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ABSTRACT
Objectives  This study aims to investigate the relationship 
between daily weather and transmission rate of SARS-
CoV-2, and to develop a generalised model for future 
prediction of the COVID-19 spreading rate for a certain 
area with meteorological factors.
Design  A retrospective, qualitative study.
Methods and analysis  We collected 382 596 records 
of weather data with four meteorological factors, namely, 
average temperature, relative humidity, wind speed, and 
air visibility, and 15 192 records of epidemic data with 
daily new confirmed case counts (1 587 209 confirmed 
cases in total) in nearly 500 areas worldwide from 20 
January 2020 to 9 April 2020. Epidemic data were 
modelled against weather data to find a model that could 
best predict the future outbreak.
Results  Significant correlation of the daily new confirmed 
case count with the weather 3 to 7 days ago were found. 
SARS-CoV-2 is easy to spread under weather conditions 
of average temperature at 5 to 15°C, relative humidity at 
70% to 80%, wind speed at 1.5 to 4.5 m/s and air visibility 
less than 10 statute miles. A short-term model with these 
four meteorological variables was derived to predict the 
daily increase in COVID-19 cases; and a long-term model 
using temperature to predict the pandemic in the next 
week to month was derived. Taken China as a discovery 
dataset, it was well validated with worldwide data. 
According to this model, there are five viral transmission 
patterns, ‘restricted’, ‘controlled’, ‘natural’, ‘tropical’ and 
‘southern’. This model’s prediction performance correlates 
with actual observations best (over 0.9 correlation 
coefficient) under natural spread mode of SARS-CoV-2 
when there is not much human interference such as 
epidemic control.
Conclusions  This model can be used for prediction of 
the future outbreak, and illustrating the effect of epidemic 
control for a certain area.

INTRODUCTION
The COVID-19 pandemic caused by 
SARS-CoV-2 has spread all over the world and 
has unprecedented great social and econom-
ical impact worldwide.1 2 It exhibits high 
human-to-human transmissibility compared 
with other coronavirus such as SARS.3 It 

would be crucial to predict the future trend 
of COVID-19 outbreak ahead, in order to 
make proper prevention and control strate-
gies accordingly in time.

Besides population mobility and human-
to-human contact, meteorological condi-
tions have been suggested to be involved in 
the transmission of droplet-mediated viral 
diseases.4 5 As droplets carrying the corona-
virus can travel in gaseous clouds as far as 
8 meters and stay suspended in the air for 
hours,5 the suspending time and viability of 
the coronavirus outside body would be largely 
affected by the environment. Wind speed 
could affect the suspending time of droplets. 
Visibility and humidity reflect the amount 
of particles in the air, determining the coro-
navirus payload. Temperature affects virus’s 
viability in the environment. As SARS-CoV-2 
is enveloped, it might be more vulnerable to 
adverse conditions like high temperature.

The impact of weather on epidemiology 
has been mentioned in human’s history. The 

Strengths and limitations of this study

►► This study investigates the role of daily weather in 
COVID-19 spread systematically with a comprehen-
sive set of four meteorological factors.

►► This research collected a huge amount of data, 
covering nearly 500 areas worldwide in a long 
timescale.

►► The current study proposes mathematical models 
integrating meteorological information for predicting 
COVID-19 case counts in the future.

►► The influence of weather on virus spread could be 
confounded by a dozen of manual interventions, 
such as population mobility and disinfection mea-
sures, leading to inaccurate modelling.

►► The prediction model (especially the long-term mod-
el) might be unsuitable and inaccurate for areas with 
hot weather.
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ancient Chinese had a theory called ‘Five Movement and 
Six Weather’ to study climate change and its relationship 
with human health. Currently, there are a few studies on 
preprint servers discussing the relationship of tempera-
ture and humidity with the pandemic, but none is system-
atical investigation or proposes a validated practical 
model for prediction.6–10

