/8)	49 ± 10	Fermentable fiber (resistant starch type IV, soluble corn fiber, acacia gum); 27 g(F)/33 g(M) a day + Fecal microbial transplantation	6 weeks	Non- fermentable fiber	LDL↓, Insulin sensitivity↓, HOMO-IR↑, DBP↑
Robertson et al. (38)	The United Kingdom	15 (7/8)	48.9 ± 3.9	High-amylose maize (HAM-RS2); 40 g a day	8 weeks	Placebo	HOMO-IR↓, FPG↓, INS↓, SBP(-), TG(-), FPG(-) TC(-)
Schioldan et al. (39)	Denmark	19 (5/14)	Not mentioned	Healthy carbohydrate diet; 64 g high dietary fiber+16 g arabinoxylanper+21 g resistant starch+statin a day	4 weeks	Refined carbohydrates+ statin	TC↓, LDL-C↓, HDL-C(-), FPG(-), FFA(-), INS(-), HOMA-IR(-), hsCRP(-), IL-6(-), SBP(-), DBP(-), apoB-48(-)
Carmen (2019)	Spain	53	Not mentioned	Probiotic capsules containing L. reuteri V3401; once a day	12 weeks	Maltodextrin	IL-6↓, sVCAM-1↓, HDL-C(-), FPG(-), INS(-), TC(-), TG(-), LDL-C(-), SBP(-), DBP(-)
Chang et al. (40)	Korea	101 (31/70)	$36.45 \pm 9.92;$ 37.16 ± 8.89	A functional yogurt NY-YP901; twice a day	8 weeks	Placebo yogurt	LDL-C↓, WC(-), INS(-), TC(-), TG(-), HDL-C(-), INS(-), SBP(-), DBP(-), HbA1c(-)
Fabiola (2014)	Brazil	24 (24/0)	NFM: 63y (60.5–75.7y) FM: 62y (58.3–67y)	Fermented milk containing L. plantarum; 80 mL a day	90 days	Non-fermented milk	TC↓, FPG↓, IL-6↓, HDL-C(-), WC(-), INS(-), HOMA-IR(-), TC(-), TG(-), LDL-C(-), SBP(-), DBP(-)
Khaider (2013)	Russia	40 (27/13)	52.0 ± 10.9; 51.7 ± 12.1	Cheese containing the probiotic Lactobacillus plantarum TENSIA; 50 g a day	3 weeks	Control cheese	SBP↓, DBP↓, TC(-), TG(-), HDL-C(-), FPG(-), AST(-), ALT(-), Waist-to-hip ratio(-)
Leber et al. (41)	Austria	28 (10/18)	51.5 ± 11.4; 54.5 ± 8.9	Bottles containing L. casei Shirota; 65 ml a day	3 months	No intervention	hsCRP↑, LBP↑, TC(-), TG(-), SBP(-), DBP(-), ALT(-)
Leila (2018)	Iran	44 (22/22)	$\begin{array}{c} 44.05 \pm 6.6; \\ 44.55 \pm 5.7 \end{array}$	Probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12; 300 g a day	2 months	Regular yogurt	VCAM-1 \downarrow , FPG \downarrow , INS(-), HOMA-IR(-)
Luciana (2016)	Brazil	51	(18, 60)	Milk containing the probiotic Bifidobacterium lactis HN019; 80 ml a day	45 days	No intervention	TC↓, LDL-C↓, IL-6↓, TNF-α↓, WC(-), INS(-), TG(-), HDL-C(-), INS(-), SBP(-), DBP(-), FPG(-), HOMA(-)
Pan et al. (42)	China	31	(30, 65)	Fermented barley—wheat flour compound noodles; 200 g a day	10 weeks	Whole wheat noodles	TG↓, INS↓, HOMA-IR↓, FPG(-), LDL-C(-), HbA1c(-), WC(-), HDL-C(-), SBP(-), DBP(-), TC(-)
Rikke (2012)	Denmark	50 (28/22)	12.9 ± 1.0; 13.4 ± 1.1	Capsules containing the freeze-dried probiotic strains L salivarius Ls-33 ATCC SD5208	12 weeks	Placebo	FPG(-), HOMA-IR(-), INS(-), WC(-), LDL-C(-), HDL-C(-), SBP(-), DBP(-), TC(-), TG(-), FFA(-), CRP(-), IL-6(-), TNF-α(-)
Tripolt et al. (43)	Austria	28 (10/18)	$51 \pm 11; 55 \pm 9$	YAKULT light containing L. casei Shirota; 195 ml a day	12 weeks	Standard medical therapy	sVCAM-1↓, FPG(-), HOMA-IR(-), INS(-), IL-6(-), IL-10(-), TNF-α(-), hsCRP(-), ox-LDL(-)
Vanessa (2015)	Austria	28 (10/18)	$51 \pm 11; 55 \pm 9$	YAKULT light containing L. casei Shirota; 195 ml a day	12 weeks	Standard medical therapy	TG(-), TC(-), SBP(-), DBP(-), LDL-C(-), HDL-C(-)

Pan et al.

(Continued)

TABLE 1 | Continued

References	Country	Participants Number (F/M) age		Intervention of experimental group	Duration	Comparison	Outcome
Arrigo (2020)	Italy	60 (33/27)	72 ± 3; 71 ± 3	Bottles containing Lactobacillus plantarum PBS067, Lactobacillus acidophilus PBS066 and Lactobacillus reuteri PBS072 with active prebiotics; one bottle a day	60 days	Placebo	TG↓, TC↓, FPG↓, WC↓, hsCRP↓, TNF-α↓,LDL-C↓, HDL-C↑, HOMA-IR(-), SBP(-), DBP(-)
Karim (2020)	Iran	60 (25/35)	$\begin{array}{c} 42.33 \pm 1.49; \\ 40.6 \pm 1.13 \end{array}$	Synbiotic capsules containing Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus, Bifidobacterium breve, Bifidobacterium longum and Streptococcus thermophiles; one a day	8 weeks	Placebo (containing the same materials plus starch and no bacteria)	TG↓, FPG↓, WC(-), TC(-), SBP(-), DBP(-), LDL-C(-), HDL-C(-), FPG(-)
Safavi et al. (44)	Iran	70	(6, 18)	Synbiotic capsules containing Lactobacillus Casei, Lactobacillus Rhamnosus, Streptococcus Thermophilus, Bifidobacterium Breve, Lactobacillus Acidophilus, Bifidobacterium Longum and Lactobacillus Bulgaricus; one a day	8 weeks	Placebo	WC↓, Waist-to-hip ratio↓, TG↓, TC↓, LDL-C↓, SBP(-), DBP(-), FPG(-)
Samira (2018)	Iran	46 (33/13)	57.1 ± 1.5; 60.8 ± 1.6	Synbiotic capsule containing Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium longum, Lactobacillus bulgaricus; two a day	3 months	Placebo capsule contained maltodextrin	FBG↓, INS↓, HOMA-IR↓, PYY↑, TC(-), TG(-), SBP(-), DBP(-), LDL-C(-), HDL-C(-), IL-6(-), hsCRP(-)
Tannaz (2014)	Iran	38 (23/15)	46.79 ± 9.5	Synbiotic capsules containing Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophilus, Bifidobacterium breve, Lactobacillus acidophilus, Bifidobacterium longum and Lactobacillus bulgaricus; two a day	28 weeks	Placebo capsule (250 mg maltodextrin)	FBG↓, HOMA-IR↓, TG↓, TC↓, HDL-C↑, TG(-), LDL-C(-)
Allegretti et al. (25)	America	22 (20/2)	44.5 ± 14.4; 43.3 ± 12.8	Fecal microbial transplantation from a single healthy lean donor	12 weeks	Placebo	FBG↓, HOMA-IR↓
Loek (2018)	The Netherlands	20 (0/20)	55.0 ± 8.2	Fecal microbial transplantation from a single lean vegan-donor	2 weeks	Autologous fecal microbial transplantation	TC(-), TG(-), LDL-C(-), HDL-C(-), FBG(-), INS(-), HbA1c(-), ALT(-), AST(-), CRP(-)
Vrieze (45)	The Netherlands	18 (0/18)	$47 \pm 4; 53 \pm 3$	Fecal microbial transplantation from healthy lean donors	6 weeks	Autologous fecal microbial transplantation	Insulin sensitivity↑, FBG(-), TC(-), TG(-), LDL-C(-), HDL-C(-), SBP(-), DBP(-), FFA(-)

hsCRP, High sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; cIMT, carotid intima media thickness; HDL-C, high-density lipoprotein cholesterol; FMD, flow-mediated vasodilation; FPG, fasting plasma glucose; MPM, malleable protein matrix; VEGF, vascular endothelial growth factor; Apo, apolipoprotein; TNF-α, tumor necrosis factor alpha; TC, total cholesterol; INS, insulin; HbA1c, hemoglobin A1c; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; SAE, serious adverse event; VLDL-C, very low-density lipoprotein cholesterol; IL, interleukin; FFA, free fatty acid; TNFR2, tumor necrosis factor receptor 2; MPO, myeloperixodase; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance; Lp(a), lipoprotein (a); UAE, urinary albumin excretion; GFR, glomerular filtration rate; CRP, C-reactive protein; AXOS, arabi-noxylan oligosaccharides; sVCAM-1, soluble

vascular cell adhesion molecule 1; AST, aspartate aminotransferase; ALT, alanine aminotransferase; LBP, lipopolysaccharide-binding protein; PYY, peptide YY.

7

Frontiers in Nutrition | www.frontiersin.org

TABLE 2 | Risk of bias summary Judgements about each risk of bias item for each included study.

References	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Aaron (2019)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Abutair (29)	Low risk	High risk	Low risk	Low risk	Unclear	Unclear	Low risk
Dall'Alba et al., (30)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Allegretti et al. (25)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear
Arrigo (2020)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Gouni-Berthold et al. (27)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Carmen (2019)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Chang et al. (40)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Daniel (2011)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Eric (2008)	Unclear	Unclear	High risk	Low risk	Low risk	Low risk	Low risk
Fabiola (2014)	Low risk	High risk	High risk	Low risk	Low risk	Low risk	Low risk
Gregory (2012)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Harold (2010)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Jarrar et al. (31)	Low risk	Unclear	Low risk	Low risk	High risk	Low risk	Low risk
Johnston et al. (32)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Karim (2020)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear
Kassi (33)	Unclear	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear
Katcher (34)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Khaider (2013)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Lankinen et al. (35)	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk
Leão et al., (36)	Low risk	Unclear	Low risk	Low risk	High risk	Low risk	Low risk
Leber et al. (41)	Low risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk
Lefranc (37)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear
Leila (2018)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Linke et al. (28)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Loek (2018)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Louise (2019)	Low risk	Low risk	High risk	Low risk	Low risk	Low risk	Low risk
Luciana (2016)	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk	Low risk
Martin (2018)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Mocanu et al. (24)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Pan et al. (42)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Rikke (2012)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Robertson et al. (38)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Safavi et al. (44)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Samira (2018)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Schioldan et al. (39)	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	Unclear
Sony (2017)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Tannaz (2014)	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk
Thoenes et al. (28)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Tripolt et al. (43)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Vanessa (2015)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Vrieze (45)	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk

