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In diverse species, from cyanobacteria to plants to 
mammals, circadian clocks drive rhythms in gene 
expression throughout the genome (Covington 
et  al., 2008; Liu et  al., 1995; Panda et  al., 2002). 
Accordingly, transcriptome measurements have 
revealed circadian influences on physiology and 
potential applications for circadian medicine (Anafi 

et  al., 2017; Hughey, 2017; Laing et al., 2017; Mure 
et al., 2018; Zhang et al., 2014). Transcriptome mea-
surements are also beginning to reveal how circa-
dian systems are affected by factors such as diet, 
infection, and cancer (Haspel et  al., 2014; Masri 
et al., 2016; Tognini et al., 2017). Experiments prob-
ing these factors often give rise to datasets that 
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Abstract Unraveling the effects of genetic or environmental perturbations on 
biological rhythms requires detecting changes in rhythmicity across multiple 
conditions. Although methods to detect rhythmicity in genome-scale data are 
well established, methods to detect changes in rhythmicity or changes in aver-
age expression between experimental conditions are often ad hoc and statisti-
cally unreliable. Here we present LimoRhyde (linear models for rhythmicity, 
design), a flexible approach for analyzing transcriptome data from circadian 
systems. Borrowing from cosinor regression, LimoRhyde decomposes circa-
dian or zeitgeber time into multiple components to fit a linear model to the 
expression of each gene. The linear model can accommodate any number of 
additional experimental variables, whether discrete or continuous, making it 
straightforward to detect differential rhythmicity and differential expression 
using state-of-the-art methods for analyzing microarray and RNA-seq data. In 
this approach, differential rhythmicity corresponds to a statistical interaction 
between an experimental variable and circadian time, whereas differential 
expression corresponds to the main effect of an experimental variable while 
accounting for circadian time. To validate LimoRhyde’s performance, we 
applied it to simulated data. To demonstrate LimoRhyde’s versatility, we 
applied it to murine and human circadian transcriptome datasets acquired 
under various experimental designs. Our results show how LimoRhyde sys-
tematizes the analysis of such data, and suggest that LimoRhyde could prove 
valuable for assessing how circadian systems respond to perturbations.
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include samples not just from multiple time points, 
but also from multiple conditions.

A common step in analyzing circadian or other-
wise rhythmic transcriptome data is identifying 
which genes show evidence of rhythmic expression. 
This step can now be accomplished by various com-
putational methods, including JTK_CYCLE and 
RAIN (Hughes et  al., 2010; Hutchison et  al., 2015; 
Thaben and Westermark, 2014). Importantly, though, 
these methods are only designed to detect rhythmic 
features (e.g., genes) based on samples from one con-
dition. They are not designed to detect which features 
show a difference in rhythmicity between conditions 
(e.g., by comparing lists of rhythmic genes from each 
condition), and using them as such can lead to a high 
rate of false positives and false negatives (Thaben 
and Westermark, 2016). Indeed, the lack of a standard 
approach to analyze omics data from multiple condi-
tions was highlighted in the recent guidelines for 
genome-scale analysis of biological rhythms (Hughes 
et al., 2017).

A classic approach for rhythm detection is cosinor 
regression (or harmonic regression), which is based 
on fitting a time series to the first harmonic of a 
Fourier series, i.e., sine and cosine curves of a set 
period (Cornelissen, 2014; Nelson et  al., 1979). 
Because cosinor regression corresponds to a linear 
model, coefficients for even complex time series can 
be estimated efficiently using least squares. Inspired 
by cosinor regression, Thaben and Westermark 
recently made a significant advance in the statisti-
cally rigorous analysis of rhythmic transcriptome 
data from multiple conditions (Thaben and 
Westermark, 2016). Their method, called DODR, 
detects changes in rhythm amplitude, phase, and 
signal-to-noise ratio, which they call “differential 
rhythmicity.” DODR is relatively narrow in scope, 
though, as it is only designed to detect differential 
rhythmicity between 2 conditions. DODR cannot 
detect changes in average expression level between 
conditions, and cannot handle more complex exper-
imental designs (e.g., with continuous variables, 
such as age).

In addition to being a fundamental part of cosinor 
regression, linear models are 1 of 2 components 
shared by nearly all state-of-the-art methods for 
assessing differential expression in transcriptome 
data. The second is called empirical Bayes. While lin-
ear models provide the ability to handle complex 
experimental designs, empirical Bayes shares infor-
mation across genes to make more stable estimates of 
gene-wise variance and thereby improve statistical 
power and accuracy (Smyth, 2004). These methods 
can also appropriately deal with the non-Gaussian 
distributions of read counts from RNA-seq (Soneson 

and Delorenzi, 2013). Despite these methods’ flexi-
bility and widespread success, their applications to 
circadian transcriptome data have been relatively 
limited (Hsu and Harmer, 2012; Montagner et  al., 
2016; Pembroke et  al., 2015; Spörl et  al., 2012). 
Encouragingly, recent work suggests that empirical 
Bayes can improve rhythmicity detection (Hutchison 
et al., 2018). To our knowledge, however, there has 
been no unification of cosinor-based approaches 
with these state-of-the-art tools for differential 
expression.

