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Abstract
Diabetic macular edema (DME) is the most common cause of vision loss in 
diabetic retinopathy, affecting 1 in 15 patients with diabetes mellitus (DM). The 
disruption of the inner blood-retina barrier (BRB) has been largely investigated 
and attributed the primary role in the pathogenesis and progression in DME, but 
there is increasing evidence regarding the role of outer BRB, separating the RPE 
from the underlying choriocapillaris, in the occurrence and evolution of DME. 
The development of novel imaging technologies has led to major improvement in 
the field of in vivo structural analysis of the macula allowing us to delve deeper 
into the pathogenesis of DME and expanding our vision regarding this condition. 
In this review we gathered the results of studies that investigated specific outer 
BRB optical coherence tomography parameters in patients with DM with the aim 
to outline the current status of its role in the pathogenesis and progression of 
DME and identify new research pathways contributing to the advancement of 
knowledge in the understanding of this condition.
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Core Tip: Progress in optical coherence tomography technology allowed the 
identification of new pathogenic pathways in diabetic macular edema (DME) involving 
the outer retina and underlying choroid. The presence of fluid in the subretinal space is 
suggestive for the alteration of the outer blood retinal barrier and responds better to 
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intravitreal triamcinolone as compared to anti- vascular endothelial growth factor. The 
disruption of external limiting membrane (ELM) is associated with visual impairment 
being a predictor of poor outcomes following the treatment with triamcinolone. The 
integrity of ELM and of the inner segment/outer segment line was found to correlate 
positively with best corrected visual acuity in DME.
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INTRODUCTION
Diabetic macular edema (DME) is the most common cause of vision loss in diabetic 
retinopathy (DR)[1], affecting 1 in 15 patients with diabetes mellitus (DM)[2]. DME is the 
first cause of visual impairment within the group of working-age population in the 
developed countries[3]. The retina is one of the most metabolically active tissues in the 
organism, having high energetic demands. The complexity of the retinal activity 
requires a homeostatic microenvironment which is achieved by the functioning of two 
distinct blood-retina barriers, inner and outer. The disruption of the inner blood-retina 
barrier (BRB) has been largely investigated and attributed the primary role in the 
pathogenesis and progression in DME, but there is increasing evidence regarding the 
role of outer BRB, separating the retinal pigmented epithelium (RPE) from the 
underlying choriocapillaris, in the occurrence and evolution of DME[4]. The normal 
functioning of the RPE is crucial for the retina, as it removes the waste resulting from 
the phagocytosis of the photoreceptors’ outer segments, it provides nutrients for the 
photoreceptors and it substitutes the lymphatics by pumping the fluid from the inner 
retina to the choriocapillaris[5]. In the diabetic retina, the highly hypoxic microenviron-
ment leads to the over-expression of vascular endothelial growth factor (VEGF) with 
subsequent depletion of occludin and damage of the tight junctions between the RPE 
cells[6]. The RPE alteration in DME was demonstrated both morphologically and 
functionally. Thus, electron microscopy studies performed on the retinas with DME 
induced in animal models found shrank nuclei, reduced endoplasmic reticulum, in-
folding cel l  membrane,  al tered melanosome and loss  of  RPE cells[5]. 
Electroretinography on a mouse model showed the early decrease of c wave before the 
occurrence of any photoreceptor dysfunction[7]. The impact of VEGF on the RPE 
function was demonstrated on cell cultures: increase of VEGF led to the increase of 
transepithelial resistance (TER) which is a marker of RPE barrier’s function. Following 
VEGF neutralization with an antibody, the RPE barrier’s function recovered 
partially[8]. Following the analysis of the RPE cells’ proteome, 62% of the proteins 
involved in the retinoic metabolism were found to be altered in diabetic eyes without 
retinopathy. Interestingly, these proteins were modified also in nonretinal tissue, 
proving that the alteration of RPE is part of the systemic effect of diabetes[9].

The development of novel imaging technologies has led to major improvement in 
the field of in vivo structural analysis of the macula allowing us to delve deeper into 
the pathogenesis of DME and expanding our vision regarding this condition[10]. Within 
the last decades through the implementation of specialized computer software systems 
and modern mathematical tools (fractal/multifractal and lacunarity analysis)[11,12] non-
invasive predictive complementary tools were developed for an early diagnosis of 
patients with DME[13].