	Micro	obial therapy	_	(Control	_		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.6.1 Prebiotics									
Abutair 2018	-43.55	24.295	18	-2.78	17.464	18	2.8%	-1.88 [-2.68, -1.08]	
Jarrar 2021	-12.7	31.54425463	31	-2	14.10106379	30	4.5%	-0.43 [-0.94, 0.08]	
Kassi 2016	-3.6	8.04955824	19	3.9	7.10661747	19	3.4%	-0.97 [-1.64, -0.29]	
Katcher 2008	-1.3	4.7	25	-1.5	6.6	25	4.2%	0.03 [-0.52, 0.59]	
Lankinen 2011	0	8.24868	34	0	9	35	4.8%	0.00 [-0.47, 0.47]	
Lefranc 2010	-12.6	40.37808812	83	-18.2	45.54151952	71	6.0%	0.13 [-0.19, 0.45]	
Le~ao 2019	-3.78	2.196	16	-0.72	3.5532	44	3.9%	-0.93 [-1.52, -0.33]	
Schioldan 2016	-3.6	10.8	17	-1.8	10.8	17	3.5%	-0.16 [-0.84, 0.51]	
Subtotal (05% CI)			243			259	33.2%	-0.47 [-0.89, -0.05]	◆
Subtotal (95% CI)	= 0.28. Chi	- 22 20 df - 7 (D < 0.00	01).1 = 70%					
Heterogeneity: Tau	= 0.28; Chi	= 33.39, df = 7	P<0.00	(01); 1 = 79%)				
lest for overall effect	z = 2.21 (P = 0)	0.03)							
1.6.2 Probiotics									
Carmon 2010	0.62490566	11 922702	52	2 72911221	12 02707241	52	E E04	0.25 [0.62 0.12]	
Chang 2019	1.02	11.022703	55	1.00	7.01	33	5.5%	-0.25 [-0.65, 0.15]	
Chang 2011	1.05	0.49	53	1.08	20.04060410	48	5.4%	-0.01 [-0.40, 0.38]	
Fabiola 2014	-10.5	36.18582181	12	-3	30.04060419	12	2.8%	-0.22 [-1.02, 0.59]	
Leila 2018	-4.81	4.09359874	22	-0.82	5.24386615	22	3.8%	-0.83 [-1.45, -0.21]	
Luciana 2016	3	24.74691698	26	1	16.11818538	25	4.2%	0.09[-0.46, 0.64]	
Rikke 2012	-3.24	9.87724658	27	-1.44	7.84601809	23	4.2%	-0.20 [-0.75, 0.36]	
Subtotal (95% CI)			193			183	25.9%	-0.20 [-0.43, 0.03]	
Heterogeneity: Tau	= 0.02; Chi	= 6.12, df = 5 (P	= 0.30);	I = 18%					
Test for overall effect	: Z = 1.68 (P = 6	0.09)							
1.C.2.Cumbiotics									
1.6.5 SynDiotics		0.05100705						0.00(1.01.017)	
Arrigo 2020	-3.6	3.65102725	30	-0.6	4.85077313	30	4.4%	-0.69 [-1.21, -0.17]	
Karim 2020	-11.7	39.02722	30	3.06	39.02722126	30	4.5%	-0.37 [-0.88, 0.14]	
Safavi 2013	0.57	2.36947252	29	1.7	4.62457566	27	4.4%	-0.31 [-0.83, 0.22]	
Samira 2018	-11.6	33.57082066	23	13	43.16248371	23	3.9%	-0.63 [-1.22, -0.03]	
Tannaz 2014	-8.28	18.500637	19	-3.24	26.37046075	19	3.7%	-0.22 [-0.85, 0.42]	
Subtotal (95% CI)			131			129	20.9%	-0.45 [-0.70, -0.20]	•
Heterogeneity: Tau	= 0.00; Chi	= 2.03, df = 4 (P	= 0.73);	I = 0%					
Test for overall effect	: Z = 3.57 (P = 1	0.0004)							
1 C A Missohiel metak	-liter								
1.6.4 Microbial metal	outes								
Berthold 2012	-2	24.06241883	88	4.1	20.66397832	92	6.2%	-0.27 [-0.56, 0.02]	
Pan 2020	-7.56	17.02784777	16	0.18	19.18583852	15	3.2%	-0.42 [-1.13, 0.30]	
Thoenes 2007	0.4	13.8567673	30	4.2	14.00107139	15	3.8%	-0.27 [-0.89, 0.35]	
Subtotal (95% CI)			134			122	13.2%	-0.29 [-0.54, -0.04]	
Heterogeneity: Tau	= 0.00; Chi	= 0.14, df = 2 (P	= 0.93);	I = 0%					
Test for overall effect	: Z = 2.27 (P =	0.02)							
1.6.5 FM I									
Allegretti 2020	2.8767	9.069848	11	23.7192	13.00638	11	2.0%	-1.79 [-2.81, -0.77]	
Loek 2018	1.8	10.02197585	10	-3.24	10.8	10	2.4%	0.46 [-0.43, 1.35]	
Vrieze 2012	0	3.6	9	0	3.6	9	2.3%	0.00 [-0.92, 0.92]	
Subtotal (95% CI)			30			30	6.8%	-0.42 [-1.72, 0.88]	
Heterogeneity: Tau	= 1.09; Chi	= 11.40, df = 2 (P = 0.00	3);1 = 82%					
Test for overall effect	: Z = 0.64 (P =	0.52)							
Total (050/ cil)			701			700	100.001	0.25 [0.52 0.16]	
Total (95% CI)			731			723	100.0%	-0.35 [-0.52, -0.18]	
Heterogeneity: Tau	= 0.10; Chi	= 55.66, df = 24	(P = 0.0	003); I = 57	%				-2 -1 0 1 2
Test for overall effect	: Z = 4.10 (P < 6	0.0001)							Favours [experimental] Favours [control]
Test for subgroup dif	ferences: Chi	= 2.71. df $= 4$	P = 0.61	1). I = 0%					· · · · · · · · · · · · · · · · · · ·

FIGURE 2 Comparison of standard mean difference (SMD) of fasting blood glucose (FBG) control between intervention groups and control groups $Tau^2 = 0.10$, $I^2 = 57\%$, 95% Cl -0.52 to -0.18, Z = 4.10, p < 0.0001. Significant difference was shown in FBG.

Effect of Microbial Therapy on BP Control

Eighteen studies explored the effect of microbial therapy on BP (**Supplementary Figures 4, 5**) (42), leading to a non-statistical difference to the placebo in SBP (SMD = -0.11, 95% CI -0.32, 0.10, P = 0.29) and in DBP (SMD = -0.18, 95% CI -0.39, 0.02, P = 0.08). Sensitivity analysis showed that removing one study led by Bernini et al. (52) could make the DBP outcome significant (SMD = -0.24, 95% CI -0.41, -0.07), whereby no study could exert excessive contribution to the SBP outcome.

Effect of Microbial Therapy on Serum Lipoproteins Control

Microbial therapy could regulate hyperlipemia to some extent, as indicated by more dampened level of TC (SMD = -0.36, 95% CI -0.55, -0.17, P < 0.0001) (**Figure 3**), TG (SMD = -0.38,

95% CI -0.55, -0.20, P < 0.0001) (Figure 4), LDL-C (SMD = -0.42, 95% CI -0.61, -0.22, P < 0.0001) (Figure 5), and more strong elevation in HDL-C (SMD = 0.28, 95% CI.03, 0.52, P = 03) (Figure 6) with significant heterogeneity. No publication bias was uncovered in the TC outcome by Begg's test (p = 0.771) and Egger's test (p = 0.136), similar to the TG outcome (Begg's test p = 0.508, Egger's test p = 0.069). In the HDL-C outcome, there was no hint of publication bias by Begg's test (p = 0.072) unlike in Egger's test (p = 0.001), which is similar to the LDL-C outcome (Begg's test p = 0.182, Egger's test p = 0.022).

Effect of Microbial Therapy on Anthropometric Parameters

Twenty studies reported the effect of microbial therapy on WC (**Figure 7**). A more pronounced decline was displayed to the

	Micro	bial therapy		(Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.8.1 Prebiotics									
Abutair 2018	-20.32	16.686	18	10.53	17.951	18	3.3%	-1.74 [-2.52, -0.96]	
Jarrar 2021	-5.3	29.4734	31	0.5	36.1772	39	5.1%	-0.17 [-0.64, 0.30]	
Kassi 2016	-19.6	17.47807595	19	-19.6	21.47894567	19	4.1%	0.00 [-0.64, 0.64]	
Katcher 2008	-10.8	18	25	-5.8	17.4	25	4.6%	-0.28 [-0.84, 0.28]	
Lefranc 2010	-3.4803	13.789722	16	13.1478	10.174077	44	4.1%	-1.46 [-2.10, -0.83]	
Pan 2020	-15.0813	45.28849726	16	4.6404	40.25953739	15	3.7%	-0.45 [-1.16, 0.27]	
Schioldan 2016	-9.6675	26.9607	17	-0.7734	30.6373	17	3.9%	-0.30 [-0.98, 0.38]	
Subtotal (95% CI)			142			177	28.7%	-0.60 [-1.07, -0.13]	\bullet
Heterogeneity: Tau	= 0.30: Chi =	23.74. df = 6 (f	P = 0.000); I = 75%					
Test for overall effect	: Z = 2.51 (P = 0	0.01)							
1.8.2 Probiotics									
Carmen 2019	-2.75264151	50.92997886	53	-8.04283019	51.17691826	53	5.7%	0.10 [-0.28, 0.48]	
Chang 2011	-2.96	24.34	53	3.58	23.16	48	5.6%	-0.27 [-0.67, 0.12]	
Fabiola 2014	-25	28.50146838	12	-30.5	26.62344268	12	3.2%	0.19 [-0.61, 0.99]	
Jogchum 2009	-29.0025	18.1749	9	2.3202	18.1749	9	2.1%	-1.64 [-2.75, -0.54]	
Khaider 2013	-47.5641	47.40033514	25	-38.2833	35.29336465	15	4.0%	-0.21 [-0.85, 0.43]	
Leber 2012	-1	64.58327957	13	2	39.28103868	15	3.5%	-0.06 [-0.80, 0.69]	
Luciana 2016	-15	56.25180264	26	6	33.42756796	25	4.6%	-0.44 [-1.00, 0.11]	
Rikke 2012	-8.1207	27.65107809	27	-3.4803	23.82523944	23	4.6%	-0.18 [-0.73, 0.38]	
Vanessa 2015	-1	64.58327957	13	2	39.28103868	15	3.5%	-0.06 [-0.80, 0.69]	
Subtotal (95% CI)			231			215	36.9%	-0.19 [-0.42, 0.04]	◆
Heterogeneity: Tau Test for overall effect	= 0.03; Chi = : Z = 1.61 (P = 0	= 10.96, df = 8 (f 0.11)	P = 0.20)	;1 = 27%					
1.8.3 Synbiotics									
Arrigo 2020	-12.2	16 32298992	20	-2.4	17 50342824	20	1 90%	-0.57 [-1.09 -0.05]	
Karim 2020	-17 0148	40 2428195	20	-8 5074	40 2429105	20	4.070	-0.21 [-0.72 0.30]	
Safavi 2013	-7 3473	11 59455321	29	3 867	2 00935213	27	A 40%	-1 31 [-1 89 -0 73]	
Samira 2018	-4.6	38 84623534	23	0.001	42 68290056	23	A 40%	-0.13 [-0.70, 0.45]	
Tannaz 2014	-22,4286	29 45781005	19	-13.9212	36 55695809	19	4.1%	-0.25 [-0.89, 0.39]	
Subtotal (95% CI)	22.1200	25.45701005	131	10.5212	30.33033003	129	22.6%	-0.49 [-0.91, -0.08]	◆
Subtotal (95% CI)	= 0.14. Chi -	10.02 df = 4/4	2 - 0.02	6204					
Test for overall effect	: Z = 2.32 (P = 0	0.02)	- 0.03)	;1 = 63%					
1.8.4 Microbial metab	olites								
Berthold 2012	-5	56.50663678	88	-6	41.03656906	92	6.3%	0.02 [-0.27, 0.31]	- -
Subtotal (95% CI)			88			92	6.3%	0.02 [-0.27, 0.31]	•
Heterogeneity: Not a	oplicable								
Test for overall effect	7 = 0.14 (P = 0.14)	(89)							
. cot for overall effect	0.24 (r = (
1.8.5 FMT									
Loek 2018	0	34.803	10	11.601	29.19521	10	2.9%	-0.35 [-1.23, 0.54]	
Vrieze 2012	3.867	15.468	9	0	10.2311	9	2.7%	0.28 [-0.65, 1.21]	
Subtotal (95% CI)			19			19	5.6%	-0.05 [-0.69, 0.59]	
Heterogeneity: Tau Test for overall effect	= 0.00; Chi = : Z = 0.15 (P = 0	= 0.92, df = 1 (P 0.88)	= 0.34);	I = 0%					
Total (95% CI)			611			632	100.0%	-0.36 [-0.550.17]	•
Heterogeneity: Tau	= 0.13: Chi =	59.31 df = 23	(P < 0.00	(01):1 = 61%					
Test for overall effect	7 = 3.65 (P = 0	0003)	0.00	- 51/0					-2 -1 0 1 2
Test for subgroup diff	erences: Chi	= 7.09, df = 4 (P = 0.13	= 43.6%					Favours [experimental] Favours [control]
rear no autoriouni (iii)	ciences call	- 1.0.7. th = 4 t							
IGURE 3 Comparis	on of SMD c	of total choles	sterol (T	C) control b	etween inter	ventio	n group	s and control groups	Tau ² = 0.13, I^2 = 61%, 95% CI -0.55 to -0.17, Z