We sought to develop a general approach to sys-
tematically analyze circadian transcriptome data 
from various experimental designs. Our approach, 
which we call LimoRhyde (linear models for rhyth-
micity, design), builds on cosinor regression to 
express complex circadian experiments in terms of a 
linear model, which makes circadian transcriptome 
data amenable to analysis by existing tools for dif-
ferential expression. We validated our approach in 
the 2-condition scenario by comparing it to DODR 
on simulated data and on 6 experimental datasets 
from mice. To explore LimoRhyde’s flexibility, we 
then applied it to 2 datasets from humans. Our 
results suggest that LimoRhyde offers a valuable 
framework for assessing how rhythmic biological 
systems respond to genetic and environmental 
perturbations.

MATERIALS AND METHODS

All data and code to reproduce this study are avail-
able at https://doi.org/10.6084/m9.figshare.5945569. 
The LimoRhyde R package is available at https://
github.com/hugheylab/limorhyde.

Processing the Gene Expression Data

For the RNA-seq datasets (GSE73552 and 
E-MTAB-3428), we downloaded the raw reads, then 
quantified gene-level abundances (based on Ensembl 
Gene IDs) in units of transcripts per million (TPM) 
using salmon v0.8.2 and tximport v1.6.0 (Patro et al., 
2017; Soneson et al., 2015). We kept for analysis only 
those genes with TPM ⩾ 0.5 in at least half the samples. 
For all analyses and plots, we converted expression 
values to log2(TPM+1). For the microarray datasets, 
we downloaded the raw (Affymetrix) or processed 
(Agilent or Illumina) expression data from NCBI GEO, 
then used metapredict v0.0.0.9019 for mapping probes 
to Entrez Gene IDs, intra-study normalization, and log-
transformation (Hughey and Butte, 2015). Details of all 
datasets are in Suppl. Table S1.

https://doi.org/10.6084/m9.figshare.5945569
https://github.com/hugheylab/limorhyde
https://github.com/hugheylab/limorhyde
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Detecting Rhythmic, Differentially Rhythmic, and 
Differentially Expressed Genes using LimoRhyde 
and Limma

To make circadian transcriptome data amenable to 
analysis using linear models, LimoRhyde follows the 
strategy of cosinor regression, decomposing zeitge-
ber or circadian time into a sine and cosine of period 
24 h. Although this decomposition is the simplest, 
one could also decompose time based on multiple 
harmonics of the Fourier series or on periodic splines. 
Thus, a single variable becomes at least 2 variables in 
the linear model. For data derived from several cycles 
in constant conditions, one could also include a linear 
time variable (e.g., time in free-run) to control for 
drift. Additional terms for condition, subject, or other 
covariates can be included as appropriate. In this 
approach, differential rhythmicity corresponds to a 
statistical interaction between the experimental factor 
of interest (e.g., genotype) and each term related to 
zeitgeber/circadian time. Differential expression, 
meanwhile, corresponds to the main effect of the 
experimental factor of interest.

For example, if the only variables of interest are 
zeitgeber time and genotype (with 2 values for the 
latter), then the linear model could be expressed as
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E ygi( )  is the expected (log-transformed) expres-
sion of gene g  in sample i, hi  is an indicator for 
sample i ’s genotype (e.g., 0 for wild-type and 1 for 
knockout), ti  is sample i ’s zeitgeber or circadian 
time, and βgj  are the unknown coefficients for gene 
g . The linear model could also be expressed in vector 
notation as

E y xgi i
T

g( ) ,= β
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and βg  is a column vector containing all the coeffi-
cients. In this example, differential rhythmicity corre-
sponds to testing whether βg4  and βg5  are both equal 
to zero. Differential expression of non-differentially 
rhythmic genes, meanwhile, corresponds to removing 

the terms for βg4  and βg5, then testing whether βg1  is 
equal to zero.

After constructing the linear model, the transcrip-
tome data can be analyzed using multiple existing 
methods based on linear models and empirical Bayes. 
In this paper, we used limma v3.34.9 (Ritchie et al., 
2015; Smyth, 2004). For all datasets (microarray and 
RNA-seq), we used limma with largely the default 
settings, except we allowed it to fit a mean-variance 
trend across genes (limma-trend) (Law et al., 2014). 
To control the false discovery rate, p values were con-
verted to q-values using the method of Benjamini and 
Hochberg (1995).

In the datasets from mice, which have discrete time 
points spaced throughout the circadian cycle, we 
detected genes with rhythmic expression using RAIN 
(see next section). In the dataset based on samples 
from human brain (GSE71620), one experimental fac-
tor (age) is continuous and the zeitgeber time points 
are approximately randomly distributed. Therefore, 
to calculate a q-value of rhythmicity (accounting for 
age), we first used LimoRhyde to construct an addi-
tive model with terms for age, brain region, and zeit-
geber time. The model does not include a term for 
donor because, although each donor has a corre-
sponding sample from each of 2 brain regions, those 2 
samples correspond to the same age and the same 
zeitgeber time, making it impossible to reliably 
account for inter-donor variation. We then used limma 
to perform a moderated F-test on the coefficients cor-
responding to the 2 terms for zeitgeber time.

Detecting Rhythmic Genes using RAIN

For datasets with 2 conditions, our goal was to 
detect genes rhythmic in at least one condition. For 
datasets with discrete time points (all mouse datasets), 
we followed a similar procedure as used previously 
(Thaben and Westermark, 2016). We first ran RAIN 
v1.12.0 (default settings and period 24 h) separately on 
the samples from each condition, which resulted in a p 
value for each gene in each condition. We then used 
the minimum p value for each gene to calculate q-val-
ues of rhythmicity (qrhy). Comparing acrophase across 
conditions only makes sense if the gene is rhythmic in 
both conditions. We calculated q-values of being 
rhythmic in both conditions (qrhy,max) similarly, but 
using the maximum instead of the minimum p value.

