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In thedomainof gene-genenetworkanalysis, construction of co-expressionnetworks andextractionofnet-
workmodules have openedupenormous possibilities for exploring the role of genes in biological processes.
Through such analysis, one can extract interesting behaviour of genes and would help in the discovery of
genes participating in a commonbiological process. However, such network analysismethods in sequential
processing mode often have been found time-consuming even for a moderately sized dataset.
It is observed that most existing network construction techniques are capable of handling only positive

correlations in gene-expression data whereas biologically-significant genes exhibit both positive and neg-
ative correlations. To address these problems, we propose a faster method for construction and analysis of
gene-gene network and extraction of modules using a similarity measure which can identify both nega-
tively and positively correlated co-expressed patterns. Our method utilizes General-purpose computing
on graphics processing units (GPGPU) to provide fast, efficient and parallel extraction of biologically rele-
vant networkmodules to support biomarker identification for breast cancer. Themodules extracted are val-
idated using p-value and q-value for bothmetastasis and non-metastasis stages of breast cancer. PNME has
been found capable of identifying interesting biomarkers for this critical disease. We identified six genes
with the interesting behaviours which have been found to cause breast cancer in homo-sapiens.
� 2018 Production and hosting by Elsevier B.V. on behalf of Academy of Scientific Research & Technology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
1. Introduction We need to find gene-gene network modules which are a col-
Genetic analysis is a part of molecular biology specifically con-
cerned with the understanding of the information which is
encrypted in genes that are necessary for growth, reproduction
and evolution of living organisms. Genes are some regions of the
DNA (Deoxyribose Nucleic Acid) or RNA (Ribose Nucleic Acid)
and act as a collection of biological information which is necessary
to build and maintain an organism’s cells [1]. Genetic analysis
includes molecular technologies such as DNA sequencing, DNA
microarrays, cytogenetic and Polymerase Chain Reaction (PCR).

Due to the proliferation of DNAmicroarray technology, it is now
possible to generate gene expressions and analyse expression pat-
terns of several genes in a systematic and comprehensive manner
[2]. Microarrays help in detecting messenger RNA (mRNA) (which
convey genetic information from DNA). Since it has tens of
thousands of probes hence it can accomplish many genetic tests
in parallel [3]. Using microarray technology, relative expression
levels for genes are computed. The result of the computation forms
the gene expression dataset [4,5].
lection of genes that are functionally similar. Traditional machine
learning [6] and statistical methods rely on disease-identification
markers to support appropriate analysis of a disease. However, it
has been shown that genes are usually involved in more than
one function, and it is the interplay among genes that lead to dis-
eases like cancer [7].

In order to find semantic similarities between a pair of genes
from a dataset, a gene-gene network, referred here as the Gene
Co-Expression Network (GCEN) has been constructed. It is a graph
where each node represents a gene and an edge between two
nodes represents either the interaction or some other relationship
[8–11].

Next, a module extraction technique has been introduced,
which enables to extract ‘modules’ from a GCEN. A module is a
set of genes forming a dense region in the co-expression network.
In other words, the modules are network components containing
highly-correlated genes. Genes with high correlation correspond
to some common biological phenomenon. By choosing the appro-
priate gene expression dataset and constructing efficient GCEN,
module extraction can help to determine what genes are responsi-
ble for a biological process, like the progression a disease [12,13] or
a common phenomenon like metabolism.

The major contributions of this paper are as follows.
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� A fast method for construction and analysis of GCEN imple-
mented on GPU.

� An effective network module extraction technique to support
biomarker identification for a given disease. Here, we consider
breast cancer, as an example disease.

� Six interesting genes have been identified w.r.t the ten causal
genes of breast cancer for homo-sapiens.

� Some interesting topological associations have also been identi-
fied among these six biomarkers across the non-metastasis and
metastasis stages.

The rest of the paper is organized as follows: Section 2 provides
a discussion on some relevant literature. Section 3 reports the pro-
posed method, i.e., PNME, whereas in Section 4.1 the implementa-
tion of PNME and some interesting results are reported. The
concluding remarks are given in Section 4.2.1.

2. Related work

In literature, a number of techniques have been proposed for
gene co-expression network construction. When inferring co-
expression networks from gene expression data, a gene expression
dataset is taken as primary input and then by using correlation-
based proximity measures, the corresponding co-expression net-
work is constructed. Frequently used correlation-based measures
are Pearson Correlation Coefficient (PCC) and Spearman Correla-
tion Coefficient (SCC). Approaches reported in [8] use PCC to
extract the association among genes in a co-expression network.