F = 3.65, p = 0.0003. Significant difference was shown in TC.

placebo (SMD = -0.26, 95% CI -0.49, -0.03, P = 0.03) with moderate heterogeneity ($I^2 = 57 \%$, p = 0.007). No publication bias was assessed by Begg's test (p = 0.731) and Egger's test (p = 0.231). No significant difference was displayed compared with the placebo in BMI (SMD = -0.13, 95% CI -0.27, 0.00, P = 0.05) (Supplementary Figure 6) (42). Sensitivity analysis indicated that when we removed the study conducted by Leão et al. (36), which utilized oat bran as prebiotic intervention, the pooled result BMI could be significant (SMD = -0.16, 95% CI -0.31, -0.01).

Adverse Events

Treatment-related adverse experiences could be attributed to the nature of the interventions. In microbial metabolites, niacininduced flushing was reported in three studies (28, 60, 61), as well as the slight gastrointestinal (27) and hepatic (60) disorders. For probiotics and prebiotics, gastrointestinal symptoms, including increased bowel movements, diarrhea, flatulence, temporary constipation, and decreased appetite were mentioned (30, 36, 41, 49). The study led by Louise et al. (36) in 2019 also reflected seasonal diseases such as sore throat, common cold, and influenza. Seven serious events with no specific indication were even recorded in Gouni-Berthold's trial (27).

DISCUSSION

Our analysis showed that microbial therapy is essential for mounting an effective response against intertwined metabolism in MetS. Building on the pooled outcomes, we provided strong evidence that microbial therapy application significantly

	MICTOR	bial therapy		(Control		S	Std. Mean Difference	Std. Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
.11.1 Prebiotics									
butair 2018	-37.89	24.5	18	11.44	31.301	18	2.8%	-1.72 [-2.49, -0.94]	
arrar 2021	-7	49.69517079	31	0.2	41.30326864	30	4.1%	-0.16 [-0.66, 0.35]	
atcher 2008	-3.8	37.2	25	-8.9	60.8	25	3.8%	0.10 [-0.46, 0.65]	
efranc 2010	-28.352	23.27805511	16	11.518	18.94234748	44	3.2%	-1.95 [-2.63, -1.28]	
e~ao 2019	-37.2	118.0640081	83	-36.4	99.85754854	71	5.1%	-0.01 [-0.32, 0.31]	
Schioldan 2016	14.176	78.91633063	17	20.378	72.59399358	17	3.2%	-0.08 [-0.75, 0.59]	
Subtotal (95% CI)			190			205	22.3%	-0.60 [-1.24, 0.05]	
Heterogeneity: Tau	= 0.55·Chi = 4	11.60 df = 5/P	< 0 0000	1)-1 = 88%					
Test for overall effect:	Z = 1.82 (P = 0.0)7)	0.0000	2),1 = 00 /0					
1.11.2 Probiotics	4 12050004	F1 40000067		4 12010000	54 07100070	50		0.15 (0.00, 0.54)	
Carmen 2019	4.13056604	51.40229067	53	-4.12018868	54.97186373	53	4.8%	0.15 [-0.23, 0.54]	
Chang 2011	-1.64	41.37	53	3.06	52.86	48	4.7%	-0.10 [-0.49, 0.29]	
Fabiola 2014	16	83.59021713	12	32.5	50.76251865	12	2.7%	-0.23 [-1.03, 0.57]	
Jogchum 2009	-20.378	31.896	9	20.378	47.844	9	2.1%	-0.95 [-1.94, 0.03]	
Khaider 2013	-62.906	163.5696141	25	-62.906	89.0242642	15	3.4%	0.00 [-0.64, 0.64]	
Leber 2012	-13	151.3373715	13	-11	92.71461589	15	2.9%	-0.02 [-0.76, 0.73]	
Luciana 2016	11	133.0730251	26	-30.5	98.16630023	25	3.8%	0.35 [-0.21, 0.90]	
Rikke 2012	-5.316	67.77176103	27	-5.316	58.03807226	23	3.8%	0.00 [-0.56, 0.56]	
Vanessa 2015	-12	151.3373715	13	-11	92.71461589	15	2.9%	-0.01 [-0.75, 0.73]	
Subtotal (95% CI)			231			215	31.1%	0.01 [-0.18, 0.19]	•
Heterogeneity: Tau Test for overall effect:	= 0.00; Chi = 6 Z = 0.06 (P = 0.9	5.29, df = 8 (P = 95)	0.62); I	= 0%					
1.11.3 Synbiotics									
Arrigo 2020	-27.2	23.60254224	30	-8.5	23.17261315	30	4.0%	-0.79 [-1.32, -0.26]	
Arrigo 2020 Karim 2020	-27.2 -9.746	23.60254224 82.92505633	30 30	-8.5 7.974	23.17261315 82.92505633	30 30	4.0% 4.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30]	
Arrigo 2020 Karim 2020 Safavi 2013	-27.2 -9.746 -11.518	23.60254224 82.92505633 42.9413042	30 30 29	-8.5 7.974 9.746	23.17261315 82.92505633 36.83032839	30 30 27	4.0% 4.1% 3.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018	-27.2 -9.746 -11.518 3.1	23.60254224 82.92505633 42.9413042 53.71331306	30 30 29 23	-8.5 7.974 9.746 16.8	23.17261315 82.92505633 36.83032839 46.03998262	30 30 27 23	4.0% 4.1% 3.9% 3.7%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014	-27.2 -9.746 -11.518 3.1 -70.88	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796	30 30 29 23 19	-8.5 7.974 9.746 16.8 -10.632	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073	30 30 27 23 19	4.0% 4.1% 3.9% 3.7% 3.3%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI)	-27.2 -9.746 -11.518 3.1 -70.88	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796	30 30 29 23 19 131	-8.5 7.974 9.746 16.8 -10.632	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073	30 30 27 23 19 129	4.0% 4.1% 3.9% 3.7% 3.3% 18.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect:	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001)	30 30 29 23 19 131 0.45); I	-8.5 7.974 9.746 16.8 -10.632 = 0%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073	30 30 27 23 19 129	4.0% 4.1% 3.9% 3.7% 3.3% 18.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001)	30 30 29 23 19 131 0.45); I	-8.5 7.974 9.746 16.8 -10.632 = 0%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073	30 30 27 23 19 129	4.0% 4.1% 3.9% 3.7% 3.3% 18.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2018 Tannaz 2014 Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metał Berthold 2012	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382	30 30 29 23 19 131 0.45);1	-8.5 7.974 9.746 16.8 -10.632 = 0%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073	30 30 27 23 19 129	4.0% 4.1% 3.9% 3.7% 3.3% 18.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metat Berthold 2012 Harold 2010	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 3.69, df = 4 (P = 0001) 87.0689382 31.383	30 30 29 23 19 131 0.45);1 88 160	-8.5 7.974 9.746 16.8 -10.632 = 0%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.32	30 30 27 23 19 129 92 109	4.0% 4.1% 3.9% 3.7% 3.3% 18.9%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14 176	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402	30 30 29 23 19 131 0.45);1 88 160	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8	23.17261315 82.92505633 36.83032839 94.43696073 116.5032188 29.232 87.54270444	30 30 27 23 19 129 92 109	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09 0 33]	→ → →
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metał Berthold 2012 Harold 2010 Pan 2020 Sony 2017	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14.176 -22 20154173	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 10001) 87.0689382 31.383 60.8895402	30 30 29 23 19 131 0.45);1 88 160 16 1881	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124	23.17261315 82.92505633 66.83032839 46.03998262 94.43696073 116.5032188 29.232 87.5437944	30 30 27 23 19 129 92 109 15 1854	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Ebcenes 2007	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14.176 -22.20154173 -36 7	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029	30 30 29 23 19 131 0.45);1 88 160 16 1881 30	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 92 109 15 1854 15	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3%	-0.79 [-1.32,-0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] +1.05 [-1.71, -0.29]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl)	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0) bolites -20 -28 -14.176 -22.20154173 -36.7	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029	30 30 29 23 19 131 0.45);1 88 160 16 1881 30 2175	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7	23.17261315 82.92505633 66.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 92 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.0, -0.47]	
Arrigo 2020 (arim 2020 Safavi 2013 Samira 2018 Fannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Fest for overall effect: L.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Fhoenes 2007 Subtotal (95% CI)	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14.176 -22.00154173 -36.7	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029	30 30 29 23 19 131 0.45);1 88 160 16 1881 30 2175	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 92 109 15 1854 15 2085	4.0% 4.1% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect:	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14.176 -22.20154173 -36.7 = 0.03; Chi = 1 Z = 6.23 (P < 0.0	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 40.78, df = 4 (P = 00001)	30 30 29 19 131 0.45); I 888 160 16 1881 30 2175 = 0.03); I	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 92 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.50 [-0.75, -0.25] -0.38 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0 bolites -20 -28 -14.176 -22.20154173 -36.7 = 0.03; Chi = 1 Z = 6.23 (P < 0.0	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 40.78, df = 4 (P = 00001)	30 30 29 13 19 131 0.45); I 88 160 186 1881 30 2175 = 0.03); I	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 92 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.50 [-0.75, -0.25] -0.38 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018	$\begin{array}{r} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ = 0.00; Chi = 3 \\ Z = 3.93 (P < 0.0 \\ -28 \\ -22.0154173 \\ -36.7 \\ = 0.03; Chi = 1 \\ Z = 6.23 (P < 0.0 \\ 0 \\ \end{array}$	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 88.33368211 30.48475029 10.78, df = 4 (P 90001) 68.2128517	30 30 29 13 19 131 0.45); 88 160 16 1881 30 2175 = 0.03);	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442	30 30 27 23 19 129 129 92 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2012	-27.2 -9.746 -11.518 3.1 -70.88 Z = 3.93 (P < 0.0) bolites -20 -28 -14.176 -22.20154173 -36.7 = 0.03; Chi = 1 Z = 6.23 (P < 0.0) 8.86	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P = 00001) 68.2128517 31.9451843	30 30 29 131 0.45); I 888 160 16 1881 30 2175 = 0.03); I 10 9	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518424	30 30 27 33 19 129 92 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.43 [-0.73, -0.14] -0.97 [-1.23, -0.72] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018 Vrieze 2012 Subtotal (95% Cl)	$\begin{array}{r} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P 00001) 68.2128517 31.9451843	30 30 29 23 19 131 0.45); 88 160 16 1881 30 2175 = 0.03); 10 9 9	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 23 19 129 129 129 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1% 2.4% 2.4% 2.4% 4.7%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] 0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 (-0.59, 0.79]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Samira 2018 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018 Vrieze 2012 Subtotal (95% CI)	-27.2 -9.746 -11.518 3.1 -70.88 = 0.00; Chi = 3 Z = 3.93 (P < 0.0) bolites -20 -28 -14.176 -22.20154173 -36.7 = 0.03; Chi = 1 Z = 6.23 (P < 0.0) 0 8.86	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P 00001) 68.2128517 31.9451843	30 30 29 23 19 131 0.45);1 888 160 16 1881 30 2175 = 0.03);1 10 9 9	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 29.332 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 19 129 109 15 1854 15 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] 0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 [-0.59, 0.79]	
Arrigo 2020 Karim 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018 Vrieze 2012 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect:	$\begin{array}{r} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P 00001) 68.2128517 31.9451843 1.14, df = 1 (P = 78)	30 30 29 23 19 131 30 0.45);1 88 160 16 1881 30 2175 = 0.03);1 10 9 19 0.28);1	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72 = 13%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 23 19 129 109 15 1854 15 2085 10 9 19	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.4% 3.1% 6.1% 6.1% 2.3% 4.7%	-0.79 [-1.32,-0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.50 [-0.75, -0.25] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] 0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 [-0.59, 0.79]	
Arrigo 2020 Karim 2020 Safavi 2013 Samira 2018 Tannaz 2014 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018 Vrieze 2012 Subtotal (95% Cl) Heterogeneity: Tau Test for overall effect: Subtotal (95% Cl)	$\begin{array}{r} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ Z = 3.93 \ (P < 0.0 \\ 0.28 \\ -14.176 \\ -22.20154173 \\ -36.7 \\ = 0.03; \ Chi = 1 \\ Z = 6.23 \ (P < 0.0 \\ 0 \\ 8.86 \\ = 0.03; \ Chi = 1 \\ Z = 0.29 \ (P = 0.7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P + 00001) 68.2128517 31.9451843 1.14, df = 1 (P = 78)	30 30 29 23 19 131 30 0.45);1 88 88 160 16 1881 30 2175 = 0.03);1 10 9 9 19 0.28);1 2746	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72 = 13%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 23 19 129 129 129 129 15 1854 15 2085 10 9 19	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.4% 3.1% 6.1% 3.3% 23.1% 2.4% 2.3% 4.7%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.50 [-0.75, -0.25] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] -0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 [-0.59, 0.79] -0.38 [-0.55, -0.20]	
Arrigo 2020 Karim 2020 Karim 2020 Safavi 2013 Samira 2018 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.4 Microbial metal Berthold 2012 Harold 2010 Pan 2020 Sony 2017 Thoenes 2007 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: 1.11.5 FMT Loek 2018 Vrieze 2012 Subtotal (95% CI) Heterogeneity: Tau Test for overall effect: Total (95% CI) Heterogeneity: Tau	$\begin{array}{r} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ = 0.00; Chi = 3 \\ Z = 3.93 (P < 0.0 \\ bolites \\ -20 \\ -28 \\ -14.176 \\ -22.20154173 \\ -36.7 \\ = 0.03; Chi = 1 \\ Z = 6.23 (P < 0.0 \\ 0 \\ 8.86 \\ = 0.03; Chi = 1 \\ Z = 0.29 (P = 0.7 \\ = 0.13; Chi = 1 \end{array}$	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 38.33368211 30.48475029 10.78, df = 4 (P 00001) 68.2128517 31.9451843 1.14, df = 1 (P = 8)	30 30 29 131 31 0.45);1 88 88 160 2175 = 0.03);1 10 9 9 19 0.28);1 2746 (P < 0.00	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72 = 13%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 23 19 129 109 15 2085 105 9 19 19 2085	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.2% 5.4% 3.1% 6.1% 3.3% 23.1% 2.4% 2.3% 4.7%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.38 [-0.75, -0.25] -0.38 [-0.75, -0.25] -0.38 [-0.75, -0.25] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] 0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 [-0.59, 0.79] -0.38 [-0.55, -0.20]	
rrigo 2020 Garim 2020 Garim 2020 Garim 2020 Garim 2020 Garim 2018 Gamira 2018 Gamira 2018 Gamira 2018 Gamira 2018 Gamira 2018 Gamira 2018 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2017 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2010 Gamira 2017 Gamira 2017	$\begin{array}{c} -27.2 \\ -9.746 \\ -11.518 \\ 3.1 \\ -70.88 \\ = 0.00; Chi = 3 \\ Z = 3.93 (P < 0.0 \\ bolites \\ -20 \\ -28 \\ -14.176 \\ -22.20154173 \\ -36.7 \\ = 0.03; Chi = 1 \\ Z = 6.23 (P < 0.0 \\ 0 \\ 8.86 \\ = 0.03; Chi = 1 \\ Z = 0.29 (P = 0.7 \\ -22.201 (P < 0.0 \\ -22.201 (P <$	23.60254224 82.92505633 42.9413042 53.71331306 50.71140796 8.69, df = 4 (P = 0001) 87.0689382 31.383 60.8895402 88.33368211 30.48475029 10.78, df = 4 (P 00001) 68.2128517 31.9451843 1.14, df = 1 (P = 78)	30 30 29 23 19 131 0.45);1 88 88 160 16 1881 30 2175 = 0.03);1 10 9 19 19 2746 (P < 0.00	-8.5 7.974 9.746 16.8 -10.632 = 0% 25 1.8 15.062 1.85755124 -3.7 = 63% -26.58 17.72 = 13%	23.17261315 82.92505633 36.83032839 46.03998262 94.43696073 116.5032188 29.232 87.54379444 39.89924175 31.44773442 45.96444695 31.94518434	30 30 27 23 19 129 5 1854 15 2085 10 9 19 22653	4.0% 4.1% 3.9% 3.7% 3.3% 18.9% 5.4% 3.1% 6.1% 3.3% 23.1% 2.4% 2.3% 4.7%	-0.79 [-1.32, -0.26] -0.21 [-0.72, 0.30] -0.52 [-1.06, 0.01] -0.27 [-0.85, 0.31] -0.78 [-1.44, -0.12] -0.50 [-0.75, -0.25] -0.50 [-0.75, -0.25] -0.38 [-1.09, 0.33] -0.61 [-0.68, -0.55] -1.05 [-1.71, -0.39] -0.68 [-0.90, -0.47] 0.44 [-0.45, 1.33] -0.26 [-1.19, 0.66] 0.10 [-0.59, 0.79] -0.38 [-0.55, -0.20]	