In this review we gathered the results of studies that investigated specific outer BRB 
optical coherence tomography (OCT) parameters in patients with DM with the aim to 
outline the current status of its role in the pathogenesis and progression of DME and 
identify new research pathways contributing to the advancement of knowledge in the 
understanding of this condition.
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OUTER RETINAL BARRIER AND THE CHOROID IN THE PATHOGENESIS 
OF DME
The normal functioning of the retina is ensured by the blood-retinal barrier (BRB) 
which regulates the entry and exit of fluid and molecules, maintaining the retina 
transparent and dehydrated[14]. BRB is affected early in diabetic retinopathy (DR) 
which translates into increased vascular permeability and retinal edema[15]. BRB has 
two components, inner and outer.

Inner BRB is constituted by the tight junctions (zonula occludens) between the 
endothelial cells within the retinal vessel walls which allow interactions with pericytes 
and smooth muscle cells[16]. Pericytes have a critical role in maintaining of BRB, by 
liberating a lipid mediator which modulates it[17]. Retinal Müller cells and astrocytes 
stabilize the tight junctions between the endothelial cells[18], whereas microglia 
produces soluble factors which are important for vesicular communication[15].

Outer BRB is formed by the intercellular junction complex of the RPE. More 
specifically, the basolateral membrane of the RPE faces the Bruch’s membrane, 
separating the RPE from the fenestrated endothelium of the choriocapillaris[19] 
(Figure 1).

These tight, adherens and gap junctions control the transport of fluids and solutes 
between the choroidal capillaries and the photoreceptor layers, thus maintaining the 
integrity of the retina[18]. It was proved that the RPE cells express major histocom-
patibility complex molecules, adhesion molecules and cytokines, thus playing an 
important role in immune processes[20]. Healthy RPE also regulates the retinal 
oxidative stress, therefore its malfunctioning reduces the level of antioxidants[19].

Even if the TER is much lower than the resistance of the inter-endothelial junctions 
at the inner retinal barrier, it efficiently prevents proteins and water from the choroid 
to enter the subretinal space and it allows water to exit towards the choroid following 
an osmotic gradient[14]. RPE dysfunction leads to the disruption of fluid transportation 
from the subretinal space towards the choriocapillaris which is translated into DME.

Hyperglycemia leads to the alteration of the junctional complexes at the level of the 
outer blood-retinal barrier subsequently to the activation of metalloproteinases by 
oxidative and nitrosative stress[14]. Since RPE is a highly polarized epithelium, any 
cytoskeletal alteration damages not only the junctions, but also the adequate 
distribution of membrane transporters leading to subretinal fluid accumulation[14].

Serous detachment of the macula which is very suggestive for the breakdown of the 
RPE barrier is observed in approximately one third of the DME cases[20,21].

Decanini et al[9] analyzed the RPE proteome in preretinopathic diabetic human 
donor eyes and identified significant biochemical changes preceding the clinically 
evident diabetic retinopathy. Some of the RPE altered proteins overlap with findings 
from other tissues affected by DM, but others were identified as novel biomarkers, 
such as proteins involved in retinoid metabolism, membrane dynamics and protein 
transport, proving that DM affects multiple cellular processes. Given the importance of 
RPE for the retinal functioning, these alterations may play a major role in the early 
pathogenesis of DR[9].

The external limiting membrane (ELM) is formed by tight-like and adherens 
junctions located at the interface between the retinal Müller glial cells and 
photoreceptor inner segments (Figure 2). Even if its role in the coordination of fluid 
movement around the macula is not fully understood, earlier studies showed that 
ELM serves as an important barrier to free protein diffusion across the retina[14]. 
Hyperglycemia alters the ELM by disrupting the tight junctions by the activation of 
PKCζ[22]. In DR the disruption of the junction protein complexes from the OLM 
translates clinically by lower visual acuity[23] and poor response to anti-VEGF therapy 
in DME[24,25].

Despite the information presented above, experimental studies proved that the RPE 
junction barrier is highly resistant to acute hypoxia/ischemia[26]. Besides, it is not 
known in which extent the RPE barrier is affected by retinal ischemia and the in vivo 
mechanisms involved in RPE dysfunction are not fully understood. For these reasons, 
the alterations of the outer retinal barrier drew less attention to the pathogenesis of 
DME compared to the ones of the inner retinal barrier[14].