Herein, this study intends to investigate the rela-
tionship between meteorological factors and epidemic 
transmission rate on a world scale. Four meteorological 
variables, that is, average temperature, relative humidity, 
wind speed and air visibility, were collected as well as the 
confirmed case counts daily for 81 days from 20 January 
2020 to 9 April 2020 for nearly 500 areas around the 
world, including over 400 Chinese cities and areas, 18 
Italian provinces and 13 other countries. Five time point’s 
delay of virus infection from exposure were considered 
and compared with each other to determine the most 
reasonable time point’s delay. A multivariate polyno-
mial regression model with meteorological factors as a 
‘weather coefficient’ of the existing confirmed case count 
was established in a discovery Chinese dataset, and then 
validated by worldwide data. Five transmission modes, 
indicating different levels of epidemic control, were 
revealed by this model. In this view, this model can not 
only predict future outbreak, but also be used to evaluate 
the effect of epidemic prevention measures for a certain 
area.

MATERIALS AND METHODS
Epidemiological data
Epidemiological data were collected from the WHO,11 
European Centre for Disease Control and Prevention, 
and DXY-COVID-19-Data.12 The daily new confirmed case 
counts were collected from 20 January 2020 to 9 April 
2020. Incidence data were obtained for 428 Chinese cities 
and districts, 18 Italian provinces and 13 other coun-
tries, namely, USA, UK, Germany, France, Spain, Iran, 
Korea, Japan, Australia, South Africa, India, Thailand, 
and Singapore. Considering the potential confounding 
effect, only Chinese cities with no less than 50 cumulative 
confirmed cases in 1 month and without official reports 
of large imported cases (42 cities in total) were taken as 
a discovery dataset, while those for Italian provinces and 
all the other nations were taken as replication datasets 
(online supplemental materials).

Weather data
Four meteorological variables were chosen, namely, air 
temperature, relative humidity, wind speed and air visi-
bility. Temperature could affect virus viability in the envi-
ronment. Wind speed could affect the suspending time 
of virus-attached particles. Relative humidity reflects the 
amount of droplets in the air. Visibility is influenced by 
the amount of particles such as dust and air pollutants. 
These two parameters both affect the amount of mediator 
for the virus to stay in the air. Therefore, temperature, 

dew point, wind speed and visibility were collected, and 
relative humidity was calculated accordingly (online 
supplemental materials). We obtained hourly values of 
meteorological observations and geographical factors 
(latitude and elevation) from the Integrated Surface 
Database of USA National Centers for Environmental 
Information.13 Daily data were calculated by averaging 
the hourly data for each variable in each day.

Statistical modelling
The number of daily new confirmed cases was taken as 
a dependent variable. Four meteorological variables, 
namely, average temperature, wind speed, visibility and 
relative humidity, and the existing confirmed case count 
were taken as independent variables. Considering that 
there is a latency stage from the day getting infected to the 
day being confirmed, a time delay of the day COVID-19 
was confirmed from the day weather data were collected 
needs to be taken into consideration. As it is reported that 
the latency period for COVID-19 is 3 to 7 days on average 
and 14 days at most, five time point’s delay of virus infec-
tion were taken into consideration, that is, weather data 
and existing confirmed cases count data were collected 
on the day, 3 days before, 7 days before, 3 to 7 days before 
and 14 days before collecting the new confirmed case 
count data.

To investigate whether the influence of meteorological 
factors is linear or quadric, both linear and non-linear 
modelling were performed under different relationship 
assumptions to compare model fitness statistics. Each 
meteorological variable was fitted into a bunch of single-
factor models (either generalised linear model or poly-
nomial model) through non-linear least squares (NLS) 
modelling using the Wuhan data set with a 3 to 7 day’s 
delay of infection. The relationship between each meteo-
rological variable and confirmed new case count (linear 
or quadric) was identified based on model fitness (log-
likelihood, Akaike information criterion, Bayesian infor-
mation criterion, and so on) and common knowledge of 
droplet-mediated viral diseases.

Second, the proper time delay from weather exposure 
to COVID-19 confirmation was investigated in the Wuhan 
dataset through Loess regression interpolation and NLS 
modelling with the previously identified relationship for 
each meteorological variable. The most possible time 
delay identified was taken for subsequent analyses.