4.20, p < 0.0001. Significant difference was shown in TG.

dampens the risk indicators in MetS, including FBG, TC, TG, HDL-C, LDL-C, and WC. Further showing the straight benefit of microbial therapy in MetS is the improvement of DBP, HOMA-IR, and BMI in a sensitivity analysis. After omitting one study using *Bifidobacteriumlactis* as probiotic intervention, DBP and HOMA-IR improvements showed statistical significance, whereby BMI decreased significantly after neglecting one study that employed oat bran as prebiotic intervention. No obvious publication bias was detected in most of the bias test that we performed.

About 100 trillion micro-organisms inhabit the human gastrointestinal tract, providing unique metabolic functions to the host and giving fundamental importance to health and disease (68, 69). Early in 2007, animal studies demonstrated

that a high-fat diet could chronically increase the proportion of lipopolysaccharide (LPS) contained in the gut together with the elevation of inflammation markers, liver triglyceride content, and liver insulin resistance (70), thereby contributing to the emergence of gut-centric theory in MetS. Evidence suggested that ingestion of a high-fat and low-fiber diet could induce the dysbiosis of gut microbiome, which contributed to the aberrant blooms or loss of bacteria (71). Of these intertwined bacteria, the proportion of gram-negative microbiota (mainly *Bacteroidetes* and *Proteobacteria*) (72) was notably elevated, while the relative proportions of gram-positive microbiome including *Lactobacillus* and *Bifidobacterium* were notably decreased. As consequence, aberrant metabolites from maladjusted bacteria, such as lipopolysaccharide (LPS) and

