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ABSTRACT: Biological motors function at the interface of biology, physics, and chemistry, and it 107« oy
remains unsettled what rules from which disciplines account for how these motors work. Myosin 4 >
motors are enzymes that catalyze the hydrolysis of ATP through a mechanism involving a switch-like ~

myosin structural change (a lever arm rotation) induced by actin binding that generates a small ge <

displacement of an actin filament. In muscle, individual myosin motors are widely assumed to function 3 417

as molecular machines having mechanical properties that resemble those of muscle. In a fundamental )

departure from this perspective, here, I show that muscle more closely resembles a heat engine with

mechanical properties that emerge from the thermodynamics of a myosin motor ensemble. The 0% S > 0

transformative impact of thermodynamics on our understanding of how a heat engine works guides a Ny

parallel transformation in our understanding of how muscle works. I consider the simplest possible

model of force generation: a binary mechanical system. I develop the mechanics, energetics, and kinetics of this system and show
that a single binding reaction generates force when muscle is held at a fixed length and performs work when muscle is allowed to
shorten. This creates a network of thermodynamic binding pathways that resembles many of the characteristic mechanical and
energetic behaviors of muscle including the muscle force—velocity relationship, heat output by shortening muscle, four phases of a
muscle tension transient, spontaneous oscillatory contractions, and force redevelopment. Analogous to the thermodynamic (Carnot)
cycle for a heat engine, isothermal and adiabatic binding and detachment reactions create a thermodynamic cycle for muscle that
resembles cardiac pressure—volume loops (i.e., how the heart works). This paper provides an outline for how to re-interpret muscle
mechanic data using thermodynamics — an ongoing effort that will continue providing novel insights into how muscle and molecular
motors work.

B INTRODUCTION chemistry’ and accurately accounts for steady-state” and
transient muscle mechanics and energetics.

A muscle fiber, or cell, contains large protein assemblies
arranged around interdigitated filamentous arrays of actin and
myosin molecules within which an individual myosin cross-
bridge (or motor) generates force upon strongly binding to an
actin filament.”® The basic mechanism is well established. The
formation of a strong bond with actin induces a bend in the
myosin motor (a lever arm rotation) that displaces an actin
filament a distance d of ~8 nm (Figure 1A).°”" Single
molecule studies show that these events occur within a
millisecond of each other as a single mechanochemical
step.”'>'* The stiffness, Kiap Of an optical spring displaced
in these experiments can be set to values ranging from 0.1 to
1.0 pN/nm, resulting in motor-generated forces, ki, d, ranging
from 1 to 10 pN, and mechanical potentials, 1/ 2Kmp-d2,

Many biomechanical mechanisms involve metastable protein
structural switches that both affect and are affected by a
mechanical potential. For example, a conformational change in
a protein (M) induced by ligand (A) binding can generate a
mechanical potential (e.g, generate force in a compliant
element) upon binding (M to AM in Figure 1A). Inversely, a
mechanical potential can reverse that conformational change,
inducing the dissociation of the ligand (AM to M). A
collection of protein switches that reversibly generate force in
thermally equilibrated compliant elements constitutes a binary
mechanical model system. Binary model systems are often used
to illustrate basic principles of statistical mechanics with the
typical example being that of a binary magnetic model system
consisting of spins in a magnetic field;' however, a binary
mechanical model system applicable to an ensemble of protein

switches remains undeveloped. Having previously solved the
steady state case using a mean force field approach;2 here, with Received: June 20, 2022 LANGMUIR
the formal construction of a system spring that defines the Revised:  November 17, 2022 Wy
mechanical potential, I solve the more general case of force Published: December 15, 2022
generation. In a series of publications, I develop the model and

its implications for muscle contraction, showing that it g
reconciles disparate models of molecular motor mechano-
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Figure 1. Binary mechanical model system. (A) Two-state (M and
AM) scheme in which a single motor (blue ovals) undergoes a
discrete conformational change upon binding to a track (black
rectangle), generating a displacement, d, at a rate f, (M to AM). The
reverse transition occurs at a rate f. (AM to M). Motors can be
irreversibly detached (AM to M) through an active (ATP-dependent)
process that occurs at a rate v. (B) If a single system spring with
stiffness K, equilibrates with the surroundings, F determines the
distribution of states between M and AM (eq 4). If force generation
either occurs against a fixed length (no movement, x, of the blue bar)
or occurs much more rapidly than the spring equilibrates with the
surroundings, F is mechanistically determined by working steps (eq 3)
that displace the system spring an effective distance, d g = d/(a-N).
(C) Equation 4 (colored curves) is plotted at AG® increments of 1
kT, and eq 3 is plotted (black lines) at Ny,° increments of S.

