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1. INTRODUCTION

Molecular similarity [1–4] follows, in principle, a simple idea: molecules

which are similar to each other exhibit similar properties more often than

dissimilar pairs of molecules. This is often written as the relationship

Property ¼ f ðStructureÞ
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Which leaves open two major questions:
1.
 How to represent molecular structure (the connectivity table or the coordi-

nates of atoms are not per se suitable choices)?
2.
 What is the functional form between structure (or rather structural repre-

sentation) and the property under consideration so that we can derive an

empirical measure of similarity?
In order to explicitly include both challenges mentioned one can refor-

mulate to give

mðPropertyÞ ¼ f ðgðStructureÞÞ

where m is the measurement outcome of a molecular property concept

(such as log P as a surrogate measure of ‘lipophilicity’), g represents the

transformation of a molecular structure into a ‘descriptor’ which is ame-

nable to a statistical analysis or machine-learning treatment and f con-
nects experimental measurement and structural representation. Both

steps are generally independent of each other, although some combina-

tions of molecular representation and model generation technique are

more sensible than others.

The problem in establishing a suitable function g, which translates a

molecular structure into a descriptor representation, is that it is usually not

known a priori which molecular features contribute to a certain property.

For example, some functional groups in ligand–receptor binding will es-

tablish ligand–receptor interactions, while others simply point into bulk

solvent. Often a large number of descriptors need to be calculated in order

to (hopefully) capture the relevant factors for a certain molecular property,

since often no direct experimental observation is known.

The problem in establishing a function f, which correlates descriptor

representation and property is that its functional form is also usually not

known. Again, no underlying theory exists and its character can vary bet-

ween two extremes. Linear regression, for example, represents a simple

functional form between input and output variables with the advantage of a

very small number of free parameters – and following Occam’s razor it

should be applied in cases where there is a sound physical reason to

believe in an underlying linear relationship between input and output var-

iables. At the other end, neural networks are able to model any (also non-

linear) relationships between input and output variables. However, they

depend on a large number of variables, which may lead to spurious cor-

relations. Often the choice of a functional form, in the absence of physical

laws, is governed simply by trial-and-error.
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The problems in establishing the optimal choice of f and g are increased

by the fact that the relationship between structure and measured property

(the only relationship available from experimental data!) is rarely given

over a large region of chemical space. Data are sparse – estimations of

the size of the chemical space for typical drug molecules [5] (up to 30

heavy atoms) are in the region of 1060, experimental datasets on a prop-

erty of interest are rarely available for more than 106 compounds and are

often considerably smaller.

A solution to the problem of identifying the ‘best’ molecular descriptor

will never be fully established – for both practical reasons (the limited size

of datasets) and theoretical reasons. A wide variety of different features

are important for each property and the functional forms between de-

scriptor representation and property can usually not be established from

physical laws (and thus cannot be optimized analytically).

Still, we can establish empirical measures of molecular similarity to

predict some particular properties better than others, tested on some of

the more or less restricted datasets available. This review deals with both

novel molecular representations, function g from above, as well as novel

model generation and machine learning methods, function f from above.

As soon as a relationship between molecular representation and a par-

ticular property’s values is established a crucial question arises: how good

are predictions for novel molecules?

Ideally, all of chemical space would be covered with zero error.
Limits in descriptor generation as well as in experimentally available

data clearly prevent us from reaching this goal. Still, in order to establish

confidence in models in practical settings, this requirement can be re-

placed by the question:

Which area of chemical space is covered with acceptable error?
Different methods (best known among them are approaches like cross-

validation), attempt to provide empirical answers to this question. Intui-

tively one might guess that for the question which region is covered by a

given model, the distance of compounds from the training set to the novel

compounds whose properties are to be predicted is relevant. This is in-

deed the case, as has been established in recent articles (see Section 4).

The question of how good predictions for novel compounds are is often

established by cross-validation, where portions of the available datasets

are, in turn, taken as an external test set, while the remainder of the

dataset is used for training purposes. The test set thus attempts to sim-

ulate a novel set of molecules, unknown to the training phase of the model

and root-mean-square errors (RMSE) or cross-validated correlation co-

efficients (q2) on the test set are often reported as a measure of the

generalizability of models. Recently, it has emerged that cross-validation
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actually shows merely that a model is internally consistent, but not nec-
essarily predictive for new compounds. The question of how reliability of

models can be assured is also discussed in Section 4, and indeed several

recent publications propose approaches to determine the ‘domain’ of

models (the area in which they are applicable, see Section 4 for details).

Conventionally, enrichment over random selection is often cited, giving

an estimate of how many more active compounds are retrieved from a

database than by pure chance. While this measure is correct in the way it

is calculated, more recently the performance of ‘sophisticated’ fingerprints

has been compared to trivial features, namely counts of atoms by ele-

ment, without any structural information [6]. The performance ratio of

‘state-of-the-art’ methods (i.e., circular fingerprints and Unity fingerprints)

to those ‘dumb’ descriptors can then be interpreted as the ‘added value’ of

more sophisticated methods. Soberingly, on many datasets of actives

‘real’ fingerprints do not perform significantly better than atom counts (see

Fig. 1).

This also relates to the suitability of current databases employed for

retrospective virtual screening runs, which are often derived from the

MDDR [7,8]. While on the one hand, multiple activity classes are present,

those datasets still possess two major disadvantages; first, no information

about definite inactivity of compounds is contained in the database. Still, if

experimental data for retrieved hits are subsequently obtained, many of the

‘false-positive’ predictions may well be active. Second, following bioisoste-

ric considerations in combination with ‘fast follower’ approaches to syn-

thesis, it should be noted that this database contains a large number of

close analogues. The hit rates obtained on this dataset may thus be overly

optimistic compared to real-world libraries employed for virtual screening.