Detecting Rhythmic Genes using Lomb-Scargle

For the human brain dataset, we also attempted to 
identify rhythmic genes using the implementation of 
Lomb-Scargle in the MetaCycle R package v1.1.0 
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(Wu et al., 2016). We first adjusted the expression val-
ues for age and brain region, then ran Lomb-Scargle 
on the residual expression values from all samples. 
We tested only one value for the period (24 h).

Detecting Differentially Rhythmic Genes using 
DODR

We used the DODR R package v0.99.2 (Thaben and 
Westermark, 2016), specifically the robustDODR 
function, which tests for a combination of amplitude 
and phase change and corresponds to the moderated 
F-test in limma. By default, DODR first divides each 
gene’s measurements by the mean for that gene in 
that condition. In our simulations, however, the 
expression of genes was centered around zero. For 
generalizability and for consistency between our 
analyses of experimental and simulated data, we 
instead subtracted from each measurement the mean 
for that gene in that condition, then called robust-
DODR with division-by-mean normalization 
disabled.

Comparing LimoRhyde and DODR for Detecting 
Differential Rhythmicity

To validate LimoRhyde’s ability to detect differen-
tial rhythmicity between 2 conditions, we created 
simulations with non-rhythmic, rhythmic, and differ-
entially rhythmic genes. The simulated data were 
based on drawing 2 samples every 2 h for 24 h from 2 
conditions, and were designed to roughly mimic the 
properties of real data. Each simulated dataset con-
tained 10,080 genes, with 75% of genes non-rhythmic 
and 25% rhythmic, and 25% of the rhythmic genes 
differentially rhythmic (i.e., having a difference in 
amplitude and/or phase between conditions). 
Rhythmic expression was modeled as a sinusoid with 
a period of 24 h. Noise in expression was modeled as 
additive Gaussian with a standard deviation of 1.

For each simulated dataset, we used LimoRhyde 
(followed by limma) and robustDODR to calculate 
the p value of differential rhythmicity for each gene. 
Based on those p values, we then used the precrec R 
package v0.9.1 to calculate a receiver operating char-
acteristic (ROC) curve for distinguishing each set of 
differentially rhythmic genes from the genes that 
were rhythmic but not differentially rhythmic. By 
using the known labels (a benefit of the simulations), 
this analysis avoided confounding with the method 
for detecting rhythmic genes and focused on the best-
case performance of LimoRhyde and DODR for 
detecting differential rhythmicity.

To evaluate the agreement between LimoRhyde 
and DODR in calling genes differentially rhythmic on 

experimental data, we calculated Cohen’s kappa at 
various q-value cutoffs using the irr R package v0.84. 
To estimate each method’s tendency to call false posi-
tives in each dataset, we first identified genes rhyth-
mic in at least one condition using RAIN on the true 
sample labels, then permuted the sample labels 
(wild-type or knockout) within samples from the 
same time point. This strategy attempts to preserve 
rhythmic expression patterns, but remove differential 
rhythmicity. For each dataset, we then calculated the 
mean number of differentially rhythmic genes (across 
50 permutations) at various q-value cutoffs. Because 
the number of differentially rhythmic genes varies 
substantially across datasets, we summarized the 
overall results using the geometric mean.

To ensure a sufficient number of rhythmic genes 
for comparison, we used a cutoff of qrhy ⩽ 0.1 for 5 of 
the 6 datasets. We used a cutoff of qrhy ⩽ 0.15 for 
E-MTAB-3428, which has only 4 time points and 8 
samples per genotype.

Calculating Gene-wise Rhythmic Parameters using 
ZeitZeiger

We estimated rhythm amplitude and zeitgeber/
circadian time of peak expression (acrophase) using 
ZeitZeiger v1.0.0.5 with default settings (Hughey 
et al., 2016; Hughey and Butte, 2016). For the mouse 
datasets, we ran ZeitZeiger separately on the samples 
from each condition. For the human brain dataset, to 
calculate each gene’s overall rhythmic properties, we 
used LimoRhyde and limma to adjust the expression 
values for age and brain region, then ran ZeitZeiger 
on the residual expression values from all samples. 
To estimate the change in rhythmic properties with 
age, we split donors by age into younger 50% and 
older 50% groups, then calculated the rhythm ampli-
tude and acrophase on the unadjusted expression 
values within each cohort. For all datasets, we calcu-
lated Δamplitude as the arithmetic difference in 
rhythm amplitude, and Δacrophase as the circular 
difference (constrained between −12 h and +12 h).

Performing Gene Set Analysis using CAMERA

To identify gene sets enriched for differential 
expression, we used the camera function in the limma 
R package (Wu and Smyth, 2012). CAMERA takes as 
input an expression matrix, a list of gene sets, a design 
matrix corresponding to a linear model, and a single 
contrast (e.g., genotype or age). As in the limma anal-
ysis, we allowed CAMERA to fit a mean-variance 
trend. To identify gene sets enriched for differential 
rhythm amplitude, we used the cameraPR function 
(default settings), which takes as input a vector of 
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gene-wise statistics (in our case, Δamplitude) and a 
list of gene sets. We used the mouse and human C5 
GO (gene ontology) gene sets of MSigDB v5.2 
(Liberzon et al., 2011), which are available at http://
bioinf.wehi.edu.au/software/MSigDB/index.html. 
The gene sets are based on Entrez Gene IDs, so for the 
gene set analysis of GSE73552, we mapped Ensembl 
Gene IDs to Entrez Gene IDs using the org.Mm.eg.db 
R package, keeping only genes with a one-to-one 
mapping.