ranging from 3 to 30 pN-nm. This force-generating step,
referred to as the working step, is an intermediate step (M to
AM, Figure 1A) in the motor-catalyzed hydrolysis of ATP to
products ADP and P;"*~"” In myosin motors, the working step
occurs upon release of P;. A net flux through the working step
is generated through the ATPase reaction when myosin motors
are irreversibly transferred from AM to M following ADP
release and ATP binding and hydrolysis (v in Figure 1A). We
have shown that in in vitro assays, the myosin working step is
reversible'® with rate constants (f, and f_ in Figure 1A) that
depend on an external mechanical potential."” In short, myosin
is a metastable protein switch that both generates and responds
to an external force. The question remains, what is the
relationship between the mechanochemistry of this protein
switch and the mechanochemistry of muscle?

In the early 1900s, A.V. Hill made precise measurements of
work, w, and heat, g, output by shortening muscle, establishing
the experimental foundation for a thermodynamic description
of muscle contraction, which he first published in 1938.”%*'
According to Hill, when muscle shortens a distance, x, against a
constant force, F, the chemical energy available for work by
shortening muscle AG(F) is transferred at a rate, v, to the
surroundings as work, w = F-x, and heat, g, or

v-AG(F) = F-V + dq/dt

Here, V (= dx/dt) is the rate of muscle shortening (ie.,
velocity) and dq/dt is the rate of heat output by shortening
muscle. This is classic chemical thermodynamics where
chemical energy and free energy transfer are defined at the

level of the muscle system, consistent with experimental
studies, | 3192224

In 1938, little was known about the chemistry underlying
v-AG(F) and dq/dt, yet Hill was convinced that these terms
had a molecular basis. He wrote, “measurements of heat
production are no substitute for direct chemical analysis. But
they do suggest problems to the chemist and provide a
framework into which his detailed machinery must be fitted”.”
However, in the 1950s, static electron micrographs of muscle
revealed individual myosin crossbridges protruding from
myosin filaments and interacting with adjacent actin filaments
with each crossbridge (motor) positioned to function as an
“independent force generator”.”*”” Dreams of muscle as a
crystalline lattice containing mechanically isolated motors
inspired a bottom-up mechanical determinism incongruent
with chemical thermodynamics.”® In 1957, A.F. Huxley
proposed a molecular mechanic framework for muscle
contraction (the power stroke model) that was formalized by
T.L. Hill in 1974” and has since been the foundation for most
models of molecular motors and muscle to date.

The difference between A.V. Hill's thermodynamic model
and the Huxley—Hill model is profound and historical. T.L.
Hill was compelled to develop a new theoretical framework
because the basic assumption in Huxley’s model — that the
force of muscle is determined from the springs of myosin
molecules — is inconsistent with thermodynamics. This
assumption, however, aligns with Robert Boyle’s 17th century
corpuscular mechanical philosophy” that the force of a system
is determined from the springs of molecules in that system.
Relating the volume of air in a container to the space occupied
by the coiled springs of air molecules, Boyle described his
observation that the volume of air decreases inversely with
increased pressure (Boyle’s law) as the springs of air being
compressed by the surrounding force.”® He referred to these
experiments as “touching the springs of air”.