Still, the two databases referenced above, which are both subsets of the

MDDR, were very important as they enabled comparison of similarity

searching approaches on multiple, identical datasets. We would also like to

emphasize that more suitable datasets are too often – unfortunately –

unavailable from the pharmaceutical and biotechnology companies.

In the following sections, we will also cover other recent developments in

some of the areas, which exploit the ‘molecular similarity principle’. Section

3 will present novel approaches to capture molecular properties by the use

of novel ‘descriptors’. Since molecular descriptors and the methods used to

analyze the data they represent cannot be separated easily, the second

part of this section also covers novel data analysis methods. Section 4

focuses on a crucial aspect of computational models – their validity. In the

previous few years, about two dozen publications that focused on ‘model

validation’ have appeared, an area which shall be summarized in this



Fig. 1. Comparison of retrieval rates of established descriptors, namely
Unity and circular (MOLPRINT 2D) fingerprints, to ‘dumb’ atom counts.
The added value of real descriptors is present in most sets of active
compound, although not in all and in many cases only showing low single-
digit improvement. Reprinted with permission from J. Chem. Inf. Comput.
Sci., 2005, 45, 1372. Copyright 2006 American Chemical Society.
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review. Finally, Sections 5 and 6 turn to the application of the methods

described earlier. In Section 5, we discuss additional ways to examine data

available such as those from high-throughput screening (HTS) campaigns

and to gain more knowledge from this data. Section 6 describes some of

the recent applications of methods described in the preceding sections,

focusing on successes of virtual screening applications, database cluster-

ing and comparisons (such as drug- and in-house-likeness) and recent

large-scale validations of docking and scoring programs.
2. NOVEL METHODS

We will now describe some of the recent developments in the calculation

of molecular descriptors.
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2.1. Molecular descriptors

POT-DMC [9] (short for POTency-scaled Dynamic Mapping of Consensus

positions) takes not only the (binary) activity of a compound into consid-

eration for virtual screening applications, but also the quantitative activity

of a structure. Accordingly, each bit of the descriptor vector (which con-

sists of a combination of one-, two- and three-dimensional (1D, 2D and

3D) features) is multiplied depending on the IC50 value of the compound.

Scaled bits are summed and normalized at each position. Afterward, the

descriptor can be used for virtual screening. When applied to a database

of CCR5 chemokine receptor antagonists, serotonin receptor agonists and

gonadotropin-releasing hormone agonists, the method overall did not re-

trieve a larger number of structures – but those which were retrieved were,

as intended, of higher activity than in cases where no scaling according to

activity was applied.

The FEPOPS[10] (Feature Points of PharmacophoreS) descriptor aims

to exploit a (relative) advantage of 3D descriptors, the ability to discover

novel scaffolds against a given target, based on active sample structures.

After generation of tautomers and conformers, k-means clustering of

atomic coordinates is performed. Thus, no knowledge about the active

conformation of a structure is necessary. Interaction types are assigned to

characteristic ‘feature points’ in a subsequent step, and are again subject

to k-medoids clustering to reduce redundant conformer coverage. Cluster

representatives can now be used for similarity searching. Validations are

presented using both MDDR (Cox-2, HIV-RT and 5HT3A inhibitors and

ligands, respectively) and in-house datasets. In addition, it was shown that

inhibitors can be identified from a database, based simply on endogenous

ligands (for dopamine and retinoic acid).

A completely different path is followed by the LINGO [11] approach,

which is based on a textual representation of molecules. Based on the

SMILES string of a structure, and without time-consuming conversion and

descriptor generation, a molecule is represented by a set of overlapping

‘LINGOs’, each of which represents a substring of the complete SMILES

structure. While being a straightforward concept (in the best possible

sense), favorable performance is presented on log P and solubility data-

sets, where cross-validated RMS errors are 0.61 and 0.89 log units, re-

spectively. The descriptor also shows applicability to bioactivity, where

significant discrimination between bioisosteres and random functional

groups can be observed.

Reduced graph descriptors have been the subject of interest for a con-

siderable time, and recently further work was performed in this area with

success. Earlier comparison algorithms of reduced graphs represent the
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graph as a binary fingerprint, sometimes leading to molecules perceived

as similar by the algorithm, which are not similar to the eyes of most

chemists. This problem was recently addressed [12] by applying ‘edit

distance’ measures to the similarity of compounds – the number of op-

erations needed to transform one reduced graph structure of a molecule

into another. Through this emphasis of not only the fragments present in

reduced graphs, but also the way in which they are connected, better

agreement with the human perception of ‘molecular similarity’ could be

achieved.

Molecular binding can be thought of as being mediated by complemen-

tary shapes and matching properties – where, due to solvation and other

effects, ‘matching’ does not only mean complementarity. Accordingly, a

‘Shape Fingerprint’ method has recently been presented [13] which im-

plements shape similarity measures akin to volume overlap methods, but

which, due to the employment of database-derived reference shapes, is

several orders of magnitude faster. (Note of course that shape also plays

an important role in other areas of science [14].) Employing Gaussian

descriptions of molecular shape, about 500 shape comparisons can be

performed per second and the resulting shape similarity was shown to be

useful in virtual screening applications.

Only some parts of a ligand bound to its target will actually interact with

the target, other parts will just be pointing into the bulk solvent. By anal-

yzing the variability of ligands’ regions, features which correspond to each

of the regions can be inferred – molecular features which are involved in

ligand–target interactions will be more highly conserved than those which

point into the solvent, due to the stricter requirements imposed on them.

The ‘Weighted Probe Interaction Energy (WeP) Method’ [15] exploits ex-

actly this principle, and can be used to derive ligand-based receptor

models. This was applied to the steroid dataset (which is well known from

CoMFA studies) a set of dihydrofolate reductase (DHFR) inhibitors as well

as hydrophobic chlorinated dibenzofurans. In particular, the DHFR model

was able to elucidate interactions relevant to binding which very closely

resemble the target-derived model complex.