The choroid is a highly vascularized and pigmented structure whose main role is to 
provide oxygen and nutrients to the intensely metabolic active outer retinal layers, 
namely the central avascular fovea and the prelaminary portion of the optic nerve[27]. 
Although the pathogenesis of DR is mainly attributed to the dysregulation of the 
retinal vasculature, there is evidence pointing to diabetic choroidopathy[28]. 
Histological studies of the choroid revealed atrophy of the choriocapillary 
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Figure 1 Outer blood-retina barrier. M: Müller cells; A: Amacrine cells; G: Ganglion cells; BV: Blood vessels; As: Astrocyte; B: Bipolar cells; R: Rods; C: Cones; 
H: Horizontal cells; Mi: Microglia; ON: Optic nerve; NFL: Nerve fibre layer; GCL: Ganglion cell layer; IPL: Inner plexiform layer; INL: Inner nuclear layer; OPL: Outer 
plexiform layer; ONL: Outer nuclear layer; ELM: External limiting membrane; IS: Inner segment photoreceptors; OS: Outer segment photoreceptors; RPE: Retinal 
pigment epithelium; BM: Bruch’s Membrane; Ch: Choroid.

endothelium, laminar deposits and narrowing of the luminal area in diabetic patients 
without DR[29,30], as well as basement membrane thickening, capillary dropout and 
choroidal neovascularization[28].

OPTICAL COHERENCE TOMOGRAPHY BIOMARKERS OF THE OUTER 
RETINA IN DME
Currently, precision retinology is in-conceivable without the use of OCT which allows 
early diagnosis, monitoring and individualization of treatment in patients with DM. 
The normal OCT aspect of the retinal layers is illustrated in Figure 3.

Serous retinal detachment
Based on the OCT appearance, three major types of DME were individualized: diffuse 
sponge-like thickening type, cystoid type (thickening of the fovea with intraretinal 
cysts) and serous retinal detachment (SRD) type (thickening of the fovea with 
subretinal fluid)[18,31,32].

Each of these lesions occurs in individual retinal layers, as follows: cystoid spaces 
are located mainly in the inner nuclear layer (INL) and outer plexiform layer (OPL); in 
SRD the extracellular fluid pools between the photoreceptors outer segments (PROS) 
and RPE; sponge-like retinal swelling at the fovea is identified in the OPL[33]. Whereas 
the sponge-like retinal swelling is frequently accompanied by abnormalities of the 
vitreo-macular interface causing the thickening of the retinal parenchyma at the level 
of the OPL[33], the presence of fluid in the subretinal space suggests the alteration of the 
outer BRB being caused by the migration of fluid from the retina through a weakened 
and permeable ELM or from the hyperpermeable vessels in the choriocapillaris 
through a dysfunctional RPE[18,32]. In the early stage of the disease the subretinal fluid 
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Figure 2 External limiting membrane. M: Müller cells; A: Amacrine cells; G: Ganglion cells; BV: Blood vessels; As: Astrocyte; B: Bipolar cells; R: Rods; C: 
Cones; H: Horizontal cells; Mi: Microglia; ON: Optic nerve; NFL: Nerve fibre layer; GCL: Ganglion cell layer; IPL: Inner plexiform layer; INL: Inner nuclear layer; OPL: 
Outer plexiform layer; ONL: Outer nuclear layer; ELM: External limiting membrane; IS: Inner segment photoreceptors; OS: Outer segment photoreceptors; RPE: 
Retinal pigment epithelium; BM: Bruch’s Membrane; Ch: Choroid.

originates in the hyperpermeable choriocapillaris through a dysfunctional RPE and as 
the disease progresses in the breakdown of the outer BRB through a permeable 
ELM[34,35]. The clinical significance of SRD derives from the observation that its 
presence is associated with poor visual prognosis, probably due to the disruption of 
ELM[36].

Several studies compared the effectiveness of anti-VEGF treatment according to the 
OCT appearance of DME and found that the SRD type which associated ELM and RPE 
impairment did not respond well[37,38].