To investigate the degree of contribution to the 
COVID-19 case count for each meteorological factor, 
Spearman’s correlation test (a non-parametric method 
that measures the strength and direction of associations) 
was first adopted, with the Wuhan dataset under the 
assumption of previously defined time delay. Neverthe-
less, here we assumed monotonic correlations between 
COVID-19 case count and meteorological variables, while 
we could not exclude the possibility that the real relation-
ship was not monotonic, which might impede the accuracy 
of correlation analysis. Then, we performed single-factor 
NLS regression modelling for each meteorological 
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variable in the discovery dataset under the assumption of 
previously determined relationship and predefined time 
delay, to determine the exact coefficients accompanied 
with each meteorological factor and to find out the most 
suitable environmental condition for SARS-CoV-2.

Then, two final prediction models (short-term 
model and long-term model) were developed using 
the discovery data set with the previously determined 
coefficients. The prediction model supposed that all 
the meteorological variables, with their specific coef-
ficients determined by single-factor modelling, were 
added together to compose a weather coefficient. The 
new confirmed case count on the confirmation day is 
calculated by multiplying the weather coefficient with 
the existing confirmed case count on the exposure day 
(the time delay between confirmation day and exposure 
day is determined in previous analysis), and then multi-
plying by a constant coefficient. The short-term model 
took all four variables, while the long-term model only 
considered temperature as it is easy to be forecasted. 
There was a constant coefficient for the total equation. 
Its exact value was determined by model fitting in the 
discovery dataset. The influence of geographical factors, 
that is, latitude and elevation, was investigated with all 
datasets covering the world’s top cities and areas. The 
correlation of existing confirmed case count with newly 
confirmed case count was also investigated. Basic statis-
tics and modelling was conducted in R V.3.5.1 (https://​
cran.​r-​project.​org/).

Model validation and application
The best fitted model was validated in the replication 
datasets (Italian city-level data and other nation-level 
data) by correlating the observed actual epidemiological 
data with the predicted values from the model in the data-
sets. We used these fitted models to calculate a predicted 
value for case count for each studied site, and then 
compared this predicted value with the real observed case 
count by calculating a Spearman’s correlation coefficient 
ρ between them.

Patient and public involvement
No specific patients were included in the current study. 
Epidemiological data were downloaded from online 
open-source databases. The public were not involved in 
the planning and design of the study.

RESULTS
The Weather’s influence on SARS-CoV-2 transmission displays 
3 to 7 days’ time delay
The ranges of average temperature, relative humidity, wind 
speed and visibility in the replication datasets were similar 
to those in the discovery dataset. Non-linear modelling 
with Wuhan dataset under the assumption of 3 to 7 days’ 
delay of confirmation from exposure suggested that the 
effect of temperature and wind speed is better depicted 
as quadric (online supplemental table S1), which was also 
supported by Loess regression interpolation (figure  1). 

Figure 1  Loess regression interpolation of confirmed new case count to the four meteorological variables, (A) average 
temperature (T) in °C, (B) relative humidity (RH) in %, (C) wind speed (SPD) in metre per second (m/s), (D) visibility (VSB) in 
statute miles, for Wuhan city. Five time point’s delay of confirmation from viral infection are displayed together in one figure, 
namely, exposure on the day, 3 days before, 7 days before, 3 to 7 days before and 14 days before.
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The mode for relative humidity and visibility was hard 
to be determined, as statistics supported both relation-
ships (online supplemental table S1). Considering the 
common knowledge of coronavirus transmission and the 
trend showed by Loess regression interpolation, relative 
humidity exerted its impact in a quadric trend, while visi-
bility exerted its impact in a linear trend (figure 1, online 
supplemental results).

Furthermore, investigation of the time delay effect in 
the Wuhan dataset showed that the number of confirmed 
new cases was best correlated with air temperature 3 to 
7 days ago, relative humidity and visibility 7 days ago 
and wind speed on the exposure day (online supple-
mental table S2). By comprehensive consideration of 
all four meteorological variables and the differences 
between statistics values, the weather 3 to 7 days ago, as 
well as weather 1 week ago, could well predict COVID-19 
outbreak. It coincided with the latency period of 3 to 7 
days for SARS-CoV-2, that is, exposure of environmental 
virus might exhibit its effect after 3 to 7 days.