Previously applied to the calculation of inter-substituent similarities,

which might be exploited for the identification of bioisosteric groups [16],

the R-group descriptor (RGD) was more recently also the subject of QSAR

investigations [17]. The RGD describes the distribution of atomic properties

at a distance of n bonds (n ¼ 1, 2, 3y) away from a core that is common

to a series of compounds. In combination with partial least squares the

descriptor was applied to several datasets for QSAR studies, comprising

of benzodiazepin-2-ones active at GABAA, triazines exhibiting anticoc-

cidal activity and a set of tropanes active at serine, dopamine and
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norepinephrine transporters. RGDss in combination with PLS

showed comparable performance overall to HQSAR and EVA models in

a cross-validation study, in some cases outperforming the other QSAR

approaches.

Another alignment-free method for the time-efficient generation of

QSAR models is Fingal [18] (a short and straightforward acronym for

‘Fingerprint Algorithm’). Unlike RGDs, a hashed fingerprint is generated

which encodes structural features of the molecule, where distances may

be measured either topologically or by employing spatial information be-

tween atoms. Applied to D2 ligands, the 2D version of Fingal, in particular,

was able to outperform CoMFA- and CoMSIA-based approaches. For

estrogen ligands, performance was highly dependent on the structural

class of compounds, not only for Fingal but also for models based on

CoMFA, HQSAR, FRED/SKEYS (Fast Random Elimination of Descrip-

tors/Substructure Keys) and Dragon descriptors. In subsets such as a

pesticide subset, no model was obtained via CoMFA (correlation coeffi-

cient of zero), whereas Fingal gave correlation coefficients as high as 0.85

in a cross-validation study.

The GRID force field [19] has been the basis of a number of descriptors

developed recently, among the best-known ones being the GRIND de-

scriptor [20]. Some extensions of the descriptor have been presented

recently, which include the incorporation of shape [21] into the descriptor.

It was recognized that molecular shape is a major factor determining lig-

and–receptor binding, a property that was previously not emphasized

enough by the original GRIND descriptors. This was due to the fact that

only maximum products of interactions are incorporated into the descrip-

tor, omitting large lipophilic features which do not contribute significantly to

calculated interaction energies with probes, but might still have profound

influence on binding through steric effects. Introducing the new ‘TIP’ probe

(which is not a probe in the traditional sense but a measure of curvature of

the molecular surface) led to significant improvements in QSAR studies of

adenosine receptor antagonists (of the xanthine structural class) and

Plasmodium falciparum plasmepsin inhibitors being observed. Interest-

ingly, TIP–TIP correlations were also found to be the most significant

descriptors in case of A1 antagonists, showing the importance of the

shape descriptor on this class. The second development was the ‘anchor-

GRIND’ approach [22], which focuses on user-defined features to calcu-

late a distribution of interaction points relative to it, thereby incorporating

pre-existing biological knowledge about a target. Models are found to be

both of better quality and easier to interpret on congeneric series of hepa-

titis C virus NS3 protease and of acetylcholinesterase inhibitors, as well as

more discriminatory between factor Xa inhibitors of both high and low
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affinity. A virtual screening methodology also based on the GRID force

field was developed recently [23]. This method was validated on a large

dataset containing thrombin inhibitors and also showed potential to select

suitable replacements for scaffolds typically encountered in the lead op-

timization stage.

A molecular ‘descriptor’ which actually does not employ an explicit

transformation of the molecular structure into descriptor space was re-

cently presented [24]. It employs a graph kernel description of the struc-

ture in combination with support vector machines (SVMs) for regression

analysis. The computational burden is alleviated through employing a

Morgan index process as well as the definition of a second-order Markov

model for random walks on 2D structures. The method was then validated

on two mutagenicity datasets. While already exhibiting the ability to cap-

ture molecular features responsible for bioactivity (here mutagenicity) in

its current form, future developments might include more abstract repre-

sentations of the molecular scaffold such as some form of reduced graph

representation.

While the bioinformatics area has a multitude of methods which can be

applied to the analysis on 1D representations of protein sequences and

DNA, due to branching and cyclization the case is far more difficult for

small molecules. One of the few 1D representations of molecules [25],

based on multidimensional scaling of the structure from 3D into 1D space,

has more recently been extended to allow for the alignment of multiple

structures [26]. Applied to SKC kinase ligands as well as hERG channel

blockers, significant improvement in retrieval rates could be observed in a

retrospective study if multiple (in this case 10) ligands were used for

screening. The concept of Feature Trees was also recently extended to

allow for the incorporation of knowledge derived from multiple ligands into

a single query [27], and retrospective screening results on ACE inhibitors

as well as adrenergic a1a receptor ligands showed considerable improve-

ments over searches using single queries, both in terms of enrichments as

well as the diversity of structures identified.

When structures are encoded in a discrete fashion, ‘binning’ is often

employed in order to convert real-valued distance ranges into binary pres-

ence/absence features. This approach is followed in, for example, the

CATS autocorrelation descriptor in its 3D version (CATS3D) [28]. However,

binning borders may introduce artifacts such that feature distances close to

each other but on opposites sides of bin borders being perceived to be as

different from each other (simply since features do not match) as much

more distant features. Accordingly, a related descriptor termed ‘SQUID’

was recently introduced which incorporates a variable degree of fuzziness

[29]. Applied to Cox-2 ligands considerable retrieval improvement was
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observed, with best performance at intermediate degrees of fuzziness.

Using Cox-2 ligands as well as thrombin inhibitors in combination with

graph-based potential pharmacophore point triangles, typed according to

interaction types, features responsible for ligand-target binding could be

identified [30]. In addition, prospective screening was performed and a

benzimidazole identified as a potent Cox-2 inhibitor was experimentally

found to be active in a cellular assay with high affinity (IC50 ¼ 200nm).

