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NiH-catalyzed asymmetric hydroarylation of N-acyl
enamines to chiral benzylamines
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Enantiomerically pure chiral amines and related amide derivatives are privilege motifs in
many pharmacologically active molecules. In comparison to the well-established hydro-
amination, the transition metal-catalysed asymmetric hydrofunctionalization of enamines
provides a complementary approach for their construction. Here we report a NiH-catalysed
enantio- and regioselective reductive hydroarylation of N-acyl enamines, allowing for the
practical access to a broad range of structurally diverse, enantioenriched benzylamines under
mild, operationally simple reaction conditions.
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s a privileged structural motif, benzylamines and related

amide derivatives are found in many natural products,

pharmaceuticals, agrochemicals, and other chemicals
(Fig. 1a), and efficient strategies for their catalytic, enantioselec-
tive synthesis have long been sought!~>. Metal hydride® cata-
lyzed reductive hydrofunctionalization from readily available
alkene starting materials is a particularly appealing approach to
the synthesis of benzylamines. Previously, starting from styrene
and an electrophilic amination reagent, Buchwald!® and Miura
and Hirano!! have independently developed an enantioselective
reductive CuH-catalyzed hydroamination method (Fig. 1b, left).
We recognized that if asymmetric hydroarylation of enamines
could be achieved, enantioenriched benzylamines would become
accessible (Fig. 1b, right).

Benefiting from the economical and facile chain-walking and
cross-coupling!2-14, and use of simple ligands, NiH catalysis has
emerged in recent years as an efficient means of achieving
enantioselective C-C bond formation!>=>8. In these general syn-
thetic processes: (1) both of the starting alkenes and aryl halides/
alkyl halides are commercially or synthetically available; (2) no
prior generation of organometallic reagents is necessary; and (3)
the newly formed sp3-hybridized stereocenters could potentially
be enantioselectively controlled at the carbons originating in the
achiral olefins3*-43 or at the carbons from racemic alkyl elec-
trophiles3>=38. Recently, we reported the enantioselective hydro-
arylation of styrenes using a novel chiral nickel-bis(imidazoline)
catalyst (Fig. 1c, i)40. In this process, an asymmetric center was
generated and controlled at the carbon derived from the olefin.
To demonstrate the wide-ranging applicability of this reductive
NiH>4-58 catalysis, we have explored the feasibility of asymmetric
hydroarylation with electron-rich alkenes, for example N-acyl
enamines, which are generally less reactive than styrenes
(Fig. 1c, ii).

As shown in Fig. 1c, ii, the syn-hydrometallation of an L*NiH
species into an N-acyl enamine would generate two alkyl-nickel
enantiomers. These could undergo oxidative addition with an aryl
iodide, affording two high-valent Ar-Ni(III)-alkyl enantiomers,
which would experience rapid homolysis and sequential stereo-
selective radical recombination prior to a selective reductive
elimination®*-70. In the presence of a suitable chiral ligand, the
radical recombination process could be enantioselectively con-
trolled and deliver a single Ar-Ni(III)-alkyl enantiomer in an
enantioconvergent fashion. Subsequent reductive elimination
would deliver the enantiopure arylation product®®. Notably, the
amide group in the enamine substrate would also play a key role,
enhancing both the regio- and the enantioselectivity. Here we
describe the successful execution of this strategy, which allows for
the practical access to a broad scope of chiral benzylamines under
mild, operationally simple reaction conditions. During the pre-

paration of this report, similar work was reported by Nevado
et al 4243,

Results

Reaction design and optimization. Our initial studies focused on
the enantioselective hydroarylation of enamide (la) with 4-
iodoanisole (2a), and obtained the results summarized in Fig. 2
(see Supplementary Tables 1, 2 for details). After extensive
examination of nickel sources, ligands, silanes, bases, and sol-
vents, we found that Nil, and chiral bis-imidazoline ligand (L1)
can provide the desired hydroarylation product in good yield as a
single regioisomer with high enantioselectivity (99% ee, entry 1).
Other nickel sources such as NiBr; led to lower yields with almost
no change in ee (entry 2). Evaluation of ligands showed that both
the imidazoline skeleton (entry 3 vs entry 1) and the remote steric
effects of the substituent on the imidazoline skeleton (entry 4 vs

entry 3) have a marked influence on the enantioselectivity”?
Dimethoxymethylsilane was shown to be an unsuitable silane
(entry 5) and KF was shown to be an unsuitable base (entry 6).
Use of DMF as solvent also led to a significantly lower yield (entry
7) and use of the less-polar THF as solvent produced no desired
arylation product (entry 8). Reducing the reaction time from 48 h
to 24 h led simply to incomplete conversion (entry 9).