The use of Generalized Topological Overlap Measure (GTOM) as
a (dis) similarity measure has been reported in [14]. It has also
been established that the original TOM mentioned in [15] discov-
ers smaller modules, and higher order GTOM mentioned in [14]
can help discovers larger modules. The implementation of GTOM
in GPU makes use of the Strassen’s Matrix Multiplication algo-
rithm, implementation of which is described in [16]. The algorithm
was implemented using the CUBLAS library of the CUDA platform,
documentation of which can be found in [17].

Multiple ways of defining gene modules have been proposed in
literature [10,9,14]. For detection of biologically meaningful mod-
ules, the generalized TOM measure (GTOM) [14] has been found
very effective [18]. The study of the significance of module detec-
tion and extraction in revealing genes that are essential for biolog-
ical phenomena has been explored in [19]. Several methods of
choosing a correlation threshold to arrive at a network exist. A
strategy based on statistical significance has been reported in
[14,10] and also the authors highlight the limitations.

Implementation of GTOM requires massive matrix operations,
especially when large datasets [20] are used. The use of GPU in
such applications has been justified in [21]. Programming the
GPU requires the use of the CUDA platform. The features, advan-
tages, usage of CUDA have been discussed in [22] and in [23]. Fur-
ther applications of CUDA and GPU, in general, are discussed in
[23]. For parallel vector/matrix operations on the GPU, CUDA pro-
vides the CUBLAS library containing data structures, algorithms
and functions for handling and processing large vectors and matri-
ces. The implementation of Strassen Multiplication Algorithm in
CUBLAS library has been analyzed and discussed in [24]. Finally,
the documentation for CUDA [23,25] and CUBLAS [17] describes
the data structures and operations in detail, including operations
for transferring data to and from the GPU. Finally, the biological
significance of module extraction and scope for further applica-
tions is reviewed in [15,10,18].

Although in the past decade a good number of network module
extraction techniques have been evolved to support gene-gene
network analysis, still it demands an effective technique which
can fulfil the following requirements.

� ability to handle voluminous gene expression data instances,
� ability to handle gene expression data with high
dimensionality,

� ability to extract module(s) of high biological significances, and
� ability to provide response quicker.

3. PNME: The proposed framework for network construction
and module extraction

Biological Networks are useful for understanding gene-gene
association and other functional properties of genes [26–28]. The
commonly used biological networks include protein-protein inter-
actions, signalling networks, metabolic networks, gene regulatory
networks and GCEN. Gene co-expression networks have coverage
of nearly all human genes, including cancer-related genes [29].

We define gene expression data as G = fG1;G2; . . . ;Gmg be a set
ofm genes and R = fT1; T2; . . . ; Tng be the set of n conditions or time
points of a gene expression dataset. The gene expression dataset X
can be represented as a matrix of order m� n i.e., Xmn where each
entry Xði; jÞ in the matrix corresponds to the logarithm of the rela-
tive abundance of mRNA of a gene.

Co-expression network is an undirected graph where genes are
nodes of the graph. Two nodes (genes) are connected if their
activities have a significant association with a series of gene
expression measurements. This association can be computed
using a suitable correlation measure like Pearson, Kendall or
Spearman. We use the Pearson Correlation Coefficient (PCC) to
obtain the correlation as a matrix C. Each element Cij of the
matrix corresponds to the similarity between expression values
of two genes Gi and Gj. PCC handles both negative and positive
correlations, the value computed varies between +1 and �1. The
Pearson Correlation between G1 and G2 over a Dataset D is repre-
sented by r(Gi;Gj) and defined by Eq. (1)

rðGi;GjÞ ¼ n
P

GiGj �
P

Gi
P

Gjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðPG2

i Þ � ðPGiÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðPG2
j Þ � ðPGjÞ2

q ð1Þ

For each similarity value between a pair of genes with a given
threshold (support count), we compute 0–1 adjacency matrix as
a representation of a graph. This graph represents the co-
expression network.

Algorithm 1. Algorithm for constructing CEN
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Next, PNME extracts highly correlated network modules from G
using GTOM. GTOM helps to find highest non-overlapping pairs of
genes. It acts as a similarity measure which has been found useful
in biological networks [14].