The ultimate descriptor, in the realm of virtual screening, is the response

of the biological system. While structure-derived descriptors are quick and

(usually) easy to calculate, they are not the final goal – it is the effect that

the compound has in a ‘real world’ setting. Using those biological effects

as descriptors, namely percent inhibition values across a range of 92

targets for a number of 1567molecules, the ‘biospectra similarity’ (the

similarity of effects on the respective targets) was established via hier-

archical clustering [31]. It was found that biospectra similarity provides a

solid descriptor for forecasting activities of novel compounds and this was

validated by removal of some important target classes after which clus-

tering of compounds was overall still very stable. While the response of

single targets is already a step toward biology, protein readouts of cell

cultures [32] also incorporate cell signaling networks, thus stepping even

closer to whole organism systems (of course at the price of increased

complexity and cost involved). Also based on biological response data

(phenotypic screening) a ‘class scoring’ technique was recently developed

[33], which does not assign binary (hit/non-hit) activities to individual

compounds but to classes of compounds instead. This way, more robust

assignments are achieved as well as a lower number of false-positive

predictions.
2.2. Data analysis and model generation

SVMs have been previously used for distinguishing, for example, between

drug- and non-drug-like structures [34] and recently have been applied in

virtual screening [35,36]. Using DRAGON descriptors and a modification

of the traditional SVM to rank molecules (instead of just classifying them),

performance was in this study [35] validated on inhibitors (or ligands) of

cyclin-dependent kinase 2, cyclooxygenase 2, factor Xa, phosphodiest-

erase-5 and of the a1a adrenoceptor. Compared to methods such as Bi-

nary Kernel Discrimination in combination with JChem fingerprints the new

approach was found to be superior. The ability of lead hopping was also

demonstrated recently through the combination of SVMs with 3D pharma-

cophore fingerprints (defined as SMARTs queries) [36].
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There is a trend in the recent cheminformatics literature toward ensem-

ble methods, i.e., methods where multiple models (instead of a single

model) are generated and used together (as an ensemble) to make either

qualitative or quantitative predictions about new instances. Random For-

ests [37] are an ensemble of unpruned classification or regression trees

created by bootstrapping of the training data and random feature selection

during tree induction. Prediction is then made by majority vote or aver-

aging the predictions of the ensemble. On a set of diverse datasets

(blood–brain-barrier penetration, estrogen-binding, P-glycoprotein-activ-

ity, multidrug-resistance reversal-activity and activity against COX-2 and

dopamine receptors) superior results to methods such as decision trees

and PLS were reported. More recently, ‘Boosting’ was applied to the same

(and additional) datasets [38], and as a general rule this new method

seems to be slightly superior in large regression tasks, whereas Random

Forests are claimed to excel in classification problems. Additionally, em-

ploying k-nearest neighbor classifiers, SVMs and ridge regression in an

ensemble approach [39] gave significant improvement over single clas-

sifiers on a ‘frequent hitter’ dataset.

Most models derived in QSAR studies, for example, ordinary and partial

least-squares regression or principal components regression, employ a

linear parametric part and a random error part, the latter of which is as-

sumed to show independent random distributions for each descriptor.

However, since molecular descriptors never capture ‘complete’ informa-

tion about a molecule, this independence assumption is often not valid.

Kriging [40] has replaced the independent errors by, for example, Gauss-

ian processes. Applied to a boiling point dataset and compared to other

regression methods (ordinary and partial least-squares and principal

component regression) improved performance could be observed.

Alongside model generation, feature selection is also an important step

in many studies. Since no perfect descriptors of the molecular system are

known, often a multitude of descriptors (often several thousands) are cal-

culated and it is hoped that they capture information, which is relevant to

the respective classification or regression task.

A comparative study of feature selection methods in drug design ap-

peared recently [41], which compares information gain, mutual informa-

tion, w2-test, odds ratio and the GSS coefficient (named after the authors,

Galavotti, Sebastiani and Simi; a simplified version of the w2-test) in com-

bination with the Naı̈ve Bayes Classifier as well as SVMs. While SVMs

were found overall to perform favorably in higher-dimensional feature

spaces (and do not benefit much from feature selection), feature selection

is found to be a crucial step for the Bayes Classifier. (Note that this has at

the same time been shown empirically in virtual screening experiments
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[42,43].) Some of the methods, namely mutual information and genetic

programing, have also been evaluated separately for their use in QSAR

studies [44] with respect to a dataset which showed some (typical) prob-

lems present in the area, such as a very different sizes of ‘active’ vs.

‘inactive’ data subsets.

The problem that structure-activity relationships are rarely linear has

been addressed previously through the application of nonlinear methods

[45,46] such as k-nearest neighbor approaches [47,48]. More recently, k-nn

has also been combined with a CoMFA-like approach, termed k-NN MFA,

to predict bioactivity of a compound based on its k-nearest neighbors in

‘field space’ [49]. As discussed by the authors, some of the disadvantages

of CoMFA such as alignment problems are retained; nonetheless, multiple

models are produced in each run, giving more room for appropriate model

selection. Removing limitations of the statistical model is possible using

non-parametric models which have recently been used in QSAR studies

[50] and were shown to improve results over more conventional regression-

type models. Also Bayesian Regularized Networks have been found to be

of interest in recent QSAR studies [51–53]. Those networks possess in-

herent advantages including that they run less risk of being overtrained

than non-Bayesian networks (since more complex models are punished

by default).
2.3. New properties of old methods

The effect of binary representations of fingerprints has been known for

some time, such as combinatorial preferences [54] and size effects [55]

(depending on the similarity coefficient used). More recently, another as-

pect of the binary representation of features in a fingerprint has been

analyzed [56]. Integer or real-valued representations of feature vectors

were calculated for 12 activity classes and employed CATS2D and

CATS3D autocorrelation descriptors as well as Ghose and Crippen frag-

ment descriptors. Afterward, retrospective virtual screening calculations

were performed for both the original (quantitative) representations and the

binary (presence/absence) fingerprints. Surprisingly, in only 2 out of the

12 cases did significantly different numbers of actives get retrieved (de-

fined as more than 20% difference). In addition, the retrieved actives

showed, depending on the activity class, very different overlap, between

0% and 90%, indicating some orthogonality of the same descriptor, differ-

ing by its representation (integer/real-values vs. binary format).