	Micro	bial therapy		(Control		5	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.10.1 Prebiotics									
Abutair 2018	-10.46	5.8427	18	11.57	18.229	18	3.1%	-1.59 [-2.35, -0.83]	
Jarrar 2021	-0.1	0.7	31	-0.2	0.85440038	30	4.1%	0.13 [-0.38, 0.63]	
Kassi 2016	-13.8	14.29642756	19	-22.7	23.29893382	19	3.5%	0.45 [-0.19, 1.10]	
Katcher 2008	-8.1	15.3	25	-3.4	15.8	25	3.9%	-0.30 [-0.86, 0.26]	
efranc 2010	-1.1601	3,990744	16	8.8941	6.361215	44	3.5%	-1.70 [-2.35, -1.05]	
Mocanu 2020	-9.3	18.35973856	12	0	14,89563695	12	2.8%	-0.54 [-1.35, 0.28]	
Schioldan 2016	-6.1872	26 20159	17	3.867	28.66	17	3 40%	-0.36 [-1.04, 0.32]	
Schlotdall 2010	0.2012	20.20100	138	5.001	20.00	165	24.3%	-0.54 [-1.13, 0.05]	-
Subtotal (95% CI)			200			200	211070	0.01[2.20,0.00]	-
Heterogeneity: Tau Test for overall effect	= 0.53; Chi = : Z = 1.78 (P = 0	: 35.66, df = 6 (F .07)	> < 0.000	01);1 = 83%					
1.10.2 Probiotics									
Carmen 2019	-4.63339623	42.88058557	53	-8.77396226	43.14242934	53	4.7%	0.10 [-0.29, 0.48]	- -
Chang 2011	-7.71	14.14	53	-0.43	15.32	48	4.6%	-0.49 [-0.89, -0.09]	
Fabiola 2014	-29.4	31.9690053	12	-37.8	30.23233534	12	2.9%	0.26 [-0.54, 1.06]	
Khaider 2013	-34.0296	39.76246393	25	-22.0419	26.12157785	15	3.5%	-0.33 [-0.98, 0.31]	
Luciana 2016	-17.5	34.10072873	26	-2	41.06132487	25	3.9%	-0.41 [-0.96. 0.15]	+
Rikke 2012	-6.1874	23.202	27	-3.0936	19.24196818	23	3.9%	-0.14 [-0.70, 0.42]	
Vanessa 2015	4	47.12748667	13	7	28.05352028	15	3.1%	-0.08 [-0.82, 0.67]	
Subtotal (95% CI)			209		20.00002020	191	26.6%	-0.19 [-0.40, 0.02]	•
Heterogeneity: Tau Test for overall effect	= 0.01; Chi = : Z = 1.76 (P = 0	6.46, df = 6 (P .08)	= 0.37); I	= 7%					
1.10.3 Synbiotics									
Arrigo 2020	-9.1	12.15030864	30	-0.5	12.4647503	30	4.0%	-0.69 [-1.21, -0.17]	
Karim 2020	-9.2808	34,99581589	30	-3.867	34.99581589	30	4.1%	-0.15 [-0.66, 0.35]	
Safavi 2013	-5.8005	5.51001359	29	5.0271	3.4803	27	3.3%	-2.30 [-2.98, -1.61]	
Samira 2018	-8	40,76456795	23	0.4	50.83581415	23	3.8%	-0.18 [-0.76, 0.40]	
Tannaz 2014	-15.0813	31.8223792	19	-11.601	38 33794585	19	3 5%	-0.10[-0.73, 0.54]	
Subtotal (95% CI)			131			129	18.8%	-0.67 [-1.39, 0.06]	-
Heterogeneity: Tau Test for overall effect	= 0.59; Chi = : Z = 1.81 (P = 0	31.11, df = 4 (F	o < 0.000	01); I = 87%	0				
1 10 4 Microbial meta	holites								
Death and 2012	1 4	21	00	2.5	10	02	E 00/	0.24 [0.05 0.54]	
Berthold 2012	1.4	24 659	100	-3.5	26.063	100	5.0%	0.24 [-0.05, 0.54]	
Harold 2010	-17	24.038	160	0.3	20.802	109	5.2%	-0.67 [-0.92, -0.42]	
Pan 2020	-1.9335	33.80253506	16	14.6946	36.08348238	15	3.2%	-0.46 [-1.18, 0.25]	
Sony 2017	-3.55156832	37.51142016	1881	-0.3116397	31.57908953	1854	5.7%	-0.09 [-0.16, -0.03]	
I noenes 2007	-17	13.9527775	30	0.4	7.99249648	15	3.3%	-1.39 [-2.07, -0.70]	
Subtotal (95% CI)	= 0.16. Chi =	20.21 df = 4/5	21/5	01).1 = 0.004		2085	22.5%	-0.39 [-0.79, 0.00]	
Test for overall effect	: Z = 1.94 (P = 0	.05)	< 0.000	01);1 = 90%)				
1.10.5 FMT									
Loek 2018	0	29.1952096	10	3.867	43.92067834	10	2.6%	-0.10 [-0.98, 0.78]	
Mocanu 2020	-3.76	4.12	11	0	3.92	12	2.7%	-0.90 [-1.77, -0.04]	
Vrieze 2012	-3.867	13.9426668	9	0	7.734	9	2.5%	-0.33 [-1.26, 0.61]	
Subtotal (95% CI)			30			31	7.8%	-0.45 [-0.97, 0.06]	
Heterogeneity: Tau Test for overall effect	= 0.00; Chi = : Z = 1.72 (P = 0	1.73, df = 2 (P .09)	= 0.42); I	= 0%					
Total (95% CI)			2683			2601	100.0%	-0.42 [-0.61, -0.22]	◆
Heterogeneity: Tau	= 0.17: Chi =	132.33 df = 26	6(P<0.0	0001):1 = 80	0%				
Teterogeneity. Tau	· 7 = 4 19 (P < 0	0001)	10.0						-2 -1 0 1 2
OCT TOP OUCPOIL APPA-	. L = 4.19 (P < 0	.0001)							Eavours [experimental] Eavours [control]

CI -0.61 to -0.22, Z = 4.19, p < 0.0001. Significant differences were shown in LDL-C.

trimethylamine (TMA), could disrupt intestinal barrier integrity, which should have been maintained by homeostatic metabolites such as glucagon-like peptide 1 (GLP-1) and GLP-2 (71). When these metabolites circulated into the liver, adipose, and other tissues, endoplasmic reticulum stress in lipid-overloaded adipocytes (73), and/or innate immune Toll-like receptors (TLRs) that signal activation (70) would be invited, leading to the chronic low—grade systematic inflammation (74). Consequently, this chronic inflammation would ultimately bring about metabolism perturbation (75), introducing the occurrence of MetS. The essential role of gut barrier integrity in chronic systematic inflammation-induced metabolic defects.

However, this ensuing chronic systematic inflammation and dysmetabolism could be mediated by microbiome modulation. Probiotics or FMT are conductive to restore disordered microbial function in alleviating obesity, blood lipids, and even inflammation in patients (50, 52). Through our systematic retrieval, we discovered that *Lactobacillus* and *Bifidobacterium* are the most commonly utilized probiotic interventions and displayed anticipated benefits. As mentioned above, patients with MetS showed a sharp decline of gram-positive bacteria but also an increase in gram-negative bacteria. Specific grampositive bacteria, like bile salt-hydrolyzing *Lactobacillus reuteri* strain, can inhibit lipoprotein lipase, the enzyme responsible for TG hydrolysis, and, therefore, against the calorie's uptake from

	Micro	bial therapy			Control			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.9.1 Prebiotics									
Abutair 2018	2.28	8.4277	18	3.33	5.8427	18	3.7%	-0.14 [-0.80, 0.51]	
Jarrar 2021	-0.3	13.09312797	31	-0.1	12.68581885	30	4.1%	-0.02 [-0.52, 0.49]	
Katcher 2008	-1.9	3.6	25	-0.5	3.2	25	3.9%	-0.40 [-0.97, 0.16]	
Lefranc 2010	0	0.0281	16	-0.15	0.4934	44	3.9%	0.35 [-0.23, 0.92]	
Le~ao 2019	-2.4	9.55039266	83	-0.1	11.38463877	71	4.6%	-0.22 [-0.54, 0.10]	
Schioldan 2016	-0.06	0.27	17	-0.03	0.24515301	17	3.6%	-0.11 [-0.79, 0.56]	
Subtotal (0504 CI)			190			205	23.8%	-0.12 [-0.33, 0.08]	◆
Subtotal (95% CI)	- 0.00. ch: -	100 -16 - 5 /0	0.54	- 00/				. , ,	
Heterogeneity: Tau	= 0.00; Chi = 0.	4.08, df = 5 (P =	= 0.54); I	= 0%					
rest for overall effect	. Z = 1.21 (P = 0.	.23)							
1.9.2 Probiotics									
Carmen 2019	0.26735849	10.64891908	53	1.92471698	12.50142401	53	4.4%	-0.14 [-0.52, 0.24]	
Chang 2011	-0.77	6.55	53	0	7.72	48	4.4%	-0.11 [-0.50, 0.28]	
Fabiola 2014	-3	18.34020992	12	2	8.24846331	12	3.2%	-0.34 [-1.15, 0.47]	
Jogchum 2009	-0.7734	5.4138	9	-2.7069	3,4803	9	2.9%	0.40 [-0.53, 1.34]	
Khaider 2013	-7 3473	8.55123028	25	-3 4803	9.37697666	15	3 7%	-0.43 [-1.08, 0.22]	
Luciana 2016	-2	13 0328086	26	-3	9.06629202	25	4 0%	0.09[-0.46, 0.64]	
Rikke 2012	-1.1601	7 76294822	20	-1.1601	8 32079204	23	4.0%	0.00[-0.56, 0.56]	
Vanassa 2015		16 52271164	12	-5	16 64331692	15	3 404	0.12 [-0.63 0.96]	
Subtetel (050/ CI)	-5	10.52211104	218	-5	10.04001000	200	30.00%	-0.08[-0.28_0.11]	•
Subtotal (95% CI)			210			200	50.070	-0.00[-0.20, 0.11]	
Heterogeneity: Tau	= 0.00; Chi =	3.36, df = 7 (P =	= 0.85); I	= 0%					
Test for overall effect	: Z = 0.85 (P = 0	.39)							
1.9.3 Synbiotics									
Arrigo 2020	3.2	3 56791256	30	-0.2	3 57631095	30	4 004	0 94 [0 40 1 47]	
Karim 2020	9 1207	10 59020497	30	2 4902	10 59020497	30	4.070	0.42[.0.08 0.94]	
Coferii 2012	0.1207	2 00244222	30	0.07724	0.03740057	30	4.170	0.05 [0.57 0.49]	
Saravi 2013	-0.19555	2.08244323	29	0.07734	8.03740857	27	4.0%	-0.05 [-0.57, 0.46]	
Samira 2018	-0.9	8.63249674	23	-1.2	5.75499783	23	3.9%	0.04 [-0.54, 0.62]	
Tannaz 2014	1.134	4.82988145	121	0	0.54062476	120	3.2%	2.20 [1.38, 3.03]	
Subtotal (95% CI)			131			129	19.270	0.07 [0.01, 1.52]	
Heterogeneity: Tau	= 0.47; Chi =	25.65, df = 4 (P	< 0.000	1);1 = 84%					
Test for overall effect	: Z = 1.99 (P = 0	.05)							
1.9.4 Microbial metab	olites								
Rorthold 2012	-0.8	11	99	-0.2	17	92	4 604	-0.04 [-0.33, 0.25]	-
Uprold 2012	22.7	20 405	160	-0.2	20 279	100	4.070	1 06 [0 90 1 21]	
Harold 2010	0 5972	42 24401205	160	1.1	11 20200241	109	4.1%	0.16 [0.55, 0.96]	
Pan 2020	0.3672	43.34491305	1001	-4.0404	11.39289341	1054	3.5%	0.10[-0.55, 0.86]	
Sony 2017	21.01334391	23.98608257	1001	1.50010788	21.42116245	1004	4.9%	0.88 [0.82, 0.95]	
Thoenes 2007	8.8	6.45523044	30	-0.3	4.4/995536	2005	3.5%	1.52 [0.82, 2.22]	▲ ·
Subtotal (95% CI)			2175			2085	21.570	0.70[0.27, 1.14]	-
Heterogeneity: Tau	= 0.20; Chi =	46.32, df = 4 (P	< 0.000	01); I = 91%	5				
Test for overall effect	: Z = 3.18 (P = 0	.001)							
1.9.5 FMT									
Look 2018	3 867	7 724	10	0	7 724	10	3 004	0.48 [-0.41 1.27]	
Vriozo 2012	5.807	2.067	10	-3 867	2 067	10	3.0%	0.40[-0.41, 1.37]	
Subtotal (050/ CI)	0	5.807	19	-3.007	5.807	19	5 80%	0.69[0.03, 1.34]	
Subtotal (95% CI)			10			19	0.070	0.05 [0.05, 1.55]	
Heterogeneity: Tau	= 0.00; Chi =	0.49, df = 1 (P = 0.4)	= 0.49); I	= 0%					
lest for overall effect	z = 2.05 (P = 0)	.04)							
Total (95% CI)			2733			2638	100.0%	0.28 [0.03, 0.52]	•
Heterogeneity: Tau	= 0.32; Chi =	230.68, df = 25	(P < 0.0	0001); I = 8	9%			-	
Test for overall effect	: Z = 2.18 (P = 0	.03)							-Z -I U I Z
Test for subgroup diff	ferences: Chi	= 20.29. df = 4	P = 0.00	004). I = 80.3	3 %				Favours (experimental) Favours (control)

FIGURE 6 Comparison of SMD of high-density lipoprotein cholesterol (HDL-C) control between intervention groups and control groups Tau² = 0.32, l^2 = 89%, 95% Cl 0.03 to 0.52, Z = 2.18, p = 0.03. Significant differences were shown in HDL-C.

gut and storage in adipose tissue (72). Moreover, *Lactobacillus* also inhibit angiotensin I-converting enzyme (ACE) activities *via* casein degradation (76, 77), thus, controlling the increase of BP. Additionally, gram-positive microbiota (mainly *Lactobacillus* and *Bifidobacterium*) could degrade complex plant-derived polysaccharides (78) to SCFAs. Subjects that were assigned to be given the small intestinal infusions of allogenic microbiota have showed elevated levels of butyrate-producing intestinal microbiota, along with the increased insulin sensitivity of recipients (45).