Substrate scope. Having established the optimal conditions, we
explored the scope of the aryl iodide coupling partner (Fig. 3) and
found that a wide range of aryl and heteroaryl iodides are tol-
erated. The aryl substituent can be substituted at the ortho, meta,
or para position (2a-2p), however, aryl iodide with an ortho-
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Fig. 2 Variation of reaction parameters. *Yields determined by crude 'TH NMR using 1,1,2,2-tetrachloroethane as the internal standard, the
yield in parentheses is the isolated yield. TEnantioselectivity was determined by chiral HPLC analysis. Bz benzoyl, PMP p-methoxyphenyl, DMA
N,N-dimethylacetamide, DMF N,N-dimethylformamide.

5 mol% Nily, 6 mol% L1 L1 Ar Ar
; ’ Ar(Het) | |
2.0 equiv (MeO)3SiH Al N N
BzHN/\/ + (Het)Ar-1 Py
2.0 equiv NaF BzHN Et T /> <\ pr
1a (enamide) 2 (1.8 equiv) DMA (0.20 M), 1t, 48 h 3 \\‘\ M g ©
Nracyl enamine aryl iodide N-acyl benzylamine "Pr  3-Bu-CeHs "Pr

a) from aryl iodides

OMe
BzHNj.“\\©/

Et
3a 81% yield, 99% ee

BzHN

3f 86% yield, >99% ee

BzHN

>""'Q002Me
Et

3k* 76% yield, 99% ee

Bz}-;lt\l>m"@

3q 67% yield, 97% ee

BzHN
Et

3b 51% yield, 98% ee

o O
)

Et
3g* 65%yield, >99% ee

BZHN

3" 82% yield, >99% ee

BZHN

3r* R = OMe, 45% yield, 98% ee
3s* R = F, 72% yield, 98% ee

BZHN

BzHN,
>.....©—NHBoe
Et

3c 99% yield, 97% ee

-

3h 51% yield, 99% ee

BZHN
>...u
Et

Ac
3m* 84% yield, 98% ee
b) from heteroaryl iodides

BzHN —
-G

3t* 67% yield, 99% ee

BzHN,
>""IQNHTFA
Et

3d* 69% yield, 98% ee
BzHN

>...u®—ocp3
Et

3i* 69% yield, >99% ee

BzHN

s

3n* R =F, 78% yield, >99% ee
30" R = Cl, 72% yield, >99% ee

BzHN
D C e,

3u* 46% yield, 98% ee

c) pharmaceutical and biological compounds

O

BzHN OTBS
o < >—/

3e 66% vyield, 98% ee

BzHN
Et

3j* 75% yield, >99% ee

BzHN
Et

3p* 86% vyield, >99% ee

BzHN

>.... 4

Et —
3v* 54% yield, 98% ee

—N

BzHN o ’pr BzHN BzHN F
O~ e (3 e, (O
Et o Ef Et s

o,
3 O .
0

O“‘
3x*t 86% yleld >20:1 dr
glucose derivative

3w*t 82% yield, >20:1 dr
menthol derivative

3y*t 68% yield, >20:1 dr
empagliflozin derivative

3w* 73% yield, 99% ee
canagliflozin derivative

Fig. 3 Substrate scope of aryl iodide component. Yield under each product refers to the isolated yield of purified product (0.20 mmol scale, average of two
runs), >95:5 regioisomeric ratio (rr) unless otherwise noted. Enantioselectivities were determined by chiral HPLC analysis. *5 mol% Ni(ClO4),¢6H,0, DMA
(0.10 M), 1.5 equiv Arl. TDiasterecisomeric ratio (dr) was determined by crude 'TH NMR analysis. TBS, tert-butyldimethylsilyl.