Exploiting the ‘molecular similarity principle’ by not only looking for

neighbors of an active compound and assuming they are active (as is
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usually done in virtual screening) but also using this knowledge further to

improve the model, has recently been exploited in a method called ‘Turbo

Similarity Searching’ [57]. By feeding back information about the nearest

neighbors of an active compound into the model generation step, an in-

creased number of active compounds can be retrieved in a subsequent

step. This is analogous to the re-use of hot air in turbo chargers in cars,

where the output (hot gas, nearest neighbor in this case) is fed back into

the loop to improve performance.
3. METHOD VALIDATION

A number of publications have appeared recently focusing on the valida-

tion of QSAR models. A wealth of parameters exist here, such as training/

test/validation set splits, the dimensionality of descriptors used in relation

to the number of degrees of freedom of a model, or the way selection of

features is performed.

While it has been recognized for some time that a larger number of

descriptors increases the likelihood of chance correlations [58], more re-

cently a discussion of the validity of statistical significance tests, such as

the F test, has appeared [59] which puts the number of features con-

sidered into relation to the significance of a model. This study cautions in

agreement with earlier work that one needs to be very careful when judg-

ing the statistical significance of correlation models if feature selection is

applied – and that statistically ‘significant’ models can hardly be ‘avoided’ if

too large a variable pool is chosen to select features in the first place.

Since datasets are generally limited in size, a suitable split into training

and test set(s) is crucial in order to achieve sufficient training examples on

the one hand, and as high as possible a predictivity of the model on the

other. Often, leave-one-out cross-validation has been used to judge model

performance – where the compound ‘left out’ was supposed to be a novel

compound found for which property predictions had to be made. Unfor-

tunately this is, according to recent studies, not a suitable validation

method [60,61]. In the case of leave-one-out cross-validation, where fea-

tures are selected from a wider range, the tendency exists in every case to

select those features which perform best on a particular compound – thus

decreasing generalizability of the model. Results were summarized in a

simple statement: ‘Beware of q2!’, where specifically the cross-validated

correlation coefficient of a leave-one-out cross-validation is alluded to. In

addition, general guidelines for developing robust QSAR models were

developed, namely a high cross-validated correlation coefficient and a

regression, which shows slope close to 1 and no significant bias.
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Using theoretical considerations as well as empirical evaluations the

question of leave-one-out vs. separate test sets was recently considered

in detail [62]. Performing repeated cross-validations of both types on a

large QSAR dataset, the conclusion was drawn that in the case of smaller

datasets, separate test sets are wasteful, but in case of larger datasets (at

least large three-digit numbers of data points) it is recommended. This

partly contradicts the above conclusion, that separate test sets should

always be used. The discrepancy was explained by the fact that in the

earlier work only small separate test sets were used (containing 10 com-

pounds), which was not able to provide a sufficiently reliable performance

measure.

The finding that cross-validation often overestimates model perform-

ance was corroborated in a recent related study [63], in particular, in cases

where strong model selection such as variable selection is applied. The

main influence on quality overestimation was found to be a (small) dataset

size; other factors are the size of the variable pool considered, the object-

to-variable-ratio, the variable selection method, and the correlation struc-

ture of the underlying data matrix. While in case of conventional stepwise

variable selection overconfidence is commonly encountered, as a remedy

LASSO (least absolute shrinking and selection operator) selection is pro-

posed, as well as the utilization of ensemble averaging. Both techniques

give more reliable estimates of the quality of the developed model. Given

that the latter was shown to improve performance in many cases on its

own the generation of reliable performance measures is an additional

advantage of ensemble techniques.

Overfitting is a problem which describes good model performance on a

training set but much worse performance on subsequent data, and thus,

mediocre generalizability of the model (the model is not robust). A recent

discussion of this problem, with many accessible examples, gives similar

guidelines to those above, such as that leave-one-out cross-validation is

not sufficient [64]. It also emphasizes the recommendation of multiple

training/test set splits even in the case of very large dataset sizes and of

performing cross-validation across classes of compounds in the case of

close analogues (instead of molecule-by-molecule splits). In order to have

some measure of overfitting, the use of ‘benchmark models’ such as par-

tial least squares is recommended (depending on the particular problem)

in order to determine whether there might be simpler models appropriate

to the task (indicating that the more complex model overfits the data).

Using a toxicity dataset of phenols against Tetrahymena pyriformis [65]

the conclusion that q2 is not a sufficient predictor for the applicability of a

QSAR model to unseen compounds is corroborated, and suggests using

the RMS error of prediction (RMSEP) instead. This guideline is presented
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along with additional important points: that outliers should not necessarily

be deleted since this step reduces the chemical space covered by the

model, that the number of descriptors in a multivariate model needs to be

chosen carefully and finally that an ‘appropriate’ number of dimensions is

required for PLS modeling. In addition, the influence of the number of var-

iables on predictive performance for training and test sets is investigated.