In terms of microbial metabolism, the SCFAs of metabolites and nicotinic acid have received great attention. SCFAs serve microbial cross-feeding communities and satisfy some of our daily energy requirements (79). Moreover, they could regulate the immune system through the free fatty acid receptor FFA2R activation (80) and nuclear factor (NF)-kB inhibition (81). In addition, they suppress the lipopolysaccharide-stimulated tumor necrosis factor (TNF) α production from neutrophils (82) and the proinflammatory cytokines formation in human adipose tissue (83). Acetate, propionate, and butyrate represent the most capable SCFAs, and among them, propionate is mainly a substrate for gluconeogenesis, whereas acetate and butyrate are primarily ready for lipogenesis (84). Butyrate, as the principal fuel for intestinal epithelial cells (85), establishes a strong ability to restore gut permeability through activating peroxisomal proliferator-activated receptor (86) and upregulates mucin-associated genes (MUC1-4) expression in intestinal epithelial goblet cells (87). Eventually, the abnormally increased

											1
		Mie	crobial therapy			Control			Std. Mean Difference	Std. Mean Difference	
	Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
	1.2.1 Prebiotics										
	Abutair 2018	-2.54	1.6429	18	0.41	1.2032	18	5.3%	-2.00 [-2.82, -1.19]	+	
	Jarrar 2021	-2.13	12.85262619	31	0.1	17.66720125	30	9.0%	-0.14 [-0.65, 0.36]		
	Le~ao 2019	-5	11.1584049	83	-4.3	11.56762724	71	12.0%	-0.06 [-0.38, 0.26]		
	Louise 2019	0.8	8.81001703	28	0.1	9.00539838	27	8.6%	0.08 [-0.45, 0.61]		
	Subtotal (95% CI)			160			146	35.0%	-0.45 [-1.11, 0.21]		
	Heterogeneity: Tau	= 0.38: C	hi = 20.56. df	= 3 (P =	0.0001	L): I = 85%					
	Test for overall effect:	Z = 1.33	(P = 0.18)	- (.							
			(· · · · · · · · · · · · · · · · · · ·								
	1.2.2 Probiotics										
	Chang 2011	-0.45	2.78	53	0.42	2.78	48	10.7%	-0.31 [-0.70, 0.08]		
	Fabiola 2014	-1.2	10.70676931	12	-0.2	9.75997034	12	5.5%	-0.09 [-0.89, 0.71]		
	Luciana 2016	2	11.40806294	26	2	19.30260086	25	8.3%	0.00 [-0.55, 0.55]		
	Rikke 2012	0.6	7.88098979	27	-0.3	6.32139225	23	8.2%	0.12 [-0.43, 0.68]		
	Vanessa 2015	-1	12	13	0	8.54400374	15	6.0%	-0.09 [-0.84, 0.65]		
	Subtotal (95% CI)			131			123	38.8%	-0.12 [-0.36, 0.13]		
	Heterogeneity: Tau	= 0.00; C	hi = 1.83, df =	= 4 (P =	0.77);1	= 0%					
	Test for overall effect:	: Z = 0.94	(P = 0.35)								
	1.2.2 Cumbiotics										
	1.2.3 SynDiotics	2	5 100150 40	20		4 5025757	20	0.00/	0.00[1.10_0.00]		
	Arrigo 2020	-2	5.19615242	30	0.6	4.5625757	30	8.8%	-0.60 [-1.12, -0.09]		
	Karim 2020	-2.68	9.14801613	30	-0.0	9.74807673	30	8.9%	-0.21 [-0.72, 0.30]		
	Salavi 2013	-1.32	3.35420877	29	0.51	4.57261413	87	26 3%	-0.39 [-0.92, 0.14]	•	
	Subtotal (95% CI)			0.0		0.07	01	20.070	0.40[0.10, 0.10]	-	
	Heterogeneity: Tau	= 0.00; C	ni = 1.13, df =	= 2 (P =)	0.57);1	= 0%					
	Test for overall effect:	: Z = 2.62	(P = 0.009)								
	Total (95% CI)			380			356	100.0%	-0.26 [-0.49, -0.03]	•	
	Heterogeneity: Tau	= 0.09: 0	hi = 25.59. df	= 11 (P	= 0.007	7):1 = 57%					
	Test for overall effect:	Z = 2.19	(P = 0.03)	(-							
	Test for subgroup diff	erences:	Chi = 2.42. d	f=2 (P	= 0.30).	I = 17.3%				Favours [experimental] Favours [control]	
FI	GURE 7 Comparisor	n of SME) of anthropon	netric p	barame	eters between	interve	ention gro	oups and control grou	$IpsTau^2 = 0.09$, $I^2 = 57\%$, 95% CI -0.49 to -0.03 , Z =	
2	19. $p = 0.03$. Significa	nt differ	ence was show	wn in V	VC.				,	, ., .,,	
	, <u>.</u>										

intestinal permeability could be alleviated. Moreover, SCFAs could influence appetite and satiety signals. The intestine expressed some proteins involved in food intake, including peptide YY (PYY), GLP-1, glucose-dependent insulinotropic polypeptide (GIP), the expression of which were induced by SCFAs and mediated by G protein-coupled receptors (Gpr) 43 and Gpr41 (72). SCFAs supplementation could foster the homeostasis of these peptides, sequentially increasing satiety levels and ultimately reducing food and energy intake (88). In line with the results, recent work demonstrated that colonic infusions of SCFAs mixtures in concentrations and ratios reached after fiber intake can increase fat oxidation, energy expenditure, and PYY, and can decrease lipolysis in overweight/obese men (89).

It is worth noting that in our analysis, most studies, including performance evaluation of microbial metabolites, used niacin as an intervention. Niacin supplementation was sufficient to significantly modulate FBG, TG, and HDL-C. According to existing work, niacin could decrease free fatty acids (FFA) concentrations in humans (65); the raise of which could cause a release of inflammatory cytokines and impairment in brachial artery flow-mediated dilation (90). This process targeted the nicotinamide adenine dinucleotide axis *via* stimulation of the salvage pathway and also supported a microenvironment for beneficial expansion of adipocytes and activation state of the resident and recruited macrophages in white adipose tissue. Therefore, this is against the low-grade inflammatory state in the high-fat-diet-induced MetS as introduced by dysfunctional white adipose tissue (91–93).

Prebiotics are non-viable food components that can be fermented by commensal organisms. They could be converted into SCFAs and other beneficial microbial metabolites through bacteria fermentation. Supplementation of prebiotics could create an acidic milieu in the gut, suppressing the growth of pathogenic or opportunistic pathogenic bacteria such as Clostridium perfringens and Escherichia coli (94), however, preferentially stimulating the growth of specific bacteria strains like Lactobacillus and Bifidobacterium (95, 96). Different prebiotics exhibit variant metabolism-regulating effects. From existing pieces of research, the relative solubility of different oligosaccharides or polysaccharides related with cell wall material shared variable digestion rate by bacteria desorbed from the biofilms, and followed by the discrepant SCFAs generation (85). SCFAs serve as initial substrates for hepatic gluconeogenesis and de novo lipogenesis (72), thereby affecting the metabolic results. Therefore, we attributed it to be responsible for our sensitivity analysis result; our study utilized oat bran as a prebiotic intervention, thus setting this as the main factor that influenced the significance of the pooled BMI result.

Our observation that the pooled HOMA-IR and DBP became significant after eliminating the study led by Luciana using *Bifidobacteriumlactis* as probiotic intervention seems to be attributed to the differential ability in carbohydrate metabolism (97). The characteristic types of glycosyl hydrolases in these two bacteria reflected the different types of oligosaccharides that can be fermented (*Lactobacillus* and *Bifidobacterium* digest plant and animal-oriented sugars, respectively) (97). In addition, a high diversity impacting on glucose control by specific species of microbiome from *Lactobacillus* (98, 99) and *Bifidobacterium* (100, 101) was also reported. Admittedly, some of the variances were accounted for by a different approach of an outcome data presentation in Luciana's article, which was manifested as median (25–75%), while the other works mainly utilized mean (SD) or mean (SE).

There are other similar integration studies focused on this subject. In 2016, Sáez-Lara reviewed the effects of probiotics and synbiotics on metabolism-related diseases including MetS, and have reported decreased plasma lipid levels (102). In the same year, Chen et al. (103) suggested an inverse association between dietary fiber intake and the risk of MetS. However, Dong et al. (104) denoted that probiotic treatment alone could not reduce overall health risks in MetS. A similar conclusion was recapitulated with the study by Snelsonet al. (105) through resistant starch intervention. Collectively, existing articles mostly studied the specific species of microbial therapy on MetS with inconsistent conclusions. Hence, this analysis summarized the relevant treatment of MetS and outlined the importance of microbial therapy to improve risk factors for patients affected by MetS. Therefore, this study provided further evidence to the causes of MetS and the core role of microbiome in systematic diseases.

CONCLUSION AND LIMITATIONS

From this analysis, conditioning with microbial therapy presented a favorable effect in controlling BG, blood lipid, and BP. The effect of attenuation in dysmetabolism may be beneficial in the long term for the improvement of MetS or other metabolism-related diseases like diabetes and even other diseases. Due to the relatively single microbial metabolites intervention and the existence of variables like experimental design, the data should be extrapolated more prudently, and further RCTs in various microbial therapy are urgently needed before clinical application.

REFERENCES

- Bakris G, Stockert J, Molitch M, Zhou Q, Champion A, Bacher P, et al. Reduced risk of new-onset diabetes with trandolapril/verapamil-SR in patients with the metabolic syndrome. *Cardiovasc J Afr.* (2007) 18:190. doi: 10.1109/ICICTA.2011.226
- Scholze J, Alegria E, Ferri C, Langham S, Stevens W, Jeffries D. et al. Epidemiological and economic burden of metabolic syndrome and its consequences in patients with hypertension in Germany, Spain and Italy; a prevalence-based model. *BMC Public Health*. (2010) 10:529. doi: 10.1186/1471-2458-10-529
- Pothiwala P, Jain SK, Yaturu S. Metabolic syndrome and cancer. *Metab Syndr Relat Disord*. (2009) 7:279–88. doi: 10.1089/met.2008.0065
- Hirode G, Wong RJ. Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA. (2020) 323:2526–28. doi: 10.1001/jama.2020.4501
- Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. *Nature*. (2016) 529:212–5. doi: 10.1038/nature16504

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Materials**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

XL and ZX: study design and literature search strategy. FW and JS: initial manuscript screening. JS and YC: data extraction and verification. DS and GR: risk-of-bias assessment. BP: statistical analysis. BP and XL: writing of first draft of the manuscript YH and CX: manuscript revision. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the Zhejiang Provincial Natural Science Foundation of China [LY20H180010], the Wenzhou Science and Technology Bureau [Y20180142], the Wenzhou Science and Technology Bureau [Y2020214], the Zhejiang Provincial Medical and Health Science and Technology Project General Project [No. 2019KY461], the Wenzhou Science and Technology Bureau [Y20190060], and the Zhejiang Provincial Public Welfare Technology Research Plan/Social Development Project [LGF20H070003].