Intravitreal triamcinolone was more effective than anti-VEGF therapy in reducing 
macular thickness and improving vision in eyes with the SRD type of DME (Figure 4) 
in a prospective case series[39]. However, the relatively short follow-up period (24 mo) 
requires careful interpretation of these results, especially since long term steroid 
related complications (cataract, glaucoma) are well known[40,41]. Recently, good results 
with a dexamethasone implant in SRD were reported and OCT factors associated with 
better outcomes were identified as the absence of HF and a continuous ellipsoid zone 
(EZ) at the fovea[42]. The better outcome of SRD following intravitreal steroids as 
compared to intravitreal anti-VEGF is explained by the role of inflammation in its 
pathogenesis. In the SRD type of DME increased concentrations of inflammatory 
cytokines and higher levels of IL-6 were found in the aqueous humor and the 
vitreous[36]. It is believed that the source of IL-6 is represented by the scavenger cells 
attracted by the ELM damage[20].

Outer retinal layers
OCT studies offered insights into the outer retina, proving that the disruption of the 
EZ occurs subsequently to the disruption of ELM[43]. The base of this observation is that 
ELM has tight junctions between the Müller cells and photoreceptor cells which are 
similar to those between the RPE cells. As such, ELM is functioning like a third retinal 
barrier against macromolecules[44] whose malfunctioning leads to the accumulation of 
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Figure 3 Normal optical coherence tomography aspect of the retinal layers. Segmentation software automatically marked the 10 retinal layers. (ILM: 
Internal limiting membrane; RNFL: Retinal nerve fiber layer; GCL: Ganglion cell layer; IPL: Inner plexiform layer; INL: Inner nuclear layer; OPL: Outer plexiform layer; 
ONL: Outer nuclear layer; ELM: External limiting membrane; PR/EZ: Photoreceptor layer/ellipsoid zone (inner and outer photoreceptor segment junction; RPE: 
Retinal pigment epithelium).

Figure 4 Serous retinal detachment type of diabetic macular edema. A: Optical coherence tomography (OCT)-Retinal neurosensory detachment; B: 
Highlighted OCT image showing the neurosensory detachment (red).

fluid in DME. As a result, surrogate biomarkers of the outer retina were proposed to 
determine the progression of DR[45]. A grading of the ultrastructural changes in 
correlation with the severity of the disease was elaborated, grade 0 meaning no 
disruption of ELM and EZ, grade 1 meaning ELM disruption with intact EZ and grade 
2 meaning disruption of ELM and EZ[46]. The disruption of ELM allows blood 
components to reach and potentially damage the photoreceptor layer. The damage of 
ELM in DME could be explained by the extension of the cystoid spaces from the INL 
to the OPL[47], or by the occurrence of a tear in the outer retinal layers in eyes with 
SRD[34]. Several studies have shown that ELM disruption is associated with visual 
impairment in DME[47-49] being a predictor of poor outcomes following the treatment 
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with triamcinolone[50]. The integrity of ELM and inner segment/outer segment (IS/OS) 
line was found to be positively correlated with best corrected visual acuity (BCVA) in 
multiple studies[50-54]. ELM and IS/OS are useful hallmarks for the evaluation of 
photoreceptor layer whose integrity is closely related to the final BCVA[25].

Murakami et al[55] proved that whereas the thickness of the inner retinal layers is 
positively correlated with the visual impairment, the outer retinal thickness is 
correlated negatively with poor visual prognosis following vitrectomy for DME. Thus, 
thinning of the outer retina and photoreceptor degeneration contributes at least 
partly[33] to the apparently paradoxical changes of visual acuity that were reported by 
the Diabetic Retinopathy Clinical Research Network[56].

Many studies proved the importance of the inner IS/OS line in DME[47,48,50,51,53,57-60]. It 
was showed that the transverse length of the disrupted IS/OS line is correlated with 
the visual acuity[50] and that the length of PROS is associated with the visual function 
in DME[49]. PROS correlated better with visual acuity than macular thickness, 
suggesting it as a reliable biomarker of visual acuity in patients with DME[49].

One issue is to point out without a doubt that the IS/OS line that we see on the OCT 
images corresponds to the actual histological junction between the outer and inner 
photoreceptors segments. Correlating the microstructures seen on the OCT images 
with the histological findings, it was speculated that this hyperreflective band was 
located at the EZ in the inner segments[61]. One important observation is that 
reflectivity around this band increased after the exposure to light, suggesting that the 
line is a marker of the photoreceptor function per se[62,63].