Several recent publications have attempted to investigate what the actual

scope of a QSARmodel is – and attempted to develop guidelines to assess

the applicability of a model to a novel compound whose properties are to be

predicted [66,67]. Two measures for applicability are proposed: the sim-

ilarity of the novel molecule to the nearest molecule in the training set and

the number of neighbors of the novel compound within the training set with

a similarity greater than a certain cutoff. As expected, molecules with the

highest similarity are best predicted, and this was found to be true across

datasets as well as across methods. The applicability measures described

above can also be used numerically to derive error bars for estimations of

how likely the prediction of a specific model is within a certain error thresh-

old. The issue of model validity was also briefly reviewed from a regulatory

viewpoint [68]. In a similar vein, a ‘classification approach’ has been pre-

sented for determining the validity of a QSAR model for predicting prop-

erties of a novel compound [69]. Focusing on linear models (though the

underlying concept is more generally applicable), the predictions made for

compounds within the initial training set are differentiated between ‘good

residuals’ and ‘bad residuals’. Using three different datasets (an artemisinin

dataset as well as two boiling point datasets) machine-learning methods

were employed to predict whether a novel compound belongs to the ‘good’

or ‘bad’ class of residuals, thereby making predictions as to whether its

properties can be predicted – with a success rate of between 73% and

94%. A stepwise approach for determining model applicability [70] consid-

ers physicochemical properties, structural properties, a mechanistic un-

derstanding of the phenomenon and, if applicable, the reliability of

simulated metabolism in a step-by-step manner. With several QSAR da-

tasets, it could be shown that for substances that are well covered by the

training set improved predictions can be made for novel compounds, in

agreement with the conclusions stated above.

The performance of similarity searching methods varies widely, com-

prising both target- and ligand-based approaches. While large enrichment

factors (often in the hundreds) are reported, the question arises of how

much ‘added value’ more sophisticated methods actually provide, com-

pared to very simple approaches, and where the gain-to-cost ratio actually

shows an optimum. A recent study illustrated that simple ‘atom count de-

scriptors’ (which do not capture any structural knowledge but represent a
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molecule by a set of integers which represent the number of atoms of each

element) are able to have comparable performance to state-of-the-art fin-

gerprints [6]. Thus, when averaged over multiple target classes, the added

value of virtual screening approaches is probably closer to two (compared

to trivial descriptors) than in the region of often published double-digit

numbers (compared to random selection). It should be added that per-

formance of ‘dumb’ and more sophisticated descriptors varied widely, be-

tween virtually no difference in performance up to high single-digit per-

formance improvements of state-of-the-art fingerprints (which are, with

respect to retrieval rate and on a MDDR-dataset, circular fingerprint de-

scriptors).
4. ‘GETTING MORE FROM YOUR DATA’

4.1. Analysis of high-throughput screening data

HTS results are notorious for the amount of noise they contain and meth-

ods such as multiple screening runs are routinely applied to alleviate the

problem. Still, additional experiments are required. An alternative method

was recently presented [71] which, applying purely computational meth-

ods, is able to predict truly active compounds with improved reliability in

screenings where multiple compounds are screened per well. Using Sci-

tegic circular fingerprints [72], similarities between molecules in wells con-

taining compounds predicted as being active (which may be true positives

or, often, just noise) are calculated. The compounds most similar to active

compounds are more likely to be active themselves; by predicting (across

wells) those compounds which are similar to each other and at the same

time are located in wells showing activity, the active compounds out of the

mixtures can be estimated. This way, between 29% and 41% of the active

compounds could be retrieved in the top 10% of the sorted compounds.

Another approach which attempts to improve knowledge derived from

HTS campaigns was recently proposed [73]; the conventional selection of

a fixed number of compounds showing activity in a primary screen is

replaced for secondary screens (‘Top X approach’). Alternatively, meth-

ods based on partitioning are frequently employed. In the approach pre-

sented here, an ontology-based pattern identification method is employed,

which originated from bioinformatics methods (the prediction of gene

function based on microarray data). Taking scaffold diversity into account

and also applying the ‘molecular similarity principle’, the overall probability

of selecting active compounds from different clusters is maximized. Based

on earlier HTS data, significant improvement of hit confirmation rates was
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demonstrated, compared to a conventional ‘Top X’ approach. Related

work was recently also performed with a focus on scaffold clustering [74].

As discussed below, scoring functions are not yet able to predict binding

affinities sufficiently well across the board of target proteins. Still, the

identification of active ligands was shown to be improved by a second data

post-processing step. First, ligands are docked to the target. Subsequently,

predicted active and inactive compounds are subject to model generation

via a Naı̈ve Bayesian model [75] based on circular fingerprints. Applied to

protein kinase B and protein-tyrosine phosphatase 1B, significant per-

formance improvements could be observed in combination with Dock,

FlexX as well as Glide scores on protein-tyrosine phosphatase 1B. On the

other hand, results on protein kinase B results were not improved, which

was attributed to the fact that the predicted actives used to train the model

were 100% false positives. Understandably, performance cannot be im-

proved if the initial enrichments are not able to identify true positive bind-

ers. More recently, another step was introduced between scoring and

selecting active and inactive compounds for training the Bayes Classifier

[76], which is one of the available consensus scoring methods. Since

consensus scoring is often able to rescue docking results in cases where a

specific scoring function fails, rank-by-median consensus scoring was

shown to improve results for protein kinase B considerably. Other con-

sensus approaches (rank-by-mean, and rank-by-vote) did not perform as

well. This was attributed to their sensitivity to cases where one of the

scoring functions performs badly. (The median of a set of numbers is less

sensitive to outliers than its mean.)

An alternative method for post-processing docking scores is the Post-

DOCK approach whose final goal is the elimination of false-positive pre-

dictions and their discrimination from artifacts [77]. Based on a ligand-

target database, derived descriptors (DOCK score, empirical scoring and

buried solvent accessible surface area) and models from machine-learn-

ing methods were derived to identify false-positive predictions. Validating

the method on 44 structurally diverse targets (plus the same number of

decoy complexes), 39 of 44 binding and only 2 of 44 complexes were

predicted to be of true-positive nature. Compared to purely docking-based

methods, DOCK and ChemScore achieve enrichments on the order of five

to seven, depending upon the database used, while the method presented

here claims to obtain about 19-fold enrichment.