A network module Ci is defined as a set of genes forming a
dense region in the co-expression network, with GTOM 2 any top
n GTOM values corresponding to the extracted network modules
[14]. GTOM is defined as following:

wij ¼ lij þ aij
minðki; kjÞ þ 1� aij

ð2Þ

where lij ¼
P

uaiuaij, and ki ¼
P

uaiu is the node connectivity. Basi-
cally, wij is an indicator for the agreement between the sets of
neighboring nodes of i and j. The inclusion of the term aij in the
numerator makes wij explicitly dependent on whether there is a
direct link between the two nodes in question. The purpose of the
quantity 1� aij in the denominator is to avoid double-counting i
as a neighbour of j and vice versa.

Algorithm 2. Algorithm for Module Extraction
4. Implementation and results

A general purpose GPU (GPGPU) pipeline is a form of parallel
processing between one or more GPUs and CPUs that analyzes data
as if it were two-dimensional or three-dimensional, like an image
or texture. GPUs have large cores that operate at lower frequencies,
hence suitable for applications having small parallel units. Though,
there is a limitation on parallel processing of application as it off-
loads compute-intensive portions of the application to the GPU,
Table 2
p-Values and q-values for tests on Non-metastasis for GTOM1.

H ; p-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7

0:45 8.4E�7 2.04E�5 4.3E�5 8.5E�4
0:53 1.75E�5 8.6E�5 1.31E�4 8.63E�5
0:65 9.4E�5 1.50E�5 1.7E�4 5.5E�4
0:75 1.67E�3 1.04E�3 3.7E�4 2.81E�4

Table 1
p-Values and q-values for tests on Metastasis for GTOM1.

H ; p-Value with U

U ¼ 0:4 U ¼ 0:5 U ¼ 0:6 U ¼ 0:7

0:45 1.26E�5 1.04E�4 2.05E�4 2.3E�5
0:53 2.74E�4 1.73E�4 1.75E�4 2.67E�4
0:65 2.1E�4 2.9E�4 9.4E�4 2.14E�4
0:75 6.4E�4 2.5E�4 3.13E�4 7.2E�4
while the remainder of the code still runs on the CPU. CUDA is a
parallel programming platform that allows programmers to use
CUDA-enabled GPUs for general purpose processing [25]. CUDA
exposes a software model and an API that gives direct access to
the GPUs instruction set and computation elements for the execu-
tion of programs (compute kernels).

In this work, PCC measure has been implemented using GPGPU
platform. Each thread of the GPU processes two rows of the data
matrix at a time to compute arithmetic mean towards finding cor-
relation between the pair based on PCC. Each thread accesses a sin-
gle location in a 2D array to store the computed PCC value
represented by the 2D indices of the array corresponding to the
gene id’s of the rows it is processing.

Before storing the value in the array, a threshold H is applied.

pccði; jÞ ¼ 0 if rðGi;GjÞ 6 H

1 if rðGi;GjÞ P H

�
ð3Þ

The final matrix of the orderm�m (m being the No. of genes, or the
No. of rows in the dataset) can now be treated as an adjacency
matrix representing an undirected graph. Note that the following
properties must hold for the graph to be undirected.

� pccði; jÞ ¼ pccðj; iÞ
� pccði; iÞ ¼ 0

If two expressions are the same, they must be fully correlated
(positively). However, for representation of the undirected graph,
we set it to zero.
q-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7

8.5E�4 2.37E�2 7.07E�2 7.6E�2
2.3E�2 7.7E�2 6.7E�2 7.8E�2
1.0E�1 1.37E�2 5.6E�2 3.54E�2
1.74E�1 1.53E�1 1.2E�1 7.93E�2

q-Value with U

U ¼ 0:4 U ¼ 0:5 U ¼ 0:6 U ¼ 0:7

5.0E�2 8.3E�2 1.9E�2 2.2E�2
1.1E�1 1.51E�1 1.5E�1 1.6E�1
1.85E�1 1.4E�1 1.64E�1 1.18E�1
1.5E�1 1.20E�1 8.67E�2 8.6E�2



Table 4
p-Values and q-values for tests on Non-Metastasis for GTOM2.

H ; p-value with U q-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7 U = 0.4 U = 0.5 U = 0.6 U = 0.7

0:45 8.7E�14 1.8E�12 2.0E�8 3.9E�6 3.9E�10 3.2E�10 5.3E�5 8.75E�3
0:53 9.3E�9 2.2E�6 1.2E�4 9.9E�5 2.5E�5 5.2E�3 4.2E�2 4.8E�2
0:65 4.9E�5 3.7E�5 9.2E�6 1.6E�4 3.8E�2 5.5E�2 1.19E�2 6.39E�2
0:75 2.2E�3 1.66E�6 7.7E�3 1.82E�2 1.82E�1 6.4E�4 9.8E�2 1.4E�1

Table 3
p-Values and q-values for tests on Metastasis for GTOM2.