Contribution of single meteorological factor to the outbreak
In the Wuhan dataset, the new case count was signifi-
cantly positively correlated with temperature (Spearman’s 
correlation ρ=0.69, p<0.001) and visibility (ρ=0.43, p=0.04), 
and negatively correlated with wind speed (ρ=−0.45, 
p=0.03) and relative humidity (ρ=−0.33, p=0.12) 3 to 7 
days ago. It suggested that temperature was correlated 

with the outbreak best, followed by wind speed, visibility 
and relative humidity. A model only with temperature as 
a parameter could already explain 45% of the variance in 
the epidemic data (p=4×10-4), while wind speed and visi-
bility could explain over 25% of the variance. According 
to the fitted single-factor models (temperature, rela-
tive humidity and wind speed were fitted into quadratic 
models; and visibility was fitted into a linear model, see 
online supplemental results for details), SARS-CoV-2 trans-
mission reaches a peak when mean temperature is 6.18°C 
(figure 2A), relative humidity is 78.47% (figure 2B) and 
wind speed is 1.88 metre per second (m/s) (figure 2C); 
and its transmission rate decreases with the increase of 
visibility (figure 2D). The effects of geographical factors 
such as latitude and elevation, and the pure influence 
from the number of existing cases were further investi-
gated in the worldwide datasets (online supplemental 
figure S1), illustrating that COVID-19 mainly outbreaks at 
latitude 30° to 50° (online supplemental figure S1A) and 
elevation <500 metre (online supplemental figure S1B). 
New confirmed case count was positively correlated with 
the existing confirmed case count (online supplemental 
figure S1C).

Short-term prediction model
We further derived a full model combined with all four 
meteorological variables and fitted this model with the 

Figure 2  Scatterplots of confirmed new case counts to the four meteorological variables, (A) average temperature (T) in °C, (B) 
relative humidity (RH) in %, (C) wind speed (SPD) in metre per second (m/s) (D) visibility (VSB) in statute miles, for all the studied 
datasets. Quadric regression for T, RH and SPD, and linear regression for VSB are illustrated for each dataset. Interpolation 
curves with 95% CIs are shown in shadow. The discovery dataset includes the major outbreak Chinese cities, while the 
replication datasets included provincial data in Italy, and national data around the world (except China).
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discovery dataset (online supplemental results). The best-
fitted short-term model was as follows:

	﻿‍

New Case Count = (−0.11 × T2 + 1.40 × T − 0.058 × RH2 + 9.04 × RH

−1.36 × SPD2 + 5.12 × SPD − 7.02 × VSB − 126.66)

× α × Existing Confirmed Case Count ‍�

where T is temperature in °C, RH is relative humidity 
in percentage (defined as over 15%), SPD is wind speed 
in m/s, VSB is visibility in statute miles, α is a site-specific 
constant, with a default of 0.001. All parameters take the 
means of values 3 to 7 days before the day new case count 
is evaluated.

In this model, all the four meteorological variables 
are added together in their proper forms to compose a 
‘weather coefficient’ (the equation in brackets), which 
affects the transmission rate of SARS-CoV-2, and thus 
influences the number of people that catch infection from 
the existing cases, which then determines the new case 
count 3 to 7 days later. There is a multiplicative constant 
coefficient α in the equation, which seems site-related. 
This constant coefficient could adjust the strength of the 
‘weather coefficient’ on disease transmission. When we 
substitute replication datasets into this short-term model 
with the multiplicative constant coefficient α originally 
determined by the discovery data set (which was 0.00048), 
an obvious underestimation of predicted values against 
real ones was observed although the predicted values 
correlated with the real ones very well. We supposed it 
was due to site-specific difference in the multiplicative 
constant coefficient α since the discovery dataset was all 
Chinese areas where the pandemic had been controlled 
early. Thus, we further re-fitted this composed model 
with all datasets to determine a more accurate value of 
the multiplicative constant coefficient α, which was 0.001 
then. In practical application, we need to first plot the 
observed case count versus the predicted one with a 
default α value 0.001, and then examine the extent of 
underestimation or overestimation, to finally determine a 
proper multiplicative constant coefficient α to adjust the 
impact size of ‘weather coefficient’ for a certain site.