Decreased thickness of the PR layer was reported in patients with proliferative 
diabetic retinopathy-diabetic macular oedema (PDR-DMO) and nonproliferative 
diabetic retinopathy (NPDR)-DMO[2] and attributed to the reduced values of PROS 
length in a relatively hypoxic environment at the level of the outer retina[64].

When correlating the OCT parameters of the outer retina with the visual function, 
Damian et al[2] found a low positive correlation between the outer retina and BCVA in 
the PDR-DME group and a low negative correlation between the RPE thickness and 
BCVA in the NPDR-DME group. The authors argue that the results are limited by the 
analyzing of cell thickness not morphology and therefore thickness within normal 
range is compatible with altered cellular anatomy.

RPE-PR complex
RPE layer is crucial for the survival of PR cells, the two layers being considered as a 
functional unit due to their interdependence.

In a recent study it was proved that the RPE thickness was decreased in all 
quadrants in patients with PDR-DME and in some quadrants in the ones with NPDR-
DME[2]. This finding may be subsequent to the disruption of the RPE-PR complex 
possibly due to ischemia[65,66]. Kaarniranta et al[67] proved that constant oxidative stress 
which is a feature of DR leads to the impairment of autophagy and heterophagy in the 
RPE cells. However, the same authors found occasionally increased RPE thickness in 
patients with PDR-DME and NPDR-DME[2] which are explained either by the growing 
of new cells over the RPE cells in order to compensate the fluid leakage within the 
retina[5] or by the accumulation of shed PROS that are not timely engulfed by the RPE 
cells due to the alteration of their phagocytosis capacity[68]. The findings of a thickened 
RPE in diabetic patients may also be a consequence of impaired glycogen metabolism 
ant its accumulation inside the RPE. It has been shown that glycogen content is 
increased in the RPE from diabetic donors, as well as in RPE cells grown in 
hyperglycemic conditions, as consequence of an increase in glycogen synthase activity, 
whereas the glycogen phosphorylase was normal[69].

Tavares Ferreira et al[70] found a thicker RPE layer and thinner PR layer in patients 
with DM without DR as compared to nondiabetic controls. Xia et al[68] reported an 
increased thickness of the RPE-PR complex measured as a whole, but no changes in 
the thickness of retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) in type 
2 diabetic patients without retinopathy and concluded that the modifications of the 
RPE-PR complex preceded the loss of ganglion cells in the diabetic retina without 
microvascular abnormalities. This finding is consistent with evidence from 
electrophysiology[71] and color vision which are impaired in patients without clinical 
DR[72-75].

“Parallelism” of the retinal layers
SD-OCT made it possible to define a new parameter, “parallelism”, referring to the 
integrity of the retinal layers and serving as a potential biomarker to prognosticate 
visual outcome in DME. The orientation of the photoreceptor status layer at the fovea 
was categorized including the continuity of ELM, inner segment EZ and presence of 



Ţălu S et al. Outer retinal barrier and choroid in DME

WJD https://www.wjgnet.com 444 April 15, 2021 Volume 12 Issue 4

HF in the outer retinal layers. Parallelism was found to be significantly lower in eyes 
with DME as compared to normal eyes and positively correlated with visual acuity. 
The absence of HF in the outer retinal layers was associated significantly with higher 
parallelism and better visual acuity[76].

HF
HF were described as dot like lesions on the OCT images[77] (Figure 5). When identified 
in the external retinal layers, HF were associated with poor visual outcomes in patients 
with DME and foveal SRD[34], but also in the ones with DME without SRD[51]. Bolz 
et al[77] postulated that HF in eyes with DME are lipid-laden macrophages and 
represent the precursors of hard exudates. The observation that the disruption of the 
ELM and IS/OS line is associated with HF stands for the theory that these lesions 
reciprocally promote the degeneration of photoreceptor (PR) cells in DME[33].

Correlations between the inner and outer retina
When correlating the inner and outer retinal barriers, Das et al[78] found that there is a 
strong association of disorganization of the inner retinal layers (DRIL) (Figure 6) with 
the disruption of ELM and EZ in DME, advancing the hypothesis that DRIL could be 
responsible for the disorganization of the outer retinal architecture. Another study 
found a highly positive correlation between the thickness of the inner retina and of the 
central RPE in the NPDR-DME group and a low negative one in the PDR-DME group, 
stressing the importance of the retinopathy grade on the DME and pointing out that 
whereas in NPDR the edema involves the entire retina and is mostly vasogenic, in 
PDR it is driven mainly by ischemia[2].