RESuLTS

Applying LimoRhyde to Circadian Transcriptome 
Data from a Two-Condition Design

To develop a workflow for using LimoRhyde, we 
first sought to analyze a circadian transcriptome 
dataset that is representative of a common experi-
mental design, in which samples are acquired at dis-
crete time points throughout the circadian cycle in 2 
conditions. We selected a dataset that included sam-
ples taken every 4 h from livers of wild-type and 
clock gene knockout Arntl-/- mice under night-
restricted feeding in LD 12-12, with gene expression 
measured by RNA-seq (Atger et  al., 2015). Starting 
with the RNA-seq reads, we estimated gene-level 
abundances using Salmon and tximport (Patro et al., 
2017; Soneson et al., 2015). Using RAIN (Thaben and 
Westermark, 2014), we then identified 2434 genes 
rhythmic in at least one genotype (qrhy ⩽ 0.01; Table 1 
and Suppl. Fig. S1A).

We next used LimoRhyde to express the experi-
mental design in terms of a linear model (Table 1) and 
used limma to determine which rhythmic genes 
showed evidence of differential rhythmicity between 
wild-type and Arntl-/- mice. Limma is a general 
method for analyzing microarray and RNA-seq data 
based on linear models and empirical Bayes (Ritchie 
et al., 2015; Smyth, 2004). We used limma to calculate 
a moderated F-statistic for each rhythmic gene, which 
tests the null hypothesis that both coefficients corre-
sponding to the interaction between genotype and 

zeitgeber time are zero. This amounts to testing for a 
difference in a combination of rhythm amplitude and 
phase (Thaben and Westermark, 2016). Of 2434 rhyth-
mic genes, 1641 genes were differentially rhythmic at 
a cutoff of qDR ⩽ 0.1 (Suppl. Fig. S1B). Of the 16 genes 
with the lowest qDR, 8 genes are part of or directly 
driven by the core circadian clock (Rorc, Arntl, Nr1d1, 
Dbp, Cry1, Ciart, Nr1d2, and Per3).

Although the moderated F-statistic can provide 
evidence of a change in rhythmicity, it does not indi-
cate the nature of the change. Therefore, for each 
rhythmic gene, we used ZeitZeiger (Hughey et  al., 
2016) to quantify the rhythm amplitude and the zeit-
geber time of peak expression (acrophase) in wild-
type and Arntl-/- mice. We found that the genes with 
the best evidence for differential rhythmicity had 
strongly reduced rhythm amplitude in Arntl-/- mice 
(Fig. 1A). Among genes that exhibited at least moder-
ate evidence of rhythmicity in each genotype (qrhy,max 
⩽ 0.2; see Materials and Methods), changes in acro-
phase were widely distributed (Fig. 1B). As expected 
(Thaben and Westermark, 2016), genes with stronger 
evidence of differential rhythmicity tended to have 
larger absolute changes in acrophase.

We then used a simpler linear model, one lacking 
an interaction between genotype and zeitgeber time, 
to identify genes differentially expressed between 
wild-type and Arntl-/- mice. Here differential expres-
sion refers to a difference in average expression level 
between genotypes, accounting for possible rhyth-
micity. For this step, we considered only the 11,737 
genes for which there was not strong evidence of dif-
ferential rhythmicity (qDR > 0.1) or for which differ-
ential rhythmicity was not examined (qrhy > 0.01). 
Among these genes, 3038 genes were differentially 
expressed (qDE ⩽ 0.01), of which 301 genes had an 
absolute log2 fold-change >1 (Fig. 1C).

We also investigated how the numbers of genes 
classified as differentially rhythmic and differentially 
expressed were affected by the criteria used at each 
step. We found that the number of differentially 
rhythmic genes increased as the cutoffs for rhythmic-
ity and differential rhythmicity became less stringent 
(Suppl. Fig. S2A). The number of differentially 
expressed genes, on the other hand, increased as the 

Table 1. Workflow used to Detect Rhythmic, Differentially Rhythmic, and Differentially Expressed Genes in Circadian 
Transcriptome Data from Livers of Wild-type and Arntl-/- Mice under Night-restricted Feeding (GSE73552).

Analysis Step Genes Tested Method Variables in Linear Model

1. Rhythmicity All RAIN -
2. Diff. rhythmicity Rhythmic LimoRhyde 1, , , , ,hi i icos sin cos sinθ θ θ θh hi i i⋅ ⋅ i
3. Diff. expression Non-diff. rhythmic LimoRhyde 1, , ,hi cos sinθ θi i 

In the vectors of variables, hi  and θi  correspond to genotype (encoded as an indicator variable) and zeitgeber time (in radians) for sample 
i, respectively. Bold font indicates the variables whose corresponding coefficients were of interest at each step. Arrows indicate that 
rhythmic genes were tested for differential rhythmicity, and non-differentially rhythmic genes were tested for differential expression.

http://bioinf.wehi.edu.au/software/MSigDB/index.html
http://bioinf.wehi.edu.au/software/MSigDB/index.html
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Arntl–/–