Substitute data from the past 2 months, a good predic-
tion performance was obtained for this short-term model, 
with the predicted values significantly correlated to the 
observed ones for most areas (figure  3). However, only 
the existing confirmed case count data could not predict 
the new case count 3 to 7 days later as well as the weather-
combined model did (online supplemental table S3).

Different modes of viral transmission illustrated by the model
The observed versus predicted data exhibited different 
correlation patterns for different areas, meaning different 
viral transmission modes, which may indicate the effect of 
epidemic control for certain area.

The outbreak in Chinese top-affected cities was not 
very well predicted and obviously overestimated by this 
model with the default multiplicative constant coefficient 
α (ρ=0.11, p<0.001; figure  3A). It might be due to the 
reason that most Chinese cities took actions quickly after 

the outbreak in Wuhan was reported, thus, these cities 
were under strict epidemic control at the beginning of 
the pandemic. This viral transmission mode suggested 
by the not well correlated prediction pattern is called 
‘restricted’.

For Chinese Wuhan city and some early outbreak 
countries (Japan, Korea, Iran, and Italy), the predicted 
outbreak was well correlated with the actual observations 
at the beginning when the existing confirmed cases were 
not in very large numbers, but the prediction deviated 
from the observation as the confirmed cases increased, in 
detail, there’s large overestimation of prediction (ρWuhan = 
0.69, ρItaly = 0.87, ρJapan = 0.80, ρIran = 0.86, p<0.001, and ρKorea 
= 0.43, p=0.002; figure 3B). It is of notice that the dramatic 
deviation of predictions for Wuhan occurred after 15 
February 2020, the day when shelter hospitals had been 
put into use for 7 days (the average latency period for 
COVID-19). Therefore, the deviated prediction pattern 
indicates that the outbreak prevention and control taken 
in these areas is effective (so-called ‘controlled’ mode). 
The number of cases had been decreased by 72% for 
Wuhan, over 95% for Korea, Japan, and Italy, and 37% 
for Iran at most due to epidemic control (defined as the 
largest gap between prediction and observation).

For most European and American countries, the 
predicted outbreak was linearly correlated with the 
observed data very well (ρFrance = 0.96, ρUSA = 0.93, ρUK = 
0.83, ρSpain = 0.97 and ρGermany = 0.94, p<0.001; figure 3C), 
suggesting a natural viral transmission mode without 
much man-made epidemic prevention measures. Esti-
mation of daily new case counts by this short-term model 
performed very well for European countries, while this 
model underestimated the outbreak in the USA.

Although the weather is not suitable for virus in tropical 
areas, the virus transmitted in natural mode, manifested 
as good linear correlation between the prediction and the 
observation (ρIndia = 0.94, ρSingapore = 0.66, p<0.001, and ρThai-

land = 0.56, p=0.001; figure 3D), with just relatively small 
daily new case counts compared with temperate regions.

Countries in the southern hemisphere displayed similar 
pattern as the ‘controlled’ with large overestimation by 
the model when the confirmed case increased, leading to 
not good prediction performance (ρAustralia = 0.79, p<0.001 
and ρSouth Africa = 0.34, p=0.08; figure 3E). It might be due 
to the effect of epidemic prevention measures and hot 
summer weather in these countries.

Long-term simplified model
Long-term prediction depends on weather forecast, which 
generally reports only average temperature. As tempera-
ture 14 days ago could predict COVID-19 outbreak as well 
as temperature in a short time delay (e.g., 3 to 7 days ago), 
we again performed single-factor regression modelling in 
the discovery dataset, taking temperature 14 days ago as an 
input, assuming a quadric function (online supplemental 
results). This simplified model with average temperature as 
a weather factor was derived as follows:

https://dx.doi.org/10.1136/bmjopen-2020-041397
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	﻿‍

new case count = (−0.10 × T2 + 1.11 × T + 46.42)

× β × Existing Confirmed Case Count‍�

where T is temperature in °C, β is a site-related multi-
plicative constant coefficient, with a default of 0.006. All 
parameters take values 14 days before the day new case 
count is evaluated.

With the model, the prediction performance was still 
good (ρ=0.66 in the replication datasets, p<0.001; figure 3F). 
The long-term simplified prediction model also showed five 
prediction-observation correlation patterns (figure  3F), 
indicating different modes of viral transmission, for the 

studied areas. This model could directly predict the newly 
emerging cases 14 days later, and could be used to predict 
COVID-19 outbreak in the future month by summing up 
the daily new case count and combining weather forecast 
(usually available for the future 15 days).