H ; p-value with U q-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7 U = 0.4 U = 0.5 U = 0.6 U = 0.7

0:45 9.31E�8 2.48E�6 1.85E�5 2.85E�6 5.0E�5 4.1E�3 3.67E�2 4.52E�3
0:53 2.6E�5 4.6E�5 1.52E�5 5.44E�6 4.4E�2 4.8E�2 2.41E�2 7.1E�3
0:65 2.67E�6 2.72E�5 7.49E�5 3.33E�4 5.02E�3 2.4E�2 1.07E�1 1.38E�1
0:75 1.7E�4 1.55E�3 1.04E�3 3.91E�4 1.10E�1 1.07E�1 8.9E�2 7.63E�2

Table 5
p-Values and q-values for tests on Metastasis for GTOM3.

H ; P-value with U Q-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7 U = 0.4 U = 0.5 U = 0.6 U = 0.7

0:45 1.9E�7 1.1E�6 4.22E�6 5.9E�6 5.2E�4 2.46E�3 7.7E�3 8.58E�3
0:53 6.8E�5 1.6E�5 4.4E�6 9.8E�7 5.1E�2 2.8E�2 6.21E�3 1.08E�3
0:65 3.6E�5 37.4E�5 9.2E�5 1.54E�4 2.2E�2 1.06E�1 6.8E�2 9.8E�2
0:75 1.71E�3 1.7E�4 8.1E�4 3.9E�4 1.1E�1 1.1E�1 8.98E�2 7.63E�2

Table 6
p-Values and q-values for tests on Non-Metastasis for GTOM3.

H ; P-value with U Q-value with U

U = 0.4 U = 0.5 U = 0.6 U = 0.7 U = 0.4 U = 0.5 U = 0.6 U = 0.7

0:45 8.5E�12 3.5E�8 2.2E�6 1.09E�5 2.6E�8 9.4E�5 2.84E�3 2.03E�2
0:53 1.2E�6 8.58E�6 7.8E�5 4.10E�5 3.02E�3 1.42E�2 3.8E�2 3.5E�2
0:65 9.8E�4 3.4E�3 3.4E�3 1.1E�4 1.1E�1 9.6E�2 6.7E�2 4.91E�2
0:75 7.54E�4 65E�3 1.09E�2 2.16E�2 1.1E�1 1.05E�1 9.4E�2 1.44E�1

Fig. 1. Conceptual framework for parallel gene-gene network module extraction.
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We cannot have a parallel implementation of GTOM from the
definition given above. A parallel method of computing GTOM
has been proposed by [14]. We use this method to implement
GTOM algorithm in GPU.

The co-expression network C obtained in the previous step is
stored as a matrix. In order to calculate GTOMm for a given value
m, we need to multiply the matrices in the GPU to obtain

A2
;A3

;A4
; . . . ;Am. We compute each of the Ai for all

i ¼ f1;2; . . . ;mg. Our algorithm computes Ai by multiplying A and

Ai�1, thus requiring m calls to the cublasSgemmðÞ function. The
intermediate results are stored in an array of matrices which are
added then normalized to obtain the matrix G.
Fig. 2. Variation of degrees of each casual gene in each stage.

Fig. 3. Figure (a): highly connected genes in Non-Metastasis Sta
GTOMmði; jÞ ¼ 0 if Gði; jÞ 6 U

1 if Gði; jÞ P U

�
ð4Þ

After normalization, we apply a threshold U to convert G into a
network. Modules can be extracted by simply identifying the con-
nected components in the network. These modules are sub-graphs
where each node again corresponds to a gene. The connected com-
ponents are extracted from the GTOMm network and stored in a
file (as edge-lists) for analysis.

4.1. Dataset used

We performed our experimentation on GSE2034 dataset, a
Breast Cancer Relapse Free Survival Microarray Dataset [30,19,5]:

� Title: Breast Cancer Relapse Free Survival (GSE2034)
� Organism: Homo Sapiens
� Experiment type: Expression profiling by array

This dataset represents 180 lymph-node negative relapse-free
patients (non-metastasis) and 106 lymph-node negative patients
that developed a distant metastasis, for a total of 22,283 genes
[30]. We use log2 transformation in order to scale the values, and
variance of 1.2 to select 5292 genes [7].