OPTIAL COHERENCE TOMOGRAPHY (ANGIOGRAPHY) BIOMARKERS OF 
THE CHOROID IN DME
Enhanced depth imaging OCT and swept source OCT (SS-OCT) allowed to examine 
the choroid. Vascular changes and thickness alterations of the choroid were reported, 
outlining the diabetic choroidopathy[79,80].

Choroidal thickness in patients with DM
Several studies have found that DM is associated with decreased choroidal thickness 
(CT)[80-83]. Since the choroid is the main source of oxygen and nutrients for the outer 
retina and RPE, this may lead to increased retinal vulnerability to diabetes related 
hypoxia and ischemia. Moreover, a trend towards choroidal thinning paralleling the 
increasing severity of DR has been proved[84].

Even in the absence of any clinical retinopathy, some authors reported the 
significant decrease of CT in patients with DM, suggesting that the decreased 
choroidal blood flow might be the primary event[80,81] . Choroidal thinning was 
particularly obvious in the subfoveal and inferior regions in a study conducted by 
Esmaeelpour et al[81]. The same study group noted the perimacular retinal thinning 
probably caused by the optic nerve fiber layer atrophy[81].

Other studies have shown opposite results, in the sense that thicker choroid was 
identified in patients with DR[32,80,85]. Tavares Ferreira et al[86] measured CT in diabetic 
patients without DR and found significantly increased CT superiorly to the fovea, 
proposing it as a possible early preclinical change in diabetes. Using SS-OCT, the same 
authors identified vascular choroidal remodeling in diabetic patients without 
retinopathy and choroidal small vessel loss in the areas of previous laser photocoa-
gulation in patients with proliferative diabetic retinopathy[87]. Choroidal thickening 
increased with the severity of DR, significantly[27] or not significantly[88].

At present there is no consensus on the temporal relationship between the choroidal 
changes and retinopathy. Some authors claim that the onset of choroidopathy precedes 
retinopathy, while others argue that the two events are independent[32,80,85,87,89]. Several 
studies offered evidence of choroidopathy occurring only in the most severe stages of 
DR[82,83,90] or worsening with the increasing severity of DR[32,89].

CT and DME
Patients with DME have clinically significant thinner subfoveal choroid compared to 
healthy controls, but when compared to other grades of DR, NPDR and PDR, their 
choroid is thicker[84]. Kim et al[32] reported significantly thicker choroids in DME 
patients as compared to non-DME patients. When the type of DME was further 
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Figure 5 Hyperreflective foci. A: Original optical coherence tomography (OCT) image; B: Highlighted OCT image revealing hyperreflective foci (red).

Figure 6 Disorganization of the inner retinal layers. A: Normal optical coherence tomography aspect of the macula; B: Disorganization of the inner retinal 
layers.

evaluated, CT was significantly greater in the SRD group than in the cystoid type 
DME[32]. However, other authors reported thinner choroid in case of clinically 
significant macular edema, explaining this finding as an artifact due to the attenuation 
of signal transmission and reflection by the edema itself[79,91]. Despite this, Gerendas 
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et al[91] reported that in the fellow non-affected eye the choroid was also thinner, 
suggesting that systemic factors are involved in the pathogenesis of this finding. 
Esmaeelpour et al[81] reported no choroidal thinning below the lesions in patients with 
DME.

CT after treatment for DR
It was shown that panretinal photocoagulation (PRP) is followed initially by choroidal 
swelling within one week, which is explained by the shifting of vessels from the 
peripheral retina to the foveal area[92,93], followed by the thinning of the choroid, 
possibly by downregulation of VEGF[27]. Cho et al[93] found at 1 and 3 mo after PRP an 
increased subfoveal CT concomitant with a significant CT decrease in the photocoa-
gulated area.

Regarding anti-VEGF treatment, several studies reported choroidal thinning over 
the first 6 mo[94,95]. Rayess et al[96] showed that subfoveal choroidal thickness (SFCT) is a 
predictor of response to anti-VEGF therapy in the sense that a greater SFCT at baseline 
is associated with better outcomes. One explanation is that greater choroidal thickness 
stands for intact choriocapillaris, less ischemic outer retina and better preservation of 
photoreceptors[96].

Systemic factors, like blood hemoglobin, arterial blood pressure and hypercho-
lesterolemia, influence CT[84].