Figure 1. using LimoRhyde to analyze circadian transcriptome data from livers of wild-type and Arntl-/- mice under night-restricted 
feeding (GSE73552). (A) Scatterplot of -log10(qDR) vs. Δamplitude. qDR corresponds to a rhythmic gene’s q-value of differential rhythmic-
ity. Δamplitude corresponds to the change in rhythm amplitude between genotypes, where a negative value indicates lower amplitude 
in Arntl-/-. In A-C, each point represents a gene. In A and B, the 16 rhythmic genes with the highest -log10(qDR) are labeled. (B) Scatterplot 
of -log10(qDR) vs. Δacrophase. The latter corresponds to the change in zeitgeber time of peak expression, where a positive value indicates 
a phase advance in Arntl-/-. Only genes with q-value for rhythmicity in both genotypes ⩽ 0.2 are shown. (C) Scatterplot of -log10(qDE) 
vs. log2 (fold-change). qDE corresponds to the q-value of differential expression. A positive log2 (fold-change) indicates higher average 
expression in Arntl-/-. The 10 genes with the highest -log10(qDE) are labeled. (D) Venn diagram of genes meeting criteria for rhythmicity 
(q-value of rhythmicity qrhy ⩽ 0.01), differential rhythmicity (qDR ⩽ 0.1), and differential expression (qDE ⩽ 0.1). (E) Plots of 3 example 
genes. Each point represents a sample. Based on the criteria, Per2 is classified as rhythmic only, Per3 as differentially rhythmic, and 
Hectd2 as differentially expressed only.
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cutoff for differential rhythmicity became more strin-
gent (to the extent this led to a decrease in the number 
of differentially rhythmic genes) and as the cutoff for 
differential expression became less stringent (Suppl. 
Fig. S2B).

Finally, to complement the gene-wise analysis, we 
used a method called CAMERA to perform gene set 
analysis (Wu and Smyth, 2012). Because methods 
such as CAMERA are unable to work directly with 
the F-statistics of differential rhythmicity (which have 
only a positive sign), we instead plugged into 
CAMERA the differences in rhythm amplitude as 
quantified by ZeitZeiger. Consistent with the gene-
wise analysis, 4 of the 5 top-ranked gene sets with 
altered rhythm amplitude were related to circadian 
rhythms (all with q ⩽ 10−8 and reduced amplitude in 
Arntl-/-; Suppl. Table S2). Gene sets enriched for dif-
ferential expression, meanwhile, tended to be related 
to the ribosome and various catabolic processes (with 
increased expression in Arntl-/-; Suppl. Table S3).

Given criteria for rhythmicity, differential rhyth-
micity, and differential expression, the assignment of 
genes to each group can be expressed as a Venn dia-
gram (Fig. 1D). To illustrate the various expression 
patterns, we show 3 genes as examples (Fig. 1E). 
Taken together, these results suggest that LimoRhyde 
provides a cohesive framework for the differential 
analysis of circadian transcriptome data.

Comparing LimoRhyde and DODR in the 
Assessment of Differential Rhythmicity

Detecting differential rhythmicity between 2 con-
ditions is the use case for DODR. As in LimoRhyde, 
differential rhythmicity in DODR is defined as a sta-
tistical interaction in a linear model based on cosinor 
regression. Although DODR does not use empirical 
Bayes to share information between genes, it does use 
rank-based statistics to achieve robustness to outlier 
samples.

To validate LimoRhyde’s ability to detect differen-
tial rhythmicity between 2 conditions, and to bench-
mark its performance against that of DODR, we 
simulated transcriptome datasets containing non-
rhythmic, rhythmic, and differentially rhythmic 
genes (see Materials and Methods). The latter were 
defined by values for mean amplitude (relative to the 
standard deviation of additive Gaussian noise), dif-
ference in amplitude, and difference in phase (exam-
ple time-course in Suppl. Fig. S3A).

For each simulated dataset, we used LimoRhyde 
and DODR to calculate the p value of differential 
rhythmicity (pDR) for each gene. We first verified 
that pDR for non-differentially rhythmic genes was 

uniformly distributed between zero and one, as 
expected under the null hypothesis (Suppl. Fig. 
S3B). We then used pDR from each method to calcu-
late the area under the ROC curve (AUC) for distin-
guishing each set of differentially rhythmic genes 
from all genes that were rhythmic but not differen-
tially rhythmic. As the AUC is not based on any one 
threshold, we also calculated the fraction of differ-
entially rhythmic genes for which pDR ⩽ 0.01 (true 
positive rate, TPR, not adjusted for multiple testing). 
Values of AUC and TPR for both LimoRhyde and 
DODR approached one (perfect detection) as the 
difference in amplitude or phase between condi-
tions increased. (Fig. 2 shows values for LimoRhyde; 
Suppl. Fig. S4 shows the small differences between 
the 2 methods.) These results indicate that, indepen-
dent of the method used to detect rhythmicity, both 
methods provide similarly strong detection of dif-
ferential rhythmicity.

To compare LimoRhyde and DODR on experimen-
tal data, we assembled 6 circadian transcriptome 
datasets (4 microarray, 2 RNA-seq). Each dataset 
included samples taken at discrete circadian time 
points from wild-type mice and clock gene knockout 
mice (Suppl. Table S1). For each dataset, we used 
RAIN to detect genes rhythmic in at least one geno-
type, applying a less stringent cutoff (qrhy ⩽ 0.1) to 
have more genes for comparison. For rhythmic genes, 
we then used LimoRhyde and DODR to calculate 
q-values of differential rhythmicity (Fig. 2A). The 
median runtimes per dataset were 0.3 s for LimoRhyde 
and limma and 41 s for DODR.