In 1699, based on his observation that the pressure of a gas
increases linearly with temperature, Guillaume Amontons
designed the first hot air engine, demonstrating that
mechanical work can be performed through the cyclic heating
and cooling of air.’’ Amontons then described the first
mechanism for a heat engine using Boyle’s corpuscular
mechanic philosophy. Amontons reasoned that the substance
of heat tensions the coiled springs of air to generate pressure,
and the subsequent expansion of the springs into a new volume
performs work. This is precisely Huxley’s power stroke
mechanism applied to air molecules. Analogous to Amontons’
model, Huxley proposed that the chemical energy for ATP
hydrolysis somehow tensions a myosin spring to generate force
after which the spring shortens with muscle to perform work (a
molecular power stroke). Thermodynamics transformed our
understanding of heat engines,”” but the thermodynamic
revolution has yet to reach many areas of molecular biology.
Notwithstanding appeals from A.V. Hill,”>** my students, and
myself,”*** thermodynamics has had little impact on our
current understanding of the mechanism of muscle contrac-
tion.

In the 18th and 19th centuries, kinetic theory and
thermodynamics showed us that thermodynamic forces are
contained within the walls that constrain them (within system
springs) not within molecules that somehow hold their own
force (within molecular springs), demonstrating that corpus-
cular mechanics attributes to molecules the mechanical
properties of the system that contains them. While molecules
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can and do generate force through collisions and binding, the
magnitude of the force generated by a system of molecules is
determined by system energetics: temperature for a gas and
binding free energy for motors, neither of which is defined or
determined from within a molecule (binding free energy is
defined by a non-equilibrium concentration gradient of motors
between the M and AM states). The free energy for ATP
hydrolysis perturbs a muscle system from equilibrium by
irreversibly transferring myosin motors from AM to M through
a catalyzed reaction. Thus, the free energy for ATP hydrolysis
is used to increase the binding free energy (not tension a
corpuscular spring), and work is performed when the binding
reaction equilibrates (not when a corpuscular spring shortens).

Nevertheless, Boyle’s corpuscularian philosophy remains
popular in molecular biology where proteins are often depicted
as corpuscles that embody the properties of the physiological
system within which they function.”® Boyle’s “springs of air”
and Huxley—Hill’s springs of myosin illustrate how molecular
mechanisms inferred through this approach are grossly
inventive. Over the past 50 years, in response to new
experimental results, Huxley—Hill models of muscle contrac-
tion have consistently expanded to include more states,”* more
molecular springs (both linear and non-linear),” more spatial
explicitness,”® additional kinetic transitions (each with their
own arbitrary strain-dependent rates),”” and new mechanical
elements.”®”” These mechanisms are Rube Goldberg-esque in
that they describe a simple two-state system using tiny versions
of structural scaffolding and mechanical components manufac-
tured as needed to formally define, constrain, and control
molecular forces for the sole purpose of making molecular
forces “determine” the macroscopic force. There is no limit to
one’s imagination when building these machines. Consider, for
example, Boyle’s description of an air molecule as a “piece of
ribband, that is, to be very long, slender, thin, and flexible
lamina, coiled or wound up together as a cable, piece of
ribband, spring of a watch, hoop, or the like.”?® Gibbs
described such efforts at building reasoned corpuscular
machinery as “rational mechanics”, which he dismissed as
seeking “mechanical definitions of temperature and entropy.”*’

Gibbs describes thermodynamics as “the laws of mechanics
for such systems [of particles] as they appear to beings who
have not the fineness of perception to enable them to
appreciate quantities of the order of magnitude of those which
relate to single particles.”*’ In other words, our best attempts
at rational mechanisms will always be too large, too few, and
non-physical. Thus, springs in biological systems cannot be
defined as rational mechanical devices; they can only be
defined as thermodynamic constructs that describe the change
in energy of a system of particles when that system of particles
is stretched (or compressed).

A single protein is a system that contains many (sometimes
thousands of) atoms. Because we are incapable of easily
comprehending the energetic changes associated with the
distortion of every atomic bond that occurs within a protein
when stretched, a protein spring is defined as a thermodynamic
construct to approximate the protein energy-extension
relationship. Indeed, when we mechanically constrain the
length of a protein, the “laws of mechanics” of that protein as
they appear to us can be approximated with a molecular
spring.”’ However within a muscle cell, millions of proteins are
contained within thermally fluctuating macromolecular assem-
blies, and molecular springs are no longer valid thermodynamic
constructs. Nevertheless, Huxley—Hill defines molecular

springs in muscle by assuming that infinitely rigid local
structural constraints insulate these rational molecular springs
from their surroundings. We have shown that no such
structural constraints exist,'”>***** which is to say that
rational molecular springs cannot be defined. The length and
force of the muscle system, however, can be constrained, in
which case the “laws of mechanics” of muscle as they appear to
us can be approximated by a single muscle spring.