4.2. Consensus predictions

Consensus prediction of docking scores is often able to improve results

over single functions and multiple ways have been proposed to combine
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scores from different functions such as rank-by-rank, rank-by-vote or rank-

by-number [78]. Performance improvement could not be observed in

every case and a theoretical study [79] to elucidate the way in which

consensus scoring improves results, concluded that this was due to the

simple reason that multiple samplings of a distribution are closer to its true

mean than single samplings. Assumptions made by the study, such as the

performance of each individual scoring function is comparable, have led to

the work later being criticized [80], and it has been concluded that con-

sensus scoring can improve results but that it is not true in every case (as

observed in practice). More recently, it was demonstrated [81] that two

criteria are important if consensus scoring is to be successful: first, each

individual scoring function has to be of high quality, and second, the

scoring functions need to be distinctive. Even if no training data are avail-

able to judge those points, rank-vs.-score plots were proposed to gauge

the success of target-based virtual screening against a particular target.

While consensus predictions for ligand-based virtual screening have

been known for some time, a more recent study extended the descriptors

employed to include structural, 2D pharmacophore and property-based

fingerprints as well as BCUT descriptors and 3D pharmacophores [82].

Logistic regression and rank-by-sum consensus approaches were found to

be most advantageous due to repeated samplings, better clustering of

actives (since multiple sampling will recover more actives than inactives)

and agreement of methods to predict actives but less so inactives. In

addition, more stable performance across a range of targets was observed.

If multiple active compounds are known in a virtual screening setting, the

question arises of how to combine the retrieved lists of individual com-

pounds. Applied to different activity classes from the MDL Drug Data Report

as well as the Natural Products Database [83] it was recently found that the

rank-by-max method generally outperforms the rank-by-sum method, while

concluding that the Tanimoto coefficient is superior to 10 other similarity

coefficients considered. As to the applicability of consensus approaches, it

is found that more dissimilar activity classes profit more than more homo-

geneous classes, where best retrieval performance is already obtained

using lower numbers of query structures (which are then already able to

cover the ‘activity island’ inhabited by the particular class of compounds).
5. APPLICATIONS

5.1. Virtual screening

While many applications of virtual screening tools have appeared in the

literature, only some examples can be given here.
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A phosphodiesterase-4 (PDE4) inhibitor recently has been optimized

through the application of small combinatorial libraries [84]. Affinity was

increased by three orders of magnitude by screening only 320 compounds

after prioritization by FlexX docking. Following the recent SARS scare, a

virtual screening procedure via docking (DOCK program) was able to find

inhibitors of SARS coronavirus 3C-like proteinase with binding affinities of

Ki ¼ 61mM out of 40 compounds tested [85]. Virtual screening based on a

homology model of the neurokinin-1 (NK1) receptor led to the discovery of

submicromolar ligands [86], while even nanomolar binding compounds

against Checkpoint kinase 1 (CHK1) could be discovered [87] by applying

successive filtering for physicochemical properties, pharmacophore filters

and docking stages. Ligand-based pharmacophore models generated by

Catalyst [88] were used to discover nanomolar ligands of ERG2, em-

opamil-binding protein (EBP), and the sigma-1 receptor (s1) [89]. Out of

11 compounds tested, 3 exhibited affinities of less than 60 nM. High levels

of biliary elimination of a CCK2 antagonist led to the quest for novel com-

pounds, which retained activity and selectivity while improving half-life.

Using field points derived from XED charges [90], novel heterocycles were

proposed [91] (switching from an indole to pyrrole and imidazole series),

which decreased molecular weight and polarity and achieved the desired

scaffold hop.

Apart from this list of applications against particular targets, only two

further applications shall be described here (since the field is simply too

large to capture it in its entirety). First, ligand- and target-based ap-

proaches were recently compared in their abilities to identify ligands for

G-protein coupled receptors [92]. Evaluating docking into homology mod-

els, ligand-based pharmacophore models and Feature Trees, 3D similarity

searches as well as models built on 2D descriptors, all ligand-based

techniques were shown to outperform the docking-based approaches.

However, docking also provided significant enrichment.

Second, the ‘HTS Data Mining and Docking Competition’ presented

its results recently [93–95]. Duplicate residual activities of 50,000

compounds against Escherichia coli DHFR in primary screening were re-

leased in late 2003 [96], upon which 42 groups submitted activity predic-

tions for a test set of the same size (but with unknown activity).

Approaches employed ranged from docking [97,98] to purely ligand-

based methods [99,100]. Overall, none of them was able to predict actives

from the test set reliably. While this was partly due to difference in chem-

ical composition of the training and test sets, an additional problem

was posed by the test set which did not contain real ‘actives’ (showing

proper dose-response curves in secondary assays), thus making predic-

tions difficult.



A. Bender et al.160
5.2. Clustering

Several novel clustering algorithms have been presented recently, each of

which extends previous approaches in its own way. A combination of

fingerprint and maximum common substructure (MCS) descriptors [101]

speed up clustering (compared to purely MCS methods) enabling its ap-

plication to large datasets, and the method was shown to be able to

identify the most frequent scaffolds in databases, to select analogues of

screening hits and to prioritize chemical vendor libraries. A modification of

k-means clustering also showed a considerable speed increase to be

possible when processing large libraries [102], as demonstrated on a da-

taset containing about 60,000 compounds derived from the MDDR. The

desired speed-up was observed along with favorable enrichment of ac-

tivity classes within the clusters. By introducing fuzziness into the clus-

tering process [103], superior results can be obtained compared to the

original (non-fuzzy or ‘crisp’) approaches to k-means and Ward clustering,

depending on the particular dataset and the property one attempts to

predict. Fuzzy clustering assigns partial memberships to multiple classes

(instead of binary values); with a log P dataset the best fuzzy parame-

terization was shown to clearly outperform the best crisp clustering. In

addition, partial class memberships were shown to capture the ‘chemical

character’ of a compound more satisfyingly than conventional (crisp) class

assignments.
5.3. Drug-likeness and comparison of databases

While the concept of ‘drug-likeness’ has to be applied with care (and one

needs to be aware of its limitations) it has nonetheless received consid-

erable attention in recent years, based on datasets derived from the

Available Chemicals Directory (ACD) and the World Drug Index (WDI).