Overall, q-values from the 2 methods were highly 
correlated (median Spearman correlation coefficient 
0.91). In addition, based on Cohen’s kappa, 
LimoRhyde and DODR showed moderate to strong 
agreement at various q-value cutoffs (Fig. 3B). 
Although the number of differentially rhythmic 
genes varied between datasets, LimoRhyde tended to 
select slightly more genes than DODR at a low 
q-value cutoff (qDR ⩽ 0.01) and somewhat fewer 
genes at higher q-value cutoffs (qDR ⩽ 0.1 or qDR ⩽ 
0.2; Fig. 3C and Suppl. Fig. S5A). To evaluate the abil-
ity of the 2 methods to control false positives, we per-
formed permutation testing on each dataset (see 
Materials and Methods). Both methods effectively 
controlled false positives, detecting many fewer dif-
ferentially rhythmic genes on permuted data than on 
the unpermuted data; although, again, LimoRhyde 
tended to select fewer genes (i.e., was more conserva-
tive) than DODR at higher q-value cutoffs (Fig. 3D 
and Suppl. Fig. S5B). These results suggest that 
LimoRhyde (followed by limma) and DODR provide 
comparable detection of differential rhythmicity in 
circadian transcriptome data.
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Applying LimoRhyde to Human Transcriptome 
Data from Diverse Experimental Designs

We next explored the flexibility of LimoRhyde 
using 2 transcriptome datasets from humans, each of 
which has a different experimental design than the 
datasets from mice. The first dataset from humans 
was based on brain tissue from postmortem donors, 
with the zeitgeber time for each sample based on the 
respective donor’s time of death, date of death, and 
geographic location (Chen et al., 2016). The 146 donors 
ranged in age from 16 to 96 years old (M ± SD, 50.7 ± 
15.3). Given how sleep-wake patterns change with 
age (Roenneberg et  al., 2004; Yoon et  al., 2003), this 
dataset presents an excellent opportunity to examine 
the interaction between aging and circadian rhythms 
in 2 regions of the human prefrontal cortex 
(Brodmann’s areas 11 and 47). The original analysis, 
however, was forced to discretize donors into younger 
and older, which discards information and sacrifices 
statistical power. LimoRhyde, on the other hand, can 

accommodate continuous variables such as age with-
out discretizing them.

Because the time points are based on times of 
death, they are approximately randomly spaced, 
making use of RAIN or JTK_CYCLE infeasible. 
Therefore, to identify rhythmic genes, we used an 
additive model in LimoRhyde, including terms for 
age (as a continuous variable in years), zeitgeber 
time, and brain region (Table 2; 3 example genes 
are shown in Fig. 4A-B). This additive model is 
equivalent to cosinor regression. To estimate each 
gene’s overall rhythm amplitude, we applied 
ZeitZeiger to the residuals of an additive model 
lacking terms for zeitgeber time (see Materials and 
Methods). Applying the criteria of qrhy ⩽ 0.1 and 
rhythm amplitude ⩾ 0.1, we identified 891 genes as 
rhythmic (Fig. 4C and Suppl. Fig. S6A). In contrast, 
the Lomb-Scargle method, which can also handle 
randomly spaced time-points (Glynn et  al., 2006), 
identified only 30 genes as rhythmic (q ⩽ 0.1; 
Suppl. Fig. S6B).

Figure 2. Evaluating the detection of differential rhythmicity in simulated data with LimoRhyde. Simulations were based on drawing 
2 samples every 2 h for 24 h from 2 conditions. Each simulated dataset contained 10,080 genes, with 75% of genes non-rhythmic, 25% 
rhythmic, and 25% of the rhythmic genes differentially rhythmic between the 2 conditions. Each set of differentially rhythmic genes was 
defined by mean amplitude, difference in amplitude (Δamp) and difference in phase (Δphase). In total, we created 56 simulated datasets, 
giving 504 genes in each set of differentially rhythmic genes. Difference in amplitude could equal up to twice the mean amplitude, at 
which point the gene was non-rhythmic in one condition, and thus the difference in phase was undefined. The additive Gaussian noise 
in expression values had a standard deviation of 1. using the p values of differential rhythmicity from LimoRhyde (followed by limma), 
we calculated a receiver operating characteristic (ROC) curve for distinguishing each set of differentially rhythmic genes from all genes 
that were rhythmic but not differentially rhythmic. Heatmaps of (A) area under the ROC curve (AuC) and (B) fraction of differentially 
rhythmic genes having a nominal p value of differential rhythmicity ⩽ 0.01 (true positive rate, TPR).
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Figure 3. Comparing LimoRhyde (followed by limma) and DODR for detecting differential rhythmicity (DR) between wild-type and 
clock gene knockout mice. For details of datasets, see Suppl. Table S1. In each dataset, rhythmic genes were identified using RAIN. 
(A) Scatterplots of q-value of differentially rhythmicity as calculated by each method. The title of each plot indicates the knocked-out 
gene(s) and the tissue in which gene expression was measured. Each point represents a rhythmic gene. The line indicates y = x. For each 
dataset, up to 15 genes with extremely high -log10(qDR LimoRhyde) are not shown. (B) Cohen’s kappa, a measure of inter-rater agreement, 
between DODR and LimoRhyde at various q-value cutoffs. Each point represents a dataset. (C) Geometric mean (across datasets) of the 
number of differentially rhythmic genes at various q-value cutoffs. (D) Geometric mean (across datasets) of the mean (across permuta-
tions) number of differentially rhythmic genes at various qDR cutoffs, in data in which the sample labels (wild-type or knockout) were 
permuted. Labels were permuted after identifying rhythmic genes, and were only permuted within samples at the same time point. 
Thus, DR genes identified in permuted data can be considered false positives for differential rhythmicity.

