
Citation: MacMurdo, M.G.; Mulloy,

K.B.; Culver, D.A.; Felix, C.W.; Curtis,

A.J.; Ajayakumar, J.; Curtis, J.

Mapping Mobility: Utilizing

Local-Knowledge-Derived Activity

Space to Estimate Exposure to

Ambient Air Pollution among

Individuals Experiencing

Unsheltered Homelessness. Int. J.

Environ. Res. Public Health 2022, 19,

5842. https://doi.org/10.3390/

ijerph19105842

Academic Editor: Paul B.

Tchounwou

Received: 6 April 2022

Accepted: 7 May 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Mapping Mobility: Utilizing Local-Knowledge-Derived
Activity Space to Estimate Exposure to Ambient Air Pollution
among Individuals Experiencing Unsheltered Homelessness
Maeve G. MacMurdo 1,* , Karen B. Mulloy 2 , Daniel A. Culver 1, Charles W. Felix 3, Andrew J. Curtis 4,
Jayakrishnan Ajayakumar 4 and Jacqueline Curtis 4

1 Cleveland Clinic Respiratory Institute, Cleveland, OH 44195, USA; culverd@ccf.org
2 Department of Family Medicine and Community Health, Case Western Reserve University,

Cleveland, OH 44106, USA; kbm30@case.edu
3 Tulare County Counsel, Visalia, CA 93291, USA; cwfelix@tularecounty.ca.gov
4 Department of Population and Quantitative Health Sciences, Case Western Reserve University,

Cleveland, OH 44106, USA; ajc321@case.edu (A.J.C.); jxa421@case.edu (J.A.); jxc1546@case.edu (J.C.)
* Correspondence: macmurm@ccf.org

Abstract: Individuals experiencing homelessness represent a growing population in the United
States. Air pollution exposure among individuals experiencing homelessness has not been quantified.
Utilizing local knowledge mapping, we generated activity spaces for 62 individuals experiencing
homelessness residing in a semi-rural county within the United States. Satellite derived measure-
ments of fine particulate matter (PM2.5) were utilized to estimate annual exposure to air pollution
experienced by our participants, as well as differences in the variation in estimated PM2.5 at the local
scale compared with stationary monitor data and point location estimates for the same period. Spatial
variation in exposure to PM2.5 was detected between participants at both the point and activity
space level. Among all participants, annual median PM2.5 exposure was 16.22 µg/m3, exceeding the
National Air Quality Standard. Local knowledge mapping represents a novel mechanism to capture
mobility patterns and investigate exposure to air pollution within vulnerable populations. Reliance
on stationary monitor data to estimate air pollution exposure may lead to exposure misclassification,
particularly in rural and semirural regions where monitoring is limited.

Keywords: homelessness; local knowledge mapping; environmental justice; particulate matter;
homeless persons; vulnerable populations

1. Introduction

Increasing data suggest that vulnerable populations may face a disproportionate
burden of air pollution exposure. Within the United States, residence in a non-white
majority or low income census tract is associated with an increased level of ambient
exposure to fine particulate matter [1,2]. Clustering of toxic release inventory (TRI) facilities
and other sources of stationary emissions has also been noted within low income and
minority communities [3,4]. The patterns of exposure to air pollution experienced by
vulnerable populations within these communities remains unknown.

Individuals experiencing unsheltered homelessness make up a growing proportion
of the population within the United States [5,6]. In the U.S., over half a million people
were documented as experiencing homelessness in 2020 [7,8]. Individuals experiencing
unsheltered homelessness are more likely to be chronically homeless, and to experience
chronic health conditions [9]. Individuals experiencing unsheltered homelessness are
uniquely vulnerable to the impact of worsening air quality, particularly outside of large
urban centers where access to indoor shelters may be limited. Additionally, residence
in embankments, streets, and structures not designed for human habitation may result
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in exposure to air pollution from stationary sources that are not well captured by global
level analysis.