Future developments of CT as biomarker in DME
CT in patients with DR is a highly unreliable parameter and multiple studies show 
different results because there is a poor control of variables, a wide range of collecting 
data and different devices are used. There is evidence that the choroid thins with 
progressing DME as well as following PRP and anti-VEGF injections. It was reported 
that longer standing DME is associated with worse anatomical and functional 
outcomes following anti-VEGF treatments. Therefore, a thicker choroid prior to 
treatment would probably indicate a shorter duration DME and be associated with 
better outcomes after treatment. Thus, CT may be also attributed the role of prognostic 
biomarker able to predict the response to treatment in DME. However, in order to get 
reliable data on CT, future studies should accomplish certain requirements: to define 
clearly the scleral-choroidal junction, to include local (refractive status), and general 
(age, diabetes duration, HbA1C) factors in the analysis, to make a longitudinal 
approach and use longer follow up intervals[28].

Choroidal vascular index in patients with DM
Choroidal vascular index (CVI) is a term that means the ratio of choroidal luminal area 
to total choroidal area which was recently introduced as a novel biomarker to monitor 
the progression of DR[97]. CVI may be attributed the role of an early biomarker, because 
studies proved that while CT is unaltered in DR, CVI correlates with progressing 
DR[83]. CVI alteration before the onset of DR, supports the theory of choroidal primary 
damage in DR[98].

Decreased choroidal blood flow creates a hypoxic environment for the RPE and 
photoreceptor cells, disrupting the phagocytosis and rendering the RPE cells 
fragile[99,100]. The condition is aggravated by the subsequent production of superoxide 
and soluble inflammatory factors[68].

Whereas most of the studies focused on the CT showing its thinning in patients with 
DM, proportional with the severity of DR, a multicenter cross-sectional study used SS-
OCT images to analyze choroidal vascularity in different stages of DR and introduced 
new quantitative parameters, such as choroidal vascular density (CVD) and choroidal 
vascular volume (CVV)[28]. According to this study, the eyes with DME and PDR had a 
reduced CVD and eyes with PDR had also a reduced CVV compared to controls, 
reflecting the notion that vascular abnormalities increase with the severity of DR. In 
eyes with NPDR without DME, the overall CVD was significantly reduced, but not at 
macula, suggesting that although diffuse choroidopathy may be present in early stages 
of DR, submacular choroidopathy only becomes present in later stages of DR. The 
same authors proved that in diabetic patients without DR, the choroidal vascular 
indices did not show significant differences compared to controls. Thus, it is suggested 
that the occurrence of diabetic choroidopathy does not precede that of retinopathy, 
although further studies are required to elucidate this important issue for 
understanding the diabetic eye disease[28].

A recent study analyzed CVI after intravitreal injection of ranibizumab in eyes with 
DME and found the significant reduction of CVI and choroidal blood flow only in the 
no-PRP group, but not in the PRP-treated group. Moreover, a significant correlation 
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between the central retinal thickness and choroidal blood flow was found in the no-
PRP group[101].

OCTA choroidal biomarkers in DME
In diabetic patients without DR, an OCTA study showed that the choroidal foveal flow 
area was significantly decreased compared to controls suggesting that the compromise 
of the circulation starts in the foveal choroidal layer in DR, preceding the occurrence of 
mycroaneurysms. When DR develops, both the retinal and choroidal capillaries are 
significantly reduced[102].

INDOCYANINE GREEN ANGIOGRAPHY
Years before the recent studies with OCT, a paper using indocyanine green 
angiography (ICGA) in patients with NPDR disclosed microvascular findings in 
addition to those described with fluorescein angiography: lobular spotty hyperfluo-
rescent and hypofluorescent areas in the very late phase, diffuse late-phase 
hyperfluorescence corresponding to retinal capillary non-perfusion areas on 
fluorescein angiography and retinal edema[103]. However, due to its invasiveness and 
lack of quantification, ICGA is limited in detecting ischemia in early DR[102].

CONCLUSION
Advances in OCT technology allow a more detailed investigation of the outer retina 
and choroid providing biomarkers that mediate the decoding of pathogenesis, 
monitoring and selection of the best treatment option for DME. By identifying new 
OCT biomarkers at the level of outer retina and choroid, paths for early diagnosis and 
identification of novel therapeutic targets in DME are opened.
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