| (2021)12:638 | https://doi.org/10.1038/s41467-020-20888-5 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

(0} I 5 mol% Nil,, 6 mol% L1 (0] PMP
)J\ . 2.0 equiv (MeO)3SiH )J\ : :
R + > R
RN /©/ . RT N
H MeO 2.0 equiv NaF H
1 (enamide) 2a (1.8 equiv) DMA (0.20 M), rt, 48 h 4
N-acyl enamine aryl iodide N-acyl benzylamine
o) PMP PMP o) PMP
H H H
MeO FC CCDC 2036489
from (£2)-1b from (Z/E£6.6:1)-1¢ from (2)-1d
4b 63% yield, 99% ee 4c¢ 88% yield, 99% ee 4d 55% yield, 95% ee
PMP PMP PMP
AcHN” " BzHN” N BZHN” NN
from (Z)-1e from (£)-1g
4e 81% yield, 97% ee 4f 61% yield, 97% ee 4g 88% yield, 99% ee
PMP PMP

PMP

- Ph /\/\/\ /\/\/\
BzHN/\4h/\/ BzHN OTBS BzHN OBn

from (£)-1h, 83% yield, 98% ee
from (2)-1h, 88% vield, 98% ee

from (E)-1k
4k 67% yield, 94% ee

from (£)-1i
4i 72% yield, 98% ee

from (£)-11
4] 42% yield, 98% ee

from (E)-1j
4j 82% vyield, 99% ee

o} PMP

3 OBn

from (£)-1m
4m 67% yield, 98% ee

Fig. 4 Substrate scope of the N-acyl enamine component. Yield and ee are as defined in Fig. 3 legend. Ac acetyl.

substituent is less reactive (2g, see Supplementary Figs. 1, 2 for
the details of competition experiment). Substrates with Electron-
rich (2a-2e) as well as electron-withdrawing (2h-2p, 2w-2z) aryl
iodides work well in the reaction. In case of the latter, Ni
(ClO4),-6H,O was found to be a superior catalyst and only 1.5
equiv of aryl iodide was needed. A variety of functional groups,
including ethers (2a, 2e, 2h, 2i, and 2y), esters (2b, 2k, 2w, and
2x), a carbamate (2c), an amide (2d), a trifluoromethyl group
(2j), aryl fluorides (2n, 2z), as well as a ketal (2x), are all readily
accommodated. Notably, sensitive functional groups such as an
easily reduced aldehyde (21) and ketone (2m, 2z), a chloride (2o,
2y), and a triflate (2p) commonly used for subsequent cross-
coupling all remained unchanged under the exceptionally mild
reaction conditions of the reaction. Compounds containing het-
erocycles such as thiophene (2q, 2z), pyridine (2r, 2s, and 2t),
pyrrole (2t), pyrimidine (2u), and imidazopyridine (2v) are also
competent coupling partners. With this protocol, several core
structures of bioactive and pharmaceutical molecules, such as L-
menthol (2w), glucose (2x), empagliflozin (2y), and canagliflozin
(2z), could be readily introduced in an enantioselective fashion,
irrespective of the existing chiral centers and complex structures.

As shown in Fig. 4, the scope of the enamide is also fairly
broad. In general, high levels of enantioselectivity are delivered by
the reaction. For N-benzoyl enamine substates, an electron-
deficient substituent on the aromatic ring of the benzoyl group
led to a higher yield than electron-rich substituents (1c vs 1b).
The less sterically hindered N-acetyl enamine (le) was more
reactive than N-pivaloyl enamine (1d, see also Supplementary
Fig. 3 for X-ray structure of 4d). The B-unsubstituted enamide
(1d) was also shown to be a viable substrate. Enamides with a
range of different functionalized alkyl substituents at the

B-position underwent asymmetric hydroarylation smoothly
(Th-Im). A diverse spectrum of functional groups were
compatible, including ethers (1i, 1j), esters (1k, 11), and an alkyl
chloride (1m). In addition, both E and Z isomers of the enamide
substrates produced the same enantiomeric product with the
same level of enantioselectivity ((E)-1h vs (Z)-1h).