Few studies to date have attempted to investigate air pollution exposure among in-
dividuals experiencing homelessness. In a cross-sectional study of homeless individuals
in Utah, self-reported exposure to air pollution was common, with 90% of individuals
describing poor air quality [10]. Among this sample, respiratory complaints were com-
mon [10]. However, actual exposure to ambient air pollution was not quantified. Exposure
to ambient air pollution has been associated with an increased risk of all-cause mortality
and cardiovascular and respiratory disease [11,12]. When compared with the general
population, individuals experiencing homelessness are already known to be at increased
risk of chronic respiratory disease and premature death [9,13–15]. While this increased risk
of morbidity and mortality is driven by multiple factors, exposure to air pollution may
represent an under recognized contributor to negative health outcomes in this population.
Quantifying this exposure has significant implications for public health, and also provides
important evidence in support of policies aimed at improving access to housing among
individuals experiencing unsheltered homelessness.

However, quantifying exposure is not straightforward. A major challenge to assess-
ing air pollution exposure among individuals experiencing homelessness is capturing
where participants spend their time in order to measure potential exposures. By definition,
there is no home address. The majority of studies assessing environmental air pollution
exposure make an assumption of stationarity—that an individual’s residence (or place
of employment) represents their only source of exposure [16]. Particularly for individ-
uals experiencing unsheltered homelessness, mobility patterns throughout the day may
significantly impact exposure to air pollution. We have previously shown that individu-
als experiencing homelessness may face exposure to air pollution from multiple sources,
including traffic-related air pollution and commercial stationary emitters [17].

To date, the majority of research has focused on the experience of urban homeless-
ness. Rural homelessness is comparatively under-researched. The true amount of people
experiencing rural homelessness is unknown, although national survey data estimate that
at least 18% of individuals experiencing homelessness reside in rural areas [18]. Rural
residents may also face significant exposure to air pollution, as a result of agricultural
emissions and roadside traffic [19]. Quantifying rural and semi-rural air pollution also
faces several challenges. Air pollution is increasingly recognized to display significant
spatial-temporal variation [20]. The majority of stationary monitors are clustered in urban
areas [21]. By comparison, many rural sites may lack stationary air pollution monitors.
Extrapolating monitor data across regions where monitor sites are limited may lead to
under- or over-estimation of true air pollution exposure [22,23]. Rural and semi-rural public
health agencies may lack the resources necessary to deploy more traditional approaches to
quantifying air pollution exposure.

In our study, we aimed to examine the feasibility of utilizing satellite-derived measures
of PM2.5 to quantify exposure to air pollution among individuals experiencing homeless-
ness. Remote sensing data are able to provide an estimate of exposure at a significantly
more granular level when compared with stationary monitors, potentially allowing for
increased recognition of local “hot spots” that may not be well captured by traditional
approaches [24,25]. Satellite-derived data are publicly available and not limited by sta-
tionary monitor density. While it also has significant limitations, it may provide valuable
information to guide risk assessment and inform public health policy in vulnerable popula-
tions [25,26].

Our goal was to develop easily replicable, low-cost mechanisms to quantify exposure
in high risk populations that can be replicated by public health agencies and advocacy
groups. To test these techniques, in this study, we utilized local knowledge mapping
techniques to generate “activity space” data for individuals experiencing homelessness.
By combining this with validated, satellite-derived estimates of PM2.5, we aimed to quan-
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tify the exposure to ambient PM2.5 experienced by individuals living with unsheltered
homelessness within a semi-rural county

2. Methods and Materials

Each year, communities across the U.S. participate in the Point in Time count (PIT) [27].
The PIT is designed to provide a census of people experiencing homelessness [27]. The
data from this activity are then submitted to the Department of Housing and Urban
Development (HUD) for federal funds to support services to this population. While the PIT
is administered one night each January, there can also be related activities, termed magnet
events, occurring during this time period to provide outreach. It is during such magnet
events that this survey was conducted in collaboration with the Tulare California Health and
Human Services Agency (HHS) during the 2019 calendar year. Specifically, three magnet
events were held across incorporated areas of Tulare County. Tulare County is a semi-rural
county located in inland California. The county has a population of 466,054 individuals,
with three main population centers (Tulare, Visalia, and Porterville) [28]. Agriculture is
the major economic driver [29]. Tulare County also has one of the highest percentages of
individuals experiencing unsheltered chronic homelessness within the United States [30].

A table was set up at each of these events where intake personnel explained the
purpose of the survey, how results would be used, described the compensation, and
obtained consent. At the suggestion of local homeless service providers, participants
were compensated with USD 5 gift cards for McDonalds or with bus passes. This study
was approved by the Case Western Reserve University IRB (# 20191570). All individuals
experiencing homelessness participating in PIT activities were eligible to participate.