A thermodynamic muscle spring describes the laws of
mechanics of a muscle fiber, and from the mechanical state of
that spring, chemical thermodynamics provides a framework
for determining the biochemistry (the most probable
distribution of states) of the molecules contained within that
system. The formal difference then between rational mechanic
(Huxley—Hill) and chemical thermodynamic models of muscle
is clear and significant. According to Huxley—Hill, the
biochemistry and mechanics of a given myosin motor in
muscle are defined at the level of the motor independent of
muscle force, and muscle force is formally determined from
individual motor forces. In a chemical thermodynamic model,
the biochemistry and mechanics of a motor ensemble are
determined from muscle force. Philosophical debates aside,
formal arguments over which model describes the “laws of
mechanics of such a system” were settled centuries ago.

What remains then is to formally construct a system spring
that accurately describes the “laws of mechanics” of an
ensemble of molecular switches. These laws differ from those
of a single motor spring in two ways. First, a molecular spring
describes the force generated by a single motor, which is
dissipated when that motor is detached (M), whereas a system
spring describes a system force that is cumulatively generated
by all motors in the system and is maintained even when all
but one of those motor is detached. Second, this system spring
contains molecular switches (motors in the M or AM state),
and the force of the spring determines the probability
distribution of these switches between the M and AM states.
Like other elastic s?rsterns containing mechanical switches [e.g.,
titin** and rubber®], here, I show that the mechanics of this
system can be described by an entropic spring. With a system
spring thus constructed, I establish the kinetics and
thermodynamics of a binary mechanical system.

Adiabatic force generation and isothermal work are
described by two separate equations. When the system is
held at a fixed length, the binding reaction collectively
generates force in the system spring. When the system is
allowed to shorten, work is performed along the binding
isotherm. Depending on the external system constraints (fixed
length versus isothermal), a single binding step can occur
through either of these processes, creating a network of
thermodynamic binding pathways. I show here that different
pathways resemble different characteristic mechanical and
energetic behaviors of muscle such as the four phases of a force
transient, spontaneous oscillatory contractions, and cardiac
pressure—volume loops. From these binding equations, I also
re-derive A\V. Hill's muscle equation showing that a binary
mechanical model directly accounts for the muscle force—
velocity relationship and thus is the “detailed machinery” fit
into A.V. Hill's thermodynamic framework.

This model was informed as much by mechanochemical
studies of muscle® as it was by the principles of
thermodynamics, and the thermodynamic lessons learned
from muscle provide new insights into systems biology.
Muscle is the ideal binary mechanical model system, and
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much remains to be learned from it about binary mechanical
systems in general. Viewed through the lens of thermody-
namics instead of rational mechanics, a reanalysis of
mechanochemical studies of muscle will provide fundamentally
new perspectives on muscle and muscle systems. More
broadly, a thermodynamic analysis of muscle provides an
unparalleled window into how protein structure—function
relationships in general scale up to cellular structure—function
relationships under the influence of system energies, macro-
scopic constraints, entropic forces, and both isothermal and
adiabatic reactions.

B EXPERIMENTAL SECTION

A binary thermodynamic system consists of N motors (molecular
switches) in one of two states (M and AM in Figure 1A). The main
assumptions of a binary mechanical model are as follows:

1. A motor, M, undergoes a conformational change induced by
track, A, bindingg (Figure 1A) that moves an unloaded track a
distance, d>'*'¥ (the working step).

2. The working step generates a system mechanical potential F-
d.s when it displaces an effective system spring with stiffness
Ky, from an initial displacement, x,, to a final displacement,
Xoys + dep Where F = K x . is the force exerted on the spring
by the surroundings (Figure 1B).

3. The working step is reversible'®**** (the spring displacement
is reversed) with forward, f,, and reverse, f_, rate constants
defined from first principles. A motor can be irreversibly
detached from the track (without reversing the spring
displacement) through an active process at a rate v (Figure
1A).