ACKNOWLEDGMENTS

We thank Xiangyang Xue for assisting and guiding in the revision of the article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2021. 775216/full#supplementary-material

- Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. *Cell.* (2016) 167:1339–53. doi: 10.1016/j.cell.2016.10.043
- Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. *Nature*. (2012) 487:104–8. doi: 10.1038/nature11225
- Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. *Gut.* (2019) 68:1417–29. doi: 10.1136/gutjnl-2018-317609
- Chassaing B, T. Van de Wiele, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. *Gut.* (2017) 66:1414–27. doi: 10.1136/gutjnl-2016-313099
- Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. *Nature*. (2014) 514:181–6. doi: 10.1038/nature13793

- Lim MY, You HJ, Yoon HS, Kwon B, Lee JY, Lee S, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. *Gut.* (2017) 66:1031–38. doi: 10.1136/gutjnl-2015-311326
- He Y, Wu W, Wu S, Zheng HM, Li P, Sheng HF, et al. Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. *Microbiome*. (2018) 6:172. doi: 10.1186/s40168-018-0557-6
- Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. *Obes Res.* (2005) 13:1000–7. doi: 10.1038/oby.2005.117
- Cho WY, Hong GE, Lee HJ, Yeon SJ, Paik HD, Hosaka YZ, et al. Effect of Yogurt Fermented by Lactobacillus Fermentum TSI and L. Fermentum S2 derived from a mongolian traditional dairy product on rats with high-fat-diet-induced obesity. *Foods.* (2020) 9(5). doi: 10.3390/foods90 50594
- Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. *Nat Med.* (2019) 25:1096–1103. doi: 10.1038/s41591-019-0495-2
- Zhao C, Zhu Y, Kong B, Huang Y, Yan D, Tan H, et al. Dual-Core prebiotic microcapsule encapsulating probiotics for metabolic syndrome. ACS Appl Mater Interfaces. (2020) 12:42586–94. doi: 10.1021/acsami.0c13518
- Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. *Nat Rev Endocrinol.* (2015) 11:577–91. doi: 10.1038/nrendo.2015.128
- Bridgeman SC, Northrop W, Melton PE, Ellison GC, Newsholme P, Mamotte CDS. Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome. *Pharmacol Res.* (2020) 160:105174. doi: 10.1016/j.phrs.2020.105174
- Li YT, Cai HF, Wang ZH, Xu J, Fang JY. Systematic review with metaanalysis: long-term outcomes of faecal microbiota transplantation for clostridium difficile infection. *Aliment Pharmacol Ther.* (2016) 43:445–57. doi: 10.1111/apt.13492
- Hui W, Li T, Liu W, Zhou C, Gao F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. *PLoS ONE.* (2019) 14:e0210016. doi: 10.1371/journal.pone.0210016
- Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. *Gastroenterology*. (2015) 149:110–118 e4. doi: 10.1053/j.gastro.2015.03.045
- Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. *JAMA*. (2019) 321:156–64. doi: 10.1001/jama.2018.20046
- Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. *Lancet.* (2017) 389:1218–28. doi: 10.1016/S0140-6736(17)30182-4
- 24. Mocanu V, Deehan E, Samarasinghe KK, Hotte N, Dang J, Zhang Z, et al. Fermentable vs. non-fermentable dietary fibers differentially modulate responses to fecal microbial transplantation in bariatric patients with metabolic syndrome: a single-center, randomized, double-blind, placebo-controlled pilot trial. *Gastroenterology*. (2020). **158**:S-36-S-37. doi: 10.1016/S0016-5085(20)30775-7
- Allegretti JR, Kassam Z, Hurtado J, Carrellas M, Marchesi J, Mullish BH, et al. Impact of fecal microbiota transplantation on prevention of metabolic syndrome among patients with obesity. *Gastroenterology.* (2020) 158: S-1214-S-1215. doi: 10.1016/S0016-5085(20)33696-9
- Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. *Ann Intern Med.* (2015) 162:777–84. doi: 10.7326/M14-2385
- 27. Gouni-Berthold I, Schulte DM, Krone W, Lapointe JF, Lemieux P, Predel HG, et al. The whey fermentation product malleable protein matrix decreases TAG concentrations in patients with the metabolic syndrome: a randomised placebo-controlled trial. *Br J Nutr.* (2012) 107:1694–706. doi: 10.1017/S0007114511004843

- Linke A, Sonnabend M, Fasshauer M, Höllriegel R, Schuler G, Niebauer J, et al. Effects of extended-release niacin on lipid profile and adipocyte biology in patients with impaired glucose tolerance. *Atherosclerosis.* (2009) 205:207-213. doi: 10.1016/j.atherosclerosis.2008.11.026
- Abutair AS. The Effect of soluble fiber supplementation on metabolic syndrome profile among newly diagnosed type 2 diabetes patients. *Clin Nutr Res.* (2018) 7:31-39. doi: 10.7762/cnr.2018.7.1.31
- Dall'Alba V, Silva FM, Antonio JP, Steemburgo T, Royer CP, Almeida JC, et al. Improvement of the metabolic syndrome profile by soluble fibre—guar gum—in patients with type 2 diabetes: a randomised clinical trial. *Br J Nutr.* (2013) 110:1601–10. doi: 10.1017/S0007114513001025
- 31. Jarrar AH, Stojanovska L, Apostolopoulos V, Feehan J, Bataineh MF, Ismail LC, et al. The effect of gum arabic (Acacia senegal) on cardiovascular risk factors and gastrointestinal symptoms in adults at risk of metabolic syndrome: A randomized clinical trial. *Nutrients*. (2021) 13:1–10. doi: 10.3390/nu13010194
- Johnston KL, Thomas EL, Bell JD, Frost GS, Robertson MD. Resistant starch improves insulin sensitivity in metabolic syndrome. *Diabetic Medicine*. (2010) 27:391–7. doi: 10.1111/j.1464-5491.2010.02923.x
- 33. Kassi E. Long-term effects of Stevia rebaudiana on glucose and lipid profile, adipocytokines, markers of inflammation and oxidation status in patients with metabolic syndrome. *Diabetes therapy.* (2016) 545-EP. doi: 10.1530/endoabs.41.EP545
- Katcher, H.I. The effects of a whole grain– enriched hypocaloric diet on cardiovascular disease risk factors in men and women with metabolic syndrome. *Am J Clin Nutr.* (2008) 87:79–90. doi: 10.1093/ajcn/87.1.79
- 35. Lankinen M, Schwab U, Kolehmainen M, Paananen J, Poutanen K, Mykkänen H, et al. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the sysdimet study. *PLoS ONE.* (2011) 6:8. doi: 10.1371/journal.pone.0022646
- 36. Leão L, Aquino LA, Dias JF, Koifman RJ. Addition of oat bran reduces HDL-C and does not potentialize effect of a low-calorie diet on remission of metabolic syndrome: a pragmatic, randomized, controlled, open-label nutritional trial. *Nutrition*. (2019) 65:126-130. doi: 10.1016/j.nut.2019.03.007
- Lefranc-Millot, C. Effects of a soluble dietary fiber supplementation with NUTRIOSE[®] on risk factors of the metabolic syndrome in Chinese male adults. *Obesity Rev.* (2010) 10:438.
- Robertson MD, Wright JW, Loizon E, Debard C, Vidal H, Shojaee-Moradie F, et al. Insulin-sensitizing effects on muscle and adipose tissue after dietary fiber intake in men and women with metabolic syndrome. *J Clin Endocrinol Metab.* (2012) 97:3326–32. doi: 10.1210/jc.2012-1513
- 39. Schioldan AG, Gregersen S, Hald S, Bjørnshave A, Bohl M, Hartmann B, et al. Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome. *Eur J Nutr.* (2018) 57:795–807. doi: 10.1007/s00394-016-1369-8
- Chang BJ, Park SU, Jang YS, Ko SH, Joo NM, Kim SI, et al. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome. *Eur J Clin Nutr.* (2011) 65:1250–5. doi: 10.1038/ejcn.2011.115
- Leber B, Tripolt NJ, Blattl D, Eder M, Wascher TC, Pieber TR, et al. The influence of probiotic supplementation on gut permeability in patients with metabolic syndrome: An open label, randomized pilot study. *Euro J Clinic Nutri*. (2012) 66:1110–15. doi: 10.1038/ejcn.2012.103
- Pan BH, Liu XJ, Shi JM, Chen YX, Xu ZH, Shi DB, et al. A meta-analysis of microbial therapy against metabolic syndrome: evidence from randomized controlled trials *Dataset*. (2021) 5:21. doi: 10.6084/m9.figshare.16571289
- 43. Tripolt NJ, Leber B, Blattl D, Eder M, Wonisch W, Scharnagl H, et al. Short communication: effect of supplementation with lactobacillus casei shirota on insulin sensitivity, β -cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome-a pilot study. *J Dairy Sci.* (2013) 96:89–95. doi: 10.3168/jds.2012-5863
- 44. Safavi M, Farajian S, Kelishadi R, Mirlohi M, Hashemipour M. The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. *Int J Food Sci Nutr.* (2013) 64:687–93. doi: 10.3109/09637486.2013.775224
- Vrieze A. Transfer intestinal microbiota from lean donors increases insulin sitivity in individuals with metabolic syndrome. *Gastroenterology*. (2012) 143:913–6. doi: 10.1053/j.gastro.2012.06.031