4.2. Results and observations

PNME has been implemented in Python 3.6 and C and tested on
CentOS 6.5 (Linux Kernel 2.6.32-431) on a Dell T7910 with 2 Intel
Xeon-Phi Co-processors, 64 GB RAM, 8 TB storage and 2 NVIDIA
Tesla K40 GPUs.

In our experimentation, two thresholds have been used at two
different points of analysis. One threshold is the PCC threshold h
used for computing correlation between two genes’ expression ser-
ies. The other threshold is the GTOMm threshold U used during
ge, figure (b): highly connected genes in Metastasis Stage.



Fig. 4. Network between 10 primary and 6 secondary genes on (a) non-metastasis stage and (b) metastasis stage.

Fig. 5. Computation time for different GTOMm (m from 1 to 4) in GPU and CPU.
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extraction of modules from the GTOMm graphs. Also, before com-
puting the GTOMm matrix, the parameter m (m is number of iter-
ation of GTOM) has to be set.

We derive H; U and m from the following sets. These values
(set elements) have been decided through exhaustive
experimentation.

� H ¼ f0:45; 0:53;0:65;0:75g
� U ¼ f0:4;0:5;0:6;0:7; g
� m ¼ f1;2;3;4g

For given values ofH;U andm, 128 network modules have been
generated for analysis. To choose the best value among them we
compute p-value and q-value of each network module. A p-value
is a probability for a set of genes to be improved with the same
functional group [7]. A q-value is an adjusted p-value for False Dis-
covery Rate(FDR). The p-value for a module M enriched with func-
tional group F is given as:

p-value ¼ 1�
Xq�1

i¼0

jFj
i

� � jV j � jFj
jMj � i

� �

jV j
jFj

� � ð5Þ

In order to choose the best values for parameters U; H and m,
the p-value for each module is computed for the values of param-
eters from the sets defined above. The results are given in Tables 1–
4. Our observation is that the best p-value is obtained for
H ¼ 0:45; U ¼ 0:4 and m ¼ 3 (GTOM3). The lowest p-value signi-
fies modules that are most biologically-similar amongst
themselves.

Tables 1, 3 and 5 reports p-values and q-values for metastasis
corresponding to GTOM1, GTOM2 and GTOM3, respectively and
Tables 2, 4 and 6 report p-values and q-values of non-metastasis
corresponding to GTOM1, GTOM2 and GTOM3, respectively and
with different parameters (see Figs. 1 and 2).
4.2.1. Observations
We obtain a correlated and highly connected co-expression

network with H ¼ 0:45 and U ¼ 0:4 in both metastasis and
non-metastasis stage as shown in Fig. 3, Tables 3 and 4. From
the network, 180 genes have been found to participate both in
metastasis and non-metastasis phase of cancer. Out of these
180 genes, we identify 10 causal genes which participate in
breast cancer as per Malacard’s [31] database. Using each of these
10 causal genes as primary genes, we identify some secondary set
of genes, not present in Malacards, but are highly associated with
the primary gene.

Next, each secondary gene is verified whether it follows the
common genetic pathway with the primary genes or not. In order
to do this, the online tool DAVID [32–34] has been used. The results
are shown in Figs. 5, 6 and Tables 7, 8).



Fig. 6. Pathways in cancer of secondary genes in Non-metastasis. The above figure is generated using genemania [https://genemania.org/] [44].
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Table 7
Secondary genes following same pathways as primary genes in Non-metastasis stage.

Non-Metastasis stage

Primary Genes(P) Degree(Dp) Seconday Genes(S) Degree(Ds) KEGG Pathways

CDH1 55 TRAF4 18 Pathways in cancer
CDH1 55 FH 11 Pathways in cancer
PAK1 30 RASGRP1 52 T cell receptor signaling pathway
PAK1 30 LAMA4 39 Focal adhesion
FGFR2 25 PDGFRA 50 Pathways in cancer
NRP1 22 EPHB3 48 Axon guidance
CASP8 18 BIRC3 39 Pathways in cancer

Table 8
Secondary genes following same pathways as primary genes in metastasis stage.