After consent, participants were asked to mark on a printed base map places of
importance to them, as well as describing when and why they used these spaces.

Completed maps were digitized so that participants’ marked locations could be placed
in their real-world location in a GIS and the accompanying descriptions included in associ-
ation with their geographic features. Self-reported demographic data, including gender
identity and self-reported race, were collected as part of the broader PIT. Participants were
afforded the opportunity to provide descriptions of why a space was perceived as “safe”
or “unsafe”—these, along with their general comments about the mapping process, were
recorded during data collection.

Activity spaces were derived for each participant, utilizing a combination of their
self-reported day and night time locations, along with locations in which they obtained
healthcare or services. These activity spaces were then overlaid with satellite-derived
annual PM2.5 measurements at 0.01◦ × 0.01◦ (1 km) spatial resolution for the calendar
year (2018) preceding activity space data collection. These estimates were derived by
combining aerosol optical depth (AOD) measurements with the GEOS-Chem chemical
transport model and calibrated using geographically weighted regression techniques [31].
For activity spaces smaller than 1 km, an additional 500 m buffer was created during
analysis of annual PM2.5 concentrations to align the geographic units of measure. PM2.5
measurements at nocturnal “point” locations were estimated utilizing the same dataset.

Stationary emission sources were mapped utilizing the California Air Board stationary
emissions inventory, and the average number of stationary emitters within each activity
space was calculated [32]. Utilizing city limit data from the Tulare county resource man-
agement agency, density of emitters and estimated satellite-derived PM2.5 was calculated
at the city level [32,33]. California air board data were utilized to map the location of
stationary PM2.5 monitors within Tulare County. These monitors are both designed to
function at the neighborhood scale, with an estimated spatial range of between 0.5 and
4 km [34]. Given this, 1 km buffers were generated around each monitor location, which
were then utilized to calculate satellite-derived PM2.5 estimates over the location of optimal
monitor performance.

Descriptive statistics were calculated utilizing R version 4.1.2 (R Foundation for Statis-
tical Computing, Vienna, Austria).Wilcoxon signed-rank testing was utilized to compare
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median values for activity space size and emitter distribution. ANCOVA testing was
utilized to compare mean PM2.5 concentrations across locations, as well as to assess for an
interaction between participant-specific variables, mean PM2.5 exposure, and activity space
size. Pearson’s chi-squared test was utilized to compare between group means. Significance
was defined as a p-value less than 0.05.

3. Results

A total of 62 individuals experiencing homelessness participated in this study, includ-
ing 17, 19, and 26 each at the Porterville, Tulare, and Visalia sites, respectively. Across all
sites, the participants were racially and ethnically representative of their areas, with most
being white and at least half self-identifying as Hispanic or Latino (Table 1). In addition,
58% identified as female and 42% identified as male. The majority (49%) were 45–64 years
old, and most (69%) had resided in Tulare County for more than 10 years. This older and
local population should be considered when interpreting results of this study. The median
activity space size was 4.7 km2, although significant variation in activity space size was
noted (IQR 1.6–10.5 km2) (Table 2). We did not detect any association between activity
space size and participant self-reported gender or race.

Table 1. Description of participants by location of local knowledge mapping completion.

Porterville Tulare Visalia Total %

PARTICIPANTS (n) 17 19 26 62

RESIDENCE (years)

<1 2 0 4 6 10

1–3 1 1 2 4 6

4–6 0 1 5 6 10

7–9 3 1 0 4 6

>10 11 16 15 42 68

AGE (years)

18–29 2 1 4 7 11

30–44 9 5 7 21 34

45–64 4 13 13 30 48

>65 1 0 2 3 5

GENDER IDENTITY

Male 3 12 11 26 42

Female 14 7 15 36 58

RACE AND ETHNICITY

White/Caucasian 12 13 10 35 56

Black/African American 0 1 3 4 6

Asian/Pacific Islander 0 0 0 0 0

Native American/American Indian 3 0 1 4 6

Other 2 5 9 16 26

Hispanic/Latino 6 6 15 27 44

Estimated PM2.5 varied at the city level, although this difference was not statistically
significant. However, a significant degree of variation in estimated PM2.5 exposure was
noted between individual participants, both when assessing utilizing activity space met-
rics and when utilizing single nocturnal point location estimates (Table 2). Variation in
within-activity space and point level PM2.5 exposure was seen by township, with the high-
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est activity space PM2.5 measurements noted in individuals experiencing homelessness
residing in Visalia and Porterville (Table 2). Activity space size was not associated with a
difference in PM2.5 exposure (p = 0.619).