DISCUSSION
This research discovers non-linear dose-response rela-
tionship for meteorological factors, in consistency with 
previous studies.7 Predictions of COVID-19 outbreak scale 
by the models were well correlated with the observations 
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Figure 3  The observed daily new case counts versus the predicted values by the short-term model (A to E) and the long-
term model (F) are illustrated for all the studied areas. The plots exhibit five prediction–observation correlation patterns, 
indicating five viral transmission modes: (A) the ‘restricted’ pattern including the Chinese top affected cities excluding Wuhan; 
(B) the ‘controlled’ pattern including early outbreak areas, namely, Iran, Italy, Japan, Korea, and Chinese Wuhan city; (C) the 
‘natural’ pattern including late outbreak European and American countries, namely, France, Germany, Spain, UK and USA; (D) 
the ‘tropical’ pattern including tropical countries, namely, India, Singapore and Thailand; (E) the ‘southern’ pattern including 
countries in the southern hemisphere, namely, Australia and South Africa. Each dot represents 1 day. Loess regression (A, B and 
E) and linear regression (C and D) interpolation curves are illustrated for each area, with 95% CIs showing in shadow. The black 
solid line represents that the observed values are equal to the predicted ones, and dots closer to this line mean better prediction 
performance.
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around the world, suggesting the importance of weather 
in SARS-CoV-2 transmission. Previous studies have implied 
the spread of many respiratory infectious diseases, such 
as influenza, is dependent on temperature and relative 
humidity.4 Recent published papers on preprint servers 
have reported roles of temperature and absolute humidity 
in the COVID-19 transmission, but their conclusions are 
diverse.6–10 In contrast to the findings by Cai10 this study 
suggests significant impact of mean temperature on the 
daily new case count, indicating a need for sufficient time 
delay between exposure and confirmation for weather 
to exhibit its effect. In contrary to other two studies,6 7 
this research suggests that there is a relatively not wide 
temperature and humidity ranges for the pandemic. 
There is an optimal temperature for SARS-CoV-2 at 
6.18°C, which is colder than that suggested by Bu et al9 
but in consistency with the estimation by Wang et al7; and 
most areas with large spread locate in the humidity range 
of 60% to 90%, more humid than Bu et al suggested.9 
It is of notice that different from other viral respiratory 
diseases such as influenza,14 15 high relative humidity is 
better for SARS-CoV-2 to spread, suggesting that a suffi-
cient amount of droplets in the air to support the suspen-
sion of SARS-CoV-2 is more important for its spread than 
the adverse effect of dry air on the human immune system. 
Different from other studies,16 this study also finds signif-
icant involvement of wind speed, in a quadric manner, 
indicating that mild wind might be more suitable for the 
virus to suspend in the air. In addition, the current study 
discovers that visibility is significantly negatively correlated 
with new case count and plays a more important role in 
viral spread than humidity did (by comparing Spearman’s 
correlation coefficient). As visibility reflects the amount 
of particles (e.g, dust and air pollutants) in the air while 
humidity reflects the amount of water in the air, it may 
indicates that SARS-CoV-2 is more likely to cling to solid 
particles than droplets. New case count decreases rapidly 
when visibility is high than 13 statute miles, indicating 
that caution should be taken if visibility drops below 10 
statute miles.

In the prediction model, there is a multiplicative 
constant coefficient which determines strength of the 
weather coefficient on epidemic transmission. It seems 
site-specific, as adjusting it could make prediction for 
one site closer to observation. This constant might reflect 
the influence of a couple of site-specific confounding 
factors, such as epidemic control measures, sun radiation 
and population density. Various degrees of isolation for 
various areas around the world lead to different degrees 
of weather effect. When evaluating the prediction perfor-
mance by the short-term model and the long-term model, 
they both exhibit different prediction–observation 
correlation patterns (figure 3), suggesting that changes 
in degree of epidemic control and isolation policy would 
lead to deviation from the original prediction and thus 
different prediction–observation correlation patterns. 
Therefore, by plotting the predicted versus observed new 
case counts and adjusting the multiplicative constant 