Metastasis stage

Primary Genes(P) Degree(Dp) Secondary Genes(S) Degree(Ds) KEGG Pathways

CDH1 41 FH 7 Pathways in cancer
PAK1 25 RASGRP1 35 T-cell Receptor Signalling Pathway
PAK1 25 LAMA4 25 Focal adhesion
EGFR 19 FAS 18 Pathways in cancer
NRP1 15 EPHB3 40 Axon guidance
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4.2.2. Significance of secondary genes in Breast Cancer
In this section, six interesting genes(referred here as secondary

genes) are reported which have been found to have close associa-
tions with those 10 causal genes(as available in Gene malacards
[31]) both topologically as well as behaviorally. From the selected
literature survey, it has been observed that all these six genes have
significant roles in causing or driving breast cancer metastasis in
homo sapiens (see Fig. 6, 7).

(a) TRAF4
Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4)
plays an important role in tumorigenesis of breast cancer
[35]. It drives breast cancer metastasis [36].
(b) LAMA4
Laminin Subunit Alpha 4 (LAMA4) expressions are high in
breast cancer patients with worse relapse-free survival and
low LAMA4 in patients with improved relapse-free survival.
Also, malignant breast cancer cells express higher levels of
LAMA4 relative to pre-malignant cells [37].
(c) FAS
Fas cell surface death receptor (FAS) shows significant associa-
tions with an increasing risk of breast cancer [38]. It has been
observed that the risk of breast cancer may be elevated among
women with polymorphisms in the FAS gene [39].
(d) PDGFRA
Platelet-Derived Growth Factor Receptor Alpha (PDGFRA) has
been found as being uniquely expressed and active in inflam-
matory breast cancer (IBC) patient tumor cells and may be a
promising target for therapy in IBC [40]. PDGFRA activation sig-
nature is also associated with small metastasis-free survival.
(e) BIRC3
BIRC3 is involved in chemo-resistance to doxorubicin in breast
cancer cells [41]. As per the human protein atlas [42], BIRC3 is
favourable for breast cancer.
(f) EPHB3
The largest family member of receptor tyrosine kinases, EPH
receptors regulates cancer initiation and metastatic progres-
sion. Eph’s expression is often elevated in breast cancer [43].
4.2.3. Association among primary and secondary genes
Another experimental topological study has been carried out to

understand the associations among the primary and secondary
genes across the two conditions (i.e., from non-metastasis to
metastasis). It is aimed to understand the existence of the sec-
ondary genes (isolated or co-occurred) w.r.t. the primary genes
across these two conditions. Fig. 4 and Table 9 report the topolog-
ical behaviour. Some interesting observations are enumerated
below.

(a) Two highly correlated secondary genes namely, TRAF4 and
BIRC3 in the non-metastasis stage, have been found no asso-
ciation among other genes, during metastasis stage.

(b) FAS has been found to be highly associated with other genes
in metastasis, while it was found missing in the non-
metastasis stage.

(c) LAMA4 and PDGFRA are weakly associated with both the
stage and their degrees of an association have become
weaker in metastasis stage.

(d) EPHB3 shows the highest degree of association among all
other secondary genes in the non-metastasis stage, have also
been found to be associated with others strongly in metasta-
sis stage.
4.2.4. Time computation
The algorithm for construction of the co-expression network

has time complexity Oðn2mÞ, where n is the number of genes
and m is the number of expression values for a single gene. How-
ever, for the parallel implementation, the computation time is
OðwmÞ, where w is the warp factor. The warp factor is the ratio
of the total number of blocks scheduled for the CUDA kernel to
the warp size, where warp size is the number of threads that
can run concurrently in the GPU. From Fig. 4, it can be stated that
execution time doubles approximately as the value of m increases
in GTOMm.



Fig. 7. Pathways in cancer of secondary genes in metastasis.The above figure is generated using genemania [https://genemania.org/] [44].
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Table 9
Degree of each secondary genes on network made from 10 primary and 6 secondary
genes.

Non-metastasis Metastasis

Gene names Degree Gene names Degee

TRAF4 6 TRAF4 –
LAMA4 4 LAMA4 3
FAS – FAS 5
PDGFRA 1 PDGFRA –
BIRC3 5 BIRC3 –
EPHB3 7 EPHB3 8
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5. Conclusion

The proposed PNME enables a faster way of constructing and
analyzing gene-gene coexpression networks and extraction of
highly-correlated modules through the use of a GPU. The extracted
modules corresponding to metastasis and non-metastasis stages of
breast cancer are validated using P-value.

Also, using the results obtained, the secondary genes which fol-
low a common genetic pathway with causal genes in breast cancer
have been identified and reported.
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