While a relationship was seen between point level and activity space level estimates
of PM2.5 exposure, there was significant variation in estimated PM2.5 exposure with these
different metrics at the participant level (Figure 1). Annual mean weighted PM2.5 as
measured by the United States Environmental Protection Agency (US EPA) stationary
monitors for Tulare County was 16.46 µg/m3 at the Porterville site and 17.49 µg/m3 at the
Visalia site. By comparison, satellite-derived estimates of the mean PM2.5 concentration
within a 1 km buffer of monitoring stations were 13.63 µg/m3 and 16.7 µg/m3, respectively.

Table 2. Distribution of activity space size and fine particulate matter (PM2.5) concentration by
township within Tulare County. SD—standard deviation; IQR—interquartile range.

Variable Visalia Tulare Porterville p-Value

Annual mean PM2.5 (µg/m3) (SD) 15.6 (1.1) 14.17 (1.36) 15.3 (1.63) 0.98

Emitter count (n) 203 102 73 <0.001

Emitter density (emitters/m3) 5.59 4.85 4.12 0.89

Activity space-specific mean annual PM2.5 (µg/m3) (SD) 16.64 (0.27) 15.39 (0.41) 16.52 (0.62) <0.001

Nocturnal location mean annual PM2.5 (µg/m3)(SD) 16.05 (1.27) 15.52 (0.63) 16.33 (1.0) 0.04

Median emitters per activity space (emitters/m3) (IQR) 11 (4–18) 11 (2–14) 3 (0–10) 0.07

Median activity space size (km)(IQR) 6.96 (3.26–11.5) 5.04 (1.02–9.43) 3.02 (0.01–5.74) 0.07
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Figure 1. Comparison of individual point level and activity-space-derived estimates of annual mean
PM2.5 exposure.

A total of 518 registered stationary emitters of both fine and coarse particulate matter
were identified. While the number of emitters varied between cities, density of emitters
did not vary significantly (Table 2). However, this measurement does not account for
clustering of emitters in urban areas, as evidenced by the fact that significant variation
was seen in the number of emitters located within a participant activity space, with a
median of six emitters per space (IQR 2–17). Estimated particulate matter release by
emitters within activity spaces also varied, with a median estimated total particulate matter
emission of 0.37 tons/year (IQR 0.005–2.39 tons). A statistically significant relationship
between activity space size and number of emitters within the activity space was detected
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(p < 0.001). However, a relationship between activity-space-specific PM2.5 exposure and
emitter density was not detected.

4. Discussion

A significant difference in exposure to ambient PM2.5 was detected between townships
within Tulare County. This difference was not captured by existing stationary monitor
data. All participants within our sample experienced estimated PM2.5 exposure in excess
of the US EPA primary and secondary National Air Quality Standard of 12 µg/m3 and
15 µg/m3, respectively [35]. Exposure to ambient particulate matter in excess of the
National Air Quality Standard has been linked with an increased risk of premature mortality
and cardiovascular disease at a population level. Variation in estimated exposure was
seen between participants. Given that even small differences in exposure to PM2.5 have
been linked with differences in health outcomes at the population level, identifying this
hyperlocal and local variation in PM2.5 may have significant health implications.

At the participant level, activity-space-derived estimates of PM2.5 differed from those
derived from estimation utilizing a single point measurement alone. This variation reflects
the potential limitations of much of the existing air pollution exposure literature, which
relies on an assumption of stationarity. Significant variation in activity space size was seen
across all three townships within our county. Some participants reported spending the
vast majority of their day and night in the same location without moving. Others utilized
multiple day and night locations, with a maximum reported activity space of 26.25 km.
Reliance on exposure assessment based on a single site may result in misclassification of
exposure. This has significant implications for research, which aims to link air pollution ex-
posure to health impacts, particularly when sample sizes are low. A significant relationship
between median activity space size and average PM2.5 exposure was not detected within
our sample. This may reflect the high levels of PM2.5 exposure faced by our sample as a
whole. Regardless, the variation in mobility between participants highlights the need to
move beyond residential-address-based assessment of exposure.