First applications employed Ghose/Crippen descriptors in combination

with neural networks for classification, and correct classification was

achieved for 83% of the ACD and 77% of the WDI, respectively [104].

Later, the application of SVMs was not able to improve overall perform-

ance significantly, but the new method was able to correctly classify com-

pounds that were misclassified by the ANN-based technique [34]. Very

recently a further analysis of the drug/non-drug dataset appeared, which

analyzed SVM performance (as well as that of other machine-learning

methods) in more detail [105]. It was found that, in spite of problems with

the dataset (some descriptor representations of compounds were, for ex-

ample, identical in the drug and non-drug dataset) performance could

be improved considerably to about 7% misclassified compounds by
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optimizing the kernel dimensions employed. An application using ‘human-

understandable’ descriptors of drug- vs. non-drug-like properties has also

been presented [106] recently, and was able to distinguish between both

datasets with the most important descriptors being proper saturation level

and the heteroatom-to-carbon ratio of the molecule. The concept of da-

tabase comparison is also more generally applicable, as was shown re-

cently when the question of how ‘in-house like’ external databases are

was addressed in order to help to decide whether they should be acquired

or not [107].
5.4. Docking validations

A number of validations of docking programs have appeared recently, and

it is interesting to observe that they grow in size in every respect – in-

cluding the number of docking and scoring functions considered as well as

the number and diversity of ligand-target complexes employed for their

evaluation.

Using DOCK, GOLD and GLIDE in order to evaluate the performance of

docking programs in target-based virtual screening on five targets (HIV

protease, protein tyrosine phosphatase 1B, thrombin, urokinase plasm-

inogen activator and the human homologue of the mouse double minute 2

oncoprotein), it was concluded that performance is both target- and

method-dependent [108]. Performance varied widely, between near-per-

fect behavior (for example, GOLD in combination with protein tyrosine

phosphatase 1b) to negative enrichment (for example, GOLD with HIV

protease). Employing FRED, DOCK and Surflex, and adopting the algo-

rithm to the particular binding pocket, it was found that target-based virtual

screening is successful in some cases [109], with Surflex probably per-

forming the best overall.

Investigating phosphodiesterase 4B [110] and a set of 19 known inhib-

itors with 1980 decoys, the scoring functions PMF, JAIN, PLP2, LigScore2

and DockScore were compared with respect to their ability to enrich

known ligands. It was found that PMF and JAIN showed high-enrichment

factors (greater than four-fold) alone, while a rank-based consensus-

scoring scheme employing PMF and JAIN in combination with either

DockScore or PLP2 showed more robust results.

In what is probably one of the most extensive studies yet, 14 scoring

functions in combination with 800 protein–ligand complexes from the

PDBbind database have been compared for evaluation [111]. The scoring

functions compared were X-Score and DrugScore, five scoring functions

implemented in Sybyl (ChemScore, D-, F- and G-Score and PMF-Score),
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four implemented in Cerius2 (LigScore, LUDI, PLP and PMF) as well as

two scoring functions implemented in GOLD (GoldScore and ChemScore)

as well as the HINT function. Performance was assessed by their

ability predicting affinity (Ki/Kd values). Overall, X-Score, DrugScore,

Sybyl with ChemScore and Cerius2 with PLP performed better than

the other combinations, giving standard deviations in the range of 1.8–2.0

log units.

Another very comprehensive evaluation [112] employed 10 docking

programs in combination with 37 scoring functions against eight proteins

of seven types. Three criteria were used for assessment, namely the

ability to predict binding modes, to predict ligands with high affinity and to

correctly rank-order ligands by affinity. While nearly all programs were

able to generate crystallographic ligand-target complexes, the identifica-

tion of the correct structure by the scoring function was found to be con-

siderably more error-prone. Averaged over all targets, none of the

programs was able to predict more than 35% of the ligands within an

RMSD of equal to or less than 2 Å. While active compounds were correctly

identified, activity prediction was more difficult – to the extent that ‘for the

eight proteins of seven evolutionarily diverse target types studied in this

evaluation, no statistically significant relationship existed between docking

scores and ligand affinity’ [112]. Similar results were obtained on five

datasets (serine, aspartic and metalloproteinases, sugar-binding proteins

and a ‘miscellaneous’ set) using the scoring functions Bleep, PMF, GOLD

and ChemScore [113], where across all complexes on average no func-

tion returned a better correlation than r2 ¼ 0.32.

Interestingly, another recent study drew quite different conclusions from

similar observations [114]. Docking endogenous ligands into a panel of

proteins it was concluded that proteins are often very promiscuous and do

not interact with only a single clearly defined small molecule. While this is

surely possible, given the limitations of today’s scoring functions it might

well be the case that predictions are just not yet good enough.
6. CONCLUSIONS AND OUTLOOK

While a great number of descriptors and modeling methods has been pro-

posed until today, the recent trend toward proper model validation is very

much appreciated. Applications of the ‘Molecular Similarity Principle’ do not

yet show the power one would like them to have – and although some of

their limitations are surely due to underlying principles and limitations of

fundamental concepts, others will certainly be eliminated in the future.
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