Table 2. Workflow used to Detect Rhythmic, Differentially Rhythmic, and Differentially Expressed Genes in Postmortem Samples 
from Human brain (GSE71620).

Analysis step Genes tested Method Variables in linear model

1. Rhythmicity All LimoRhyde 1, , , ,r ai i cos sin⋅ ⋅ θ θi i

2. Diff. rhythmicity Rhythmic LimoRhyde 1, , , , , ,r ai i i icos sin cos sinθ θ θ θa ai i i i⋅ ⋅ 
3. Diff. expression Non-diff. rhythmic LimoRhyde 1, , , ,ri i iai cos sinθ θ 

In the vectors of variables, ri , ai , and θi  correspond to brain region (encoded as an indicator variable), age (in years, as a continuous 
variable), and zeitgeber time (in radians) for sample i, respectively. Bold font indicates the variables whose corresponding coefficients 
were of interest at each step. Arrows indicate that rhythmic genes were tested for differential rhythmicity, and non-differentially rhythmic 
genes were tested for differential expression.
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To find genes whose rhythmic expression varied 
with age, we altered the linear model to include  
an interaction between age and zeitgeber time, 

maintaining age as a continuous variable (Table 2). 
Of the 891 genes that met our criteria for rhythmicity, 
195 genes were differentially rhythmic (qDR ⩽ 0.1; 

Figure 4. using LimoRhyde to analyze transcriptome data based on postmortem samples from human brain (GSE71620). (A) and (B) 
Scatterplots for 3 example genes, showing log-normalized expression as a function of age and zeitgeber time of death within younger 
and older donors. Each point represents a sample. ARHGAP10 is classified as differentially expressed only, PER3 as rhythmic only, and 
TRIB2 as differentially rhythmic. (C) Venn diagram of genes meeting criteria for rhythmicity (qrhy ⩽ 0.1 and rhythm amplitude ⩾ 0.1), 
differential rhythmicity (qDR ⩽ 0.1), and differential expression (qDE ⩽ 0.01). (D) and (E) Histograms of Δamplitude and Δacrophase for 
differentially rhythmic genes between younger and older donors, calculated using ZeitZeiger. Positive Δamplitude indicates higher 
rhythm amplitude in older donors. Positive Δacrophase indicates a phase advance in older donors. (F) Expected expression, based on 
linear model coefficients, as a function of zeitgeber time and age for 3 of the most strongly differentially rhythmic genes (by qDR).
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Fig. 4C and Suppl. Fig. S6C). To estimate the age-
dependent changes in rhythm amplitude and acro-
phase of differentially rhythmic genes, we applied 
ZeitZeiger to samples from the younger 50% and 
older 50% of donors. Changes in rhythm amplitude 
were centered near zero, with similar numbers of 
genes showing increased or decreased amplitude in 
older donors (Fig. 4D). Genes with decreased rhythm 
amplitude were enriched for involvement in leuko-
cyte-mediated immunity and the adaptive immune 
response (Suppl. Table S5). Changes in acrophase 
were shifted from zero, corresponding to a mean 
advance of 3.1 h in older donors (circular mean; Fig. 
4E). Finally, to visualize differential rhythmicity of 
individual genes, we used the linear model coeffi-
cients to calculate expected expression as a function 
of zeitgeber time and age (Fig. 4F).

Using the original additive model (Table 1), we 
then identified 4551 genes whose expression 
increased or decreased with age, accounting for zeit-
geber time (qDE ⩽ 0.01; Fig. 4C and Suppl. Fig. S6D). 
The numbers of differentially rhythmic and differen-
tially expressed genes showed a similar dependence 
on the criteria for rhythmicity, differential rhythmic-
ity, and differential expression as in the mouse liver 
dataset (Suppl. Fig. S7). Genes whose expression 
decreased with age were strongly enriched for 
involvement in glutamate receptor signaling, syn-
apse structure and activity, and mitochondria (Suppl. 
Table S4), which is consistent with previous findings 
(Lu et al., 2004).

The second dataset from humans was based on 
suction-blister epidermis samples acquired from 20 
subjects at 3 time points (0930 h, 1430 h, and 1930 h) 
(Spörl et al., 2012). The original analysis, which used 
limma but considered the time points as categorical 
variables (ANOVA) and did not adjust for inter-sub-
ject variation, identified 294 genes whose expression 
varied with time of day (q ⩽ 0.05).

To analyze the dataset using LimoRhyde, we con-
structed a linear model with terms for subject and time 
of day (Suppl. Fig. S8A). We then used limma to per-
form a moderated F-test on the 2 coefficients corre-
sponding to time of day, which identified 1436 genes 
with time-of-day-dependent expression (q ⩽ 0.05; 
Suppl. Fig. S8B). Among the 15 top-ranked genes were 
8 core clock genes (NR1D1, PER3, CIART, NPAS2, 
PER1, ARNTL, NR1D1, and PER2, all with q ⩽ 2×10−8).

Because this dataset has exactly 3 time points, the 
LimoRhyde time decomposition and ANOVA are 
equivalent; they both correspond to 2 parameters in 
the linear model (the increased number of detected 
genes in our analysis is a result of adjusting for inter-
subject variation). As the number of time points 
increases, though, LimoRhyde will continue to favor 
genes whose expression varies sinusoidally over 

time, whereas ANOVA, which ignores the relation-
ship between time points, will not. Taken together, 
these examples demonstrate how LimoRhyde enables 
a statistically rigorous analysis of circadian transcrip-
tome data from diverse experimental designs.