Within our cohort, the vast majority of our participants were exposed to at least one
stationary emitter, with many activity spaces enclosing multiple stationary emission sources
of particulate matter. While activity space size did correlate with the number of emitters
within the activity space, a relationship between emitter density and mean activity space
PM2.5 concentrations was not detected. This reflects the fact that while satellite-derived
data provide a novel mechanism for quantifying air pollution exposure at a more granular
scale, this methodology still has the potential to under-estimate “hyperlocal” exposure to
ambient air pollution. Similarly, our previous research found that individuals experienc-
ing homelessness within this sample resided in close proximity to major roadways [17].
Traffic-related air pollution has been shown to display spatial variation at the 100–200
m range, which is unlikely to be captured even at the spatial granularity provided by
satellite estimates [23,36]. Enhanced, multi-modal approaches to quantify air pollution
exposure are still needed, particularly in neighborhoods and communities that may bear a
disproportionate burden of air pollution exposure.

While the variation detected in mean PM2.5 exposure within our study population
was small, increasing data suggests that even small variations in PM2.5 may be clinically
significant. Even at concentrations below the national air quality standard, PM2.5 exposure
is associated with an increased risk of cardiovascular and all-cause mortality [37]. Variation
in PM2.5 exposure as small and as low as 1 µg/m3 has been associated with a significant
increase in mortality across multiple cohorts [38,39]. Individuals experiencing unsheltered
homelessness are already recognized to face an increased risk of chronic respiratory and
cardiac disease [9,14]. Rates of tobacco use are also high [40]. In this setting, the health
impacts of exposure to PM2.5 and other ambient air pollution may be further amplified.

Our study has several limitations. Most importantly, while satellite-derived estimates
allow for an increased granularity of exposure assessment compared with the existing
stationary monitor data within Tulare County, our findings suggest that satellite-derived
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measurements may still not adequately capture patterns of “hyperlocal” exposure. Ad-
ditionally, our study did not attempt to correlate exposure to ambient air pollution with
respiratory symptoms. Further longitudinal research quantifying the traffic-related air
pollution associated with experiencing unsheltered homelessness and the health impacts
associated with these exposures is needed to support public health interventions in this
vulnerable population. Combining the techniques highlighted in our paper with tech-
nology such as low-cost stationary monitors may allow for targeted hot spot monitoring,
particularly at high-risk locations such as near-roadway encampments.

Importantly, this study did not attempt to compare the exposure to air pollution
faced by individuals experiencing homelessness with the exposure faced by other high-risk
groups within the county. Those residing near major traffic thoroughfares, and in close
proximity to stationary emitters, may also bear a disproportionate burden of air pollution
exposure. More work is needed to further characterize the range of risk factors associated
with residential air pollution exposure.

Disparities in air pollution exposure are increasingly recognized [2,3]. In qualitative
interviews conducted during this study period, Black and female individuals experienc-
ing homelessness reported residing closer to heavily populated commercial areas and
avoiding parks and green-space due to concerns for safety. Given this, we hypothesize
that due to the impacts of sexism and racism, a relationship between race, gender, and
PM2.5 exposure could exist. Our study was under-powered to explore this relationship;
however, concern remains that racism and sexism may further exacerbate the impact of
unsheltered homelessness on an individual’s risk of exposure. Recognizing the potential
interplay between discrimination and air pollution exposure, more work is needed to
explore this relationship, both among individuals experiencing homelessness and across
other vulnerable populations at risk of air pollution exposure.

5. Conclusions

Satellite-derived estimates of air pollution exposure provide a novel mechanism
to quantify exposure to air pollution faced by individuals experiencing homelessness.
Particularly in regions where air pollution monitoring is limited, the use of satellite-derived
estimates along with other measures of air pollution exposure may facilitate identification
of air pollution “hot spots”, guiding public health advocacy and intervention. With the
increasing interest in citizen science-based initiatives to quantify and improve air pollution
exposure within vulnerable communities, local knowledge mapping represents a cost-
effective, easily replicable tool to enrich data collection and improve exposure assessment.
When combined with local spatial data, these techniques have the potential to guide
both further monitoring and local level policy interventions, improving the health of
neighborhoods and communities where exposure is disproportionate.
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