coefficient (α and β), it would be easy to evaluate the 
effect of epidemic prevention measures. It is of notice 
that the observed case count dropped dramatically from 
predictions for Wuhan 7 days after their shelter hospitals 
were put in use, suggesting the importance and necessity 
of building shelter hospitals for strict isolation rather than 
just home isolation. With the use of shelter hospitals and 
very strict isolation measures, the outbreak in one area 
could be reduced by 52 to 99% compared with natural 
transmission. Another thing worth attention is that 
although the weather in tropical areas like India is not 
suitable for virus survival and transmission, SARS-CoV-2 
still keeps on spreading in a linear fashion in these areas, 
but just with low growth rate of the outbreak. Therefore, 
these tropical areas should still be on the alert against 
future outbreak of COVID-19.

Although those cases with travel history to China or indi-
cated by the WHO as ‘imported case only’ were excluded 
in this study to make the worldwide data most likely local 
transmission, it was difficult to separate the imported 
cases from local transmission very well in practice. It 
might explain the not excellent correlation of predic-
tions with observations. Furthermore, the relationship 
of weather and COVID-19 could be complex, since the 
human immune system has an innate seasonal rhythm, 
and the immune system could also be affected by weather 
vice versa. For example, dry air would reduce the amount 
of mucus on the airway mucosa, and thus increases the 
probability of viral invasion, while wet air would provide 
droplets for virus to adhere.

There are several limitations of this study. First of all, 
this prediction model (especially the long-term model) 
might be more suitable and accurate for temperate areas 
in spring, autumn, and winter, as the models were derived 
using Chinese datasets, mainly in the first 3 months 
of 2020. The prediction became inaccurate and even 
improper under hot weather (i.e., the predicted values of 
long-term model become negative when air temperature 
is higher than 28°C), which might explain the obviously 
bad prediction performance for countries in the southern 
hemisphere and tropical areas. One explanation for the 
inaccurate prediction in areas with high temperature was 
that SARS-CoV-2 transmission in these areas was mainly 
not influenced by weather, but in another direct trans-
mission way, such as face-to-face contact or spread in 
gathering crowd. Second, it seems that the prediction 
performance drops with the increase in new case count, 
suggesting that the prediction model might become inac-
curate and not suitable for very large new case count. 
This could be due to (1) the influence of weather on 
COVID-19 spread might weaken when the number of 
cases increases, while other factors such as social distance 
become more important at a later stage; (2) there were 
less data points with large new case count, which might 
lead to larger variance. Third, the short-term prediction 
model must use all four meteorological factors, while 
these factors are not always available for any one certain 
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area. Fourth, this study included various areas covering a 
long period into modelling, thus, there were a bunch of 
variable confounding factors, such as population mobility 
and disinfection measures, which were not controlled 
and thus could impede model accuracy. Fifth, as we could 
only obtain country-level epidemiological data, the corre-
sponding meteorological data were obtained for their 
capital cities, leading to not exact pairing of epidemiolog-
ical data and meteorological data. Sixth, there is a general 
lack of data and cases in the current study, since we only 
collected data covering two and a half months while the 
pandemic has persisted over 9 months up to now.

CONCLUSION
In summary, this study has found significant correla-
tions between the COVID-19 outbreak and meteorolog-
ical parameters. It proposes a comprehensive model for 
predicting COVID-19 outbreak, composed of a short-
term version and a long-term version. The short-term 
version uses the combination of four meteorological 
factors as a ‘weather coefficient’ of the existing confirmed 
case count in the past week and can be used to predict 
outbreak in the future 3 days; the short-term version uses 
average temperature one week ago as a ‘weather coeffi-
cient’ and can predict the outbreak in the future 1 month 
if combined with weather forecast. This model is easy to 
use for predicting the COVID-19 outbreak for a certain 
area, by substituting weather data in the recent past and 
obtaining an estimate of case count for the future couple 
of days or month. This model will be very helpful for 
local governments to make timely policies on epidemic 
control, for instance, the allocation of medical equip-
ments such as ventilators and medical resources such as 
hospitals, beds and healthcare workers, according to the 
prediction.
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