DISCuSSION

Despite the increasing complexity of experiments 
to interrogate rhythmic biological systems, methods 
to fully analyze the resulting genome-scale data have 
remained largely ad hoc. Here we described 
LimoRhyde, a unified approach to detect gene-wise 
differential rhythmicity and differential expression in 
circadian or otherwise rhythmic transcriptome data. 
LimoRhyde is inspired by cosinor regression and is 
applicable to data from any experimental design that 
can be described by a linear model. LimoRhyde thus 
functions as an adapter, making circadian transcrip-
tome data amenable to analysis by the ever-improv-
ing and growing set of methods designed for the 
differential analysis of microarray and RNA-seq data.

For detecting differential rhythmicity in the com-
mon 2-condition scenario, our results suggest that 
LimoRhyde performs comparably to DODR. 
Although LimoRhyde (followed by limma) is consid-
erably faster, the absolute difference in runtime is 
negligible compared to the amount of time required 
to perform the experiments.

LimoRhyde distinguishes itself from DODR by its 
versatility. First, LimoRhyde can be used to detect 
rhythmic or time-of-day–dependent gene expression 
in datasets in which time points are either randomly 
spaced or do not cover the full circadian cycle, sce-
narios for which the current implementations of 
methods such as JTK_CYCLE and RAIN are ill-suited. 
In this application, LimoRhyde is conceptually equiv-
alent to cosinor regression, with the advantage of 
using empirical Bayes procedures in methods such as 
limma to share information between genes. Second, 
LimoRhyde enables the detection of differential 
expression between conditions, accounting for possi-
ble rhythmicity. This could reveal expression changes 
in genes whose mRNAs are too stable to be rhythmic 
or differentially rhythmic (Lück et  al., 2014). Our 
results suggest that a typical circadian experiment is 
well powered to detect even relatively small log fold-
changes. Third, LimoRhyde can be applied to tran-
scriptome data from complex experimental designs. 
Here we analyzed a dataset in which an experimental 
variable was continuous, and a dataset in which mul-
tiple samples were collected from each participant.

While LimoRhyde provides rigorous gene-wise p 
values, other methods are useful for interpretation. 
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Given a set of differentially rhythmic genes, methods 
such as ZeitZeiger can quantify the changes in rhythm 
amplitude and phase. Although such post hoc com-
parisons are not statistical tests, it may be possible in 
the future to test specifically for a difference in one 
quantity or the other. Furthermore, gene set analysis 
methods such as CAMERA can identify biological 
processes that are enriched for changes in average 
expression level or in rhythm amplitude. An analo-
gous method called Phase Set Enrichment Analysis 
could identify processes enriched for changes in 
phase (Zhang et al., 2016).

Regardless of the computational method, detect-
ing differential rhythmicity and differential expres-
sion requires 2 assumptions. The first is a value for 
the period of the rhythm. For typical experiments 
using entrained or newly free-running organisms, 
the assumed period will likely correspond to the 
period of the most recent zeitgeber (T) or possibly 
the free-running period of the organism (tau). 
Neither DODR nor LimoRhyde are currently 
designed to detect differences in period. The second 
assumption is an alignment of all time points, 
whether from conditions with different values of tau 
(if free-running) or different photoperiods, to one 
scale. For example, if the photoperiod varied between 
conditions, the results will depend on whether time 
zero in each photoperiod is defined as the time of 
lights on or the time of lights off. Consequently, we 
advise caution when calculating and interpreting 
differential rhythmicity in datasets based on free-
running organisms for which tau varies considerably 
between conditions. The danger of this experimental 
design is that, if the time points are not aligned prop-
erly, the results will be confounded by differences in 
the organisms’ intrinsic circadian phase (Hsu and 
Harmer, 2012).

In addition to these assumptions, categorizing 
genes as rhythmic, differentially rhythmic, and differ-
entially expressed—although convenient—requires 
arbitrary cutoffs of q-value and/or rhythm ampli-
tude. An alternative approach would be to test the 
coefficients for the main effect and the statistical 
interaction jointly, which would identify genes show-
ing evidence for either differential rhythmicity or dif-
ferential expression.

Multiple features of LimoRhyde remain to be 
explored. For example, although we used LimoRhyde 
in conjunction with limma, which is fast and can han-
dle both microarray and RNA-seq data, LimoRhyde 
is compatible with multiple other methods for differ-
ential expression analysis. In addition, although here 
we decomposed time using sine and cosine curves (as 
in cosinor), it is also possible to apply a decomposi-
tion based on a periodic smoothing spline (as in 
ZeitZeiger). LimoRhyde could also be used to detect 

differences in higher-order harmonics of circadian 
gene expression (Hughes et al., 2009).

In conclusion, we have developed a general 
approach for the differential analysis of rhythmic 
transcriptome data. We concentrated on microarray 
and RNA-seq data, but given limma’s success on 
proteomics, DNA methylation, and ChIP-Seq data 
(Brusniak et  al., 2008; Lun and Smyth, 2014; 
Maksimovic et  al., 2012), we are optimistic that 
LimoRhyde could be applied to other types of 
genome-scale data as well. Altogether, LimoRhyde 
can help ensure that our ability to analyze rhythmic 
omics data continues to scale with our ability to 
acquire it.
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