Discussion

The robustness and synthetic utility of this catalytic system were
further demonstrated by gram-scale synthesis and subsequent
derivatization of the product (Fig. 5a). A 5 mmol-scale hydro-
arylation was performed successfully and the product (3a) was
readily converted into the tertiary amine (5a) without racemiza-
tion. To shed light on the hydrometallation process, deuterium-
labeling experiments were carried out with deuteropinacolborane
(Fig. 5b). From both E and Z isomers of the enamide substrates, a
diastereomeric mixture of deuterated products were obtained
with an opposite dr ratio. If the syn-hydrometallation of NiD to
N-acyl enamine is the enantio-determining step, then a diaster-
eomerically pure 4h-D should be formed. The observed forma-
tion of both diastereoisomers in each case indicates that the NiD
insertion is not the enantio-determining step (As shown in
Supplementary Figs. 4-9, we could observe the isomerization of E
olefinic substrate to Z isomer during the reaction process. In
contrast, the isomerization of Z olefinic substrate to E isomer is
very slow.). On the other hand, the same level of enantioselec-
tivity for deuterated products in both cases of E and Z olefinic
substrates (Fig. 5b) is consistent with a mechanism in which rapid
homolysis of Ni(III) to Ni(II) and the subsequent enantioselective
radical recombination serves as an enantio-determining step
(Fig. 1c, ii).
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a Gram-scale experiment and reduction of the amide
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Fig. 5 Gram-scale, derivatization, and deuterium-labeling experiments.
a Gram-scale experiment and reduction of the amide. b NiD experiment:
NiD syn-hydrometallation is not the enantio-determining step.

In conclusion, we have developed an enantioselective hydro-
arylation of N-acyl enamines, which provides access to an array of
enantioenriched benzylamines, a biologically active pharmaco-
phore. This reaction is based on a reductive NiH catalysis strat-
egy. A wide range of functional groups on both the N-acyl
enamine and aryl iodide components are well-tolerated. Pre-
liminary studies of the mechanism suggest that the hydro-
metallation of NiH is not the enantio-determining step.
Development of a migratory version of this transformation and
investigations of the mechanism are currently in progress.

Methods

General procedure for NiH-catalyzed asymmetric hydroarylation of N-acyl
enamines. In a nitrogen-filled glove box, to an oven-dried 8 mL screw-cap vial
equipped with a magnetic stir bar was added Nil, (3.1 mg, 5.0 mol%), L1 (7.2 mg,
6.0 mol%), NaF (16.8 mg, 2.0 equiv), and anhydrous DMA (1.0 mL). The mixture
was stirred for 20 min at room temperature, at which time (E)-N-(prop-1-en-1-yl)
benzamide (1a) (32.2 mg, 0.20 mmol, 1.0 equiv), 4-iodoanisole (84.0 mg, 0.36
mmol, 1.8 equiv), and (MeO);SiH (51.0 uL, 0.40 mmol, 2.0 equiv) were added to
the resulting mixture in this order. The tube was sealed with a teflon-lined screw
cap, removed from the glove box and the reaction was stirred at rt (22~26 °C) for
up to 48 h (the mixture was stirred at 750 rpm, ensuring that the base was uni-
formly suspended). After the reaction was complete, the reaction mixture was
directly filtered through a short pad of silica gel (using EtOAc in Petroleum ether)
to give the crude product. 1,1,2,2-Tetrachloroethane (26 uL, 41 mg, 0.25 mmol) was
added as internal standard for 'H NMR analysis of the crude material. The product
was purified by chromatography on silica gel for each substrate. The yields reported
are the average of at least two experiments, unless otherwise indicated. The
enantiomeric excesses (% ee) were determined by high-performance liquid chro-
matography analysis using chiral stationary phases.

Data availability

The authors declare that the main data supporting the findings of this study, including
experimental procedures and compound characterization, are available within the article
and its supplementary information files, or from the corresponding author upon
reasonable request. CCDC 2036489 contains the supplementary crystallographic data for
4d. These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.
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