- 46. König D, Theis S, Kozianowski G, Berg A. Postprandial substrate use in overweight subjects with the metabolic syndrome after isomaltulose (PalatinoseTM) ingestion. *Nutrition.* (2011) 28:651–6. doi: 10.1016/j.nut.2011.09.019
- 47. Kjølbæk L, Benítez-Páez A, Gómez del Pulgar EM, Brahe LK, Liebisch G, Matysik S, et al. Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects on gut microbiota and metabolic markers in overweight individuals with signs of metabolic syndrome: a randomized cross-over trial. *Clinic Nutri*. (2020) 39:67–79. doi: 10.1016/j.clnu.2019.01.012
- Gøbel RJ, Larsen N, Jakobsen M, Mølgaard C, Michaelsen KF. Probiotics to adolescents with obesity: effects on inflammation and metabolic syndrome. *J Pediatr Gastroenterol Nutr.* (2012) 55:673–8. doi: 10.1097/MPG.0b013e318263066c
- Sharafedtinov KK. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—a randomized double-blind placebo-controlled pilot study. *Nutri J.* (2013) 12:138. doi: 10.1186/1475-2891-12-138
- Barreto FM, Colado Simão AN, Morimoto HK, Batisti Lozovoy MA, Dichi I, Helena da Silva Miglioranza L. Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. *Nutrition*. (2014) 30(7-8):939-942. doi: 10.1016/j.nut.2013.12.004
- Stadlbauer V, Leber B, Lemesch S, Trajanoski S, Bashir M, Horvath A, et al. Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: a randomized pilot study. *PLoS ONE*. (2015) 10:e0141399. doi: 10.1371/journal.pone.0141399
- Bernini LJ, Simão AN, Alfieri DF, Lozovoy MA, Mari NL, de Souza CH, et al. Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. effects of probiotics on metabolic syndrome. *Nutrition*. (2016) 32:716–9. doi: 10.1016/j.nut.2015.11.001
- Rezazadeh L, Gargari BP, Jafarabadi MA, Alipour B. Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. *Nutrition*. (2018) 62:162–8. doi: 10.1016/j.nut.2018.12.011
- Tenorio-Jiménez C, Martínez-Ramírez MJ, Del Castillo-Codes I, Arraiza-Irigoyen C, Tercero-Lozano M, Camacho J, et al. Lactobacillus reuteri V3401 reduces inflammatory biomarkers and modifies the gastrointestinal microbiome in adults with metabolic syndrome: the prosir study. *Nutrients*. (2019) 11(8). doi: 10.3390/nu11081761
- 55. Eslamparast. T, Zamani F, Hekmatdoost A, Sharafkhah M, Eghtesad S, Malekzadeh R, et al. Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: a randomised, doubleblind, placebo-controlled pilot study. *Br J Nutr.* (2014) 112:438–45. doi: 10.1017/S0007114514000919
- 56. Rabiei S, Hedayati M, Rashidkhani B, Saadat N, Shakerhossini R. The effects of synbiotic supplementation on body mass index, metabolic and inflammatory biomarkers, and appetite in patients with metabolic syndrome: a triple-blind randomized controlled trial. *J Diet Suppl.* (2019) 16:294–306. doi: 10.1080/19390211.2018.1455788
- 57. Cicero AFG, Fogacci F, Bove M, Giovannini M, Borghi C. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: a randomized placebo-controlled clinical trial. *Euro J Nutri*. (2020) 1:8. doi: 10.1007/s00394-020-02271-8
- Parastouei. K, Saeidipoor S, Sepandi M, Abbaszadeh S, Taghdir M. Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: a double-blind randomised controlled trial. *BMJ Military Health.* (2020). doi: 10.1136/bmjmilitary-2020-001459
- 59. Thoenes M, Oguchi A, Nagamia S, Vaccari CS, Hammoud R, Umpierrez GE, et al. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. *Int J Clin Pract.* (2007) 61:1942–8. doi: 10.1111/j.1742-1241.2007.01597.x
- Plaisance EP. Postprandial triglyceride responses to aerobic exercise and extended-release niacin. Am J Clin Nutr. (2008) 88:30–7. doi: 10.1093/ajcn/88.1.30
- Bays HE, Shah A, Lin J, McCrary Sisk C, Paolini JF, Maccubbin D. Efficacy and tolerability of extended-release niacin/laropiprant in dyslipidemic patients with metabolic syndrome. *J Clin Lipidol.* (2010) 4:515–21. doi: 10.1016/j.jacl.2010.08.020

- Shearer GC, Pottala JV, Hansen SN, Brandenburg V, Harris WS. Effects of prescription niacin and omega-3 fatty acids on lipids and vascular function in metabolic syndrome: a randomized controlled trial. *J Lipid Res.* (2012) 53:2429–35. doi: 10.1194/jlr.P022392
- Tuteja S, Wang L, Dunbar RL, Chen J, DerOhannessian S, Marcovina SM, et al. Genetic coding variants in the niacin receptor, hydroxyl-carboxylic acid receptor 2, and response to niacin therapy. *Pharmacogenet Genom.* (2017) 27:285–93. doi: 10.1097/FPC.000000000000289
- Adiels M, Chapman MJ, Robillard P, Krempf M, Laville M, Borén J. Niacin action in the atherogenic mixed dyslipidemia of metabolic syndrome: Insights from metabolic biomarker profiling and network analysis. J Clin Lipidol. (2018) 12:810–821.e1. doi: 10.1016/j.jacl.2018.03.083
- Aday AW, Goldfine AB, Gregory JM, Beckman JA. Impact of acipimox therapy on free fatty acid efflux and endothelial function in the metabolic syndrome: a randomized trial. *Obesity.* (2019) 27:1812–9. doi: 10.1002/oby.22602
- 66. Pan R, Xu T, Bai J, Xia S, Liu Q, Li J, et al. Effect of Lactobacillus plantarum fermented barley on plasma glycolipids and insulin sensitivity in subjects with metabolic syndrome J Food Biochem. (2020) 20:e13471. doi: 10.1111/jfbc.13471
- 67. Smits LP, Kootte RS, Levin E, Prodan A, Fuentes S, Zoetendal EG, et al. Effect of vegan fecal microbiota transplantation on carnitine- and cholinederived trimethylamine-n-oxide production and vascular inflammation in patients with metabolic syndrome. J Am Heart Assoc. (2018) 7:7. doi: 10.1161/JAHA.117.008342
- Valdes AM, Walter J, Segal E, Spector role of the gut microbiota in nutrition and health. BMJ. (2018) 361:k2179. doi: 10.1136/bmj.k2179
- Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature*. (2010) 464:59–65. doi: 10.1038/nature08821
- Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. *Diabetes*. (2007) 56:1761–72. doi: 10.2337/db06-1491
- Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest. (2019) 129:4050–57. doi: 10.1172/JCI129194
- Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. *Mol Metab.* (2016) 5:759–70. doi: 10.1016/j.molmet.2016.06.002
- Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. *Sci Rep.* (2012) 2:799. doi: 10.1038/srep00799
- Hawkesworth S, Moore SE, Fulford AJ, Barclay GR, Darboe AA, Mark H, et al. Evidence for metabolic endotoxemia in obese and diabetic Gambian women. *Nutr Diabetes*. (2013) 3:e83. doi: 10.1038/nutd.2013.24
- Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. *Diabetes*. (2008) 57:1470–81. doi: 10.2337/db07-1403
- Minervini F, Algaron F, Rizzello CG, Fox PF, Monnet V, Gobbetti M. Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from Lactobacillus helveticus PR4 proteinase-hydrolyzed caseins of milk from six species. *Appl Environ Microbiol.* (2003) 69:5297–305. doi: 10.1128/AEM.69.9.5297-5305.2003
- Hayes M, Stanton C, Slattery H, O'Sullivan O, Hill C, Fitzgerald GF, et al. Casein fermentate of Lactobacillus animalis DPC6134 contains a range of novel propeptide angiotensin-converting enzyme inhibitors. *Appl Environ Microbiol.* (2007) 73:4658–67. doi: 10.1128/AEM.00096-07
- Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. (2012) 9:577–89. doi: 10.1038/nrgastro.2012.156
- Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. *Gut.* (2016) 65:330–9. doi: 10.1136/gutjnl-2015-309990
- Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by shortchain fatty acids. *Biochem Biophys Res Commun.* (2003) 303:1047–52. doi: 10.1016/S0006-291X(03)00488-1
- Luhrs H, Gerke T, Muller JG, Melcher R, Schauber J, Boxberge F, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of

patients with ulcerative colitis. Scand J Gastroenterol. (2002) 37:458-66. doi: 10.1080/003655202317316105

- Tedelind S, Westberg F, Kjerrulf M, Vidal A. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. *World J Gastroenterol.* (2007) 13:2826–32. doi: 10.3748/wjg.v13.i20.2826
- Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A, et al. Regulation of adipokine production in human adipose tissue by propionic acid. *Eur J Clin Invest.* (2010) 40:401–7. doi: 10.1111/j.1365-2362.2010.02278.x
- den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. *Am J Physiol Gastrointest Liver Physiol.* (2013) 305:G900–10. doi: 10.1152/ajpgi.00265.2013
- Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. (2011) 45:S120–7. doi: 10.1097/MCG.0b013e31822fecfe
- Kinoshita M, Suzuki Y, Saito Y. Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation. *Biochem Biophys Res Commun.* (2002) 293:827–31. doi: 10.1016/S0006-291X(02)00294-2
- Gaudier E, Jarry A, Blottiere HM, de Coppet P, Buisine MP, Aubert JP, et al. Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. *Am J Physiol Gastrointest Liver Physiol.* (2004) 287:G1168–74. doi: 10.1152/ajpgi.00219.2004
- Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. *Diabetes*. (2012) 61:364–71. doi: 10.2337/db11-1019
- Canfora EE, van der Beek CM, Jocken JWE, Goossens GH, Holst JJ, Olde Damink SWM, et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. *Sci Rep.* (2017) 7: (2360). doi: 10.1038/s41598-017-02546-x
- 90. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. *Diabetes*. (2003) 52:2882–7. doi: 10.2337/diabetes.52.12.2882
- Ivanov S, Merlin J, Lee MKS, AJ, Murphy R, Guinamard R. Biology and function of adipose tissue macrophages, dendritic cells and B cells. *Atherosclerosis.* (2018) 271:102–10. doi: 10.1016/j.atherosclerosis.2018.01.018
- Kumari M, Heeren J, Scheja L. Regulation of immunometabolism in adipose tissue. Semin Immunopathol. (2018) 40:189–202. doi: 10.1007/s00281-017-0668-3
- 93. Montserrat-de la Paz S, Naranjo MC, Millan-Linares MC, Lopez S, Abia R, Biessen EAL, et al. Monounsaturated fatty acids in a high-fat diet and niacin protect from white fat dysfunction in the metabolic syndrome. *Mol Nutr Food Res.* (2019) 63:e1900425. doi: 10.1002/mnfr.201900425
- 94. Kaur N, Gupta AK. Applications of inulin and oligofructose in health and nutrition. J Biosci. (2002) 27:703–14. doi: 10.1007/BF027 08379
- Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. *Br J Nutr.* (2010) 104 Suppl 2:S1–63. doi: 10.1017/S0007114510003363
- 96. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, et al. Selective increases of bifidobacteria in gut microflora

improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. *Diabetologia*. (2007) 50:2374–83. doi: 10.1007/s00125-007-0791-0

- Satti M, Tanizawa Y, Endo A, Arita M. Comparative analysis of probiotic bacteria based on a new definition of core genome. *J Bioinform Comput Biol.* (2018) 16:1840012. doi: 10.1142/S0219720018400127
- Karlsson FH, Tremaroli V, Nookaew I, Bergstrom G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. *Nature*. (2013) 498:99–103. doi: 10.1038/nature12198
- 99. Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. *Nature*. (2015) 528:262–6. doi: 10.1038/nature15766
- 100. Sasaki M, Ogasawara N, Funaki Y, Mizuno M, Iida A, Goto C, et al. Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: a randomized double-blind, placebo-controlled study. *BMC Gastroenterol.* (2013) 13:81. doi: 10.1186/1471-230X-13-81
- 101. Gao R, Zhu C, Li H, Yin M, Pan C, Huang L, et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity. (2018) 26:351–361. doi: 10.1002/oby.22088
- 102. Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. *Int J Mol Sci.* (2016) 17:6. doi: 10.3390/ijms17060928
- 103. Chen JP, Chen GC, Wang XP, Qin L, Bai Y. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. *Nutrients*. (2017) 10(1). doi: 10.3390/nu10010024
- 104. Dong Y, Xu M, Chen L, Bhochhibhoya A. Probiotic foods and supplements interventions for metabolic syndromes: a systematic review and metaanalysis of recent clinical trials. *Annals Nutri Metabol.* (2019) 74:224–41. doi: 10.1159/000499028
- 105. Snelson M, Jong J, Manolas D, Kok S, Louise A, Stern R, et al. Metabolic effects of resistant starch type 2: a systematic literature review and meta-analysis of randomized controlled trials. *Nutrients*. (2019) 11:8. doi: 10.3390/nu11081833

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Pan, Liu, Shi, Chen, Xu, Shi, Ruan, Wang, Huang and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.