Molecules, states, and mechanisms known to affect muscle
mechanics that are not accounted for in this model (e.g, a small
lever arm rotation associated with ADP release*®) will be incorporated
into future models and improve the accuracy with which the model
accounts for experimental data.

Binding Free Energy. When the working step occurs against a
constant external force, F, the reaction free energy for binding is

A.G = AG°+kT-In(Nyy,/Ny,) + F-dog )

where AG® is the standard free energy, d g is an effective motor step
size (described below), and Ny, and Ny are the number of motors in
the AM and M states (the total number of motors is N = Ny + Ny).
The ligand concentration is constant and implicit in AG°. When A.G
=0, eq 1 describes the equilibrium relationship between F and N,/
Ny (the binding isotherm). This relationship is determined
energetically, not mechanistically, since along a binding isotherm,
the system spring through lengthening or shortening freely exchanges
energy with the surroundings.

Thermodynamic Spring. Muscle force, F, in eq 1 can be
expressed in terms of a single system spring with stiffness, Ky,
displaced a distance, #y, or F = K%, (Figure 1B). The work term
Fdy in eq 1 is the work performed (ie., mechanical potential
generated) by an M to AM transition in displacing the system spring

from a length, x,, to a length, x,, + d.g or

I/ZKSYS'[(xsys + deff)2 - xsysz] = I/ZKSyS'deff'[deff + szys]

which when x, >>; d.q is approximately KX dep OF F-dg

Adiabatic Force Generation. When muscle is held at a fixed
length (the blue barrier in Figure 1B does not move, x = 0), the
system spring does not exchange energy with the surroundings, and so
eq 1 does not apply. Instead, the motor binding reaction collectively
generates mechanistically defined forces in the system spring,
displacing the spring through increments of d g Specifically, both
spring displacement, x,,, and force, F, increase with the number of
bound motors, Ny = N — Ny, as

xsys = _deff(NM - NMO)

or
F= _Ksys'deff(NM - NM°) (2)

where Ny° is Ny at F = 0. The work performed by a given step (F-d ¢
in eq 1) is obtained by multiplying both sides of eq 2 by d.g or

F.deff = _Ksys.deffz(NM - NMD) (3)

Equation 3 is plotted as F-d g versus Ny, in Figure 1C (solid black
lines with Ny® increments of S).

Binding Isotherm. Collective force generation (eq 2) in the
system spring continues until force equilibrates with the binding
isotherm at a force, F, defined by eq 1 (A,G = 0):

Fdg = —AG® — kT-In(Nyy,/Ny,) (4)

Binding isotherms (eq 4) are plotted as F-d g versus Ny in Figure
1C (colored curves) at AG® increments of 1 kT. In Figure 1C,
adiabatic force generation occurs along the black line (eq 3, right to
left) until force chemically equilibrates with the binding isotherm (eq
4, colored curves).

The time course for force generation is determined by two simple
master equations. The first equation is the conventional reaction rate

dNy/dt = =Ny (f + v) + Nyof, ©)

The second equation is the rate at which force is generated in the
system spring through this reaction, which according to eq 2 is

dF/dt = (_NAM'f_ + NM'f_'_)'Ksys'deff (6)

When v = 0, eqs S and 6 describe the kinetics and mechanics of a
binding reaction. When v > 0, an active (ATP-dependent) process
irreversibly transfers motors from AM to M without a corresponding
change in F (v does not appear in eq 6), and eqs 5 and 6 describe the
kinetics and mechanics of active (ATP-dependent) force generation
through a net reaction flux Nyf, > Nyyfo (eq 3).

Because the forward, f, and reverse, f_, rate constants are derived
from eq 1 (see below), simulations based on eqs S and 6 describe
adiabatic force generation (eq 3) that implicitly equilibrates along the
binding isotherm (eq 4).

Binding Kinetics. At equilibrium, the reaction rate is zero, or
Nuw/Nuy = f./f-, which when substituted into eq 4 gives

f+/f7 = exp[(=E, dg — AG®)/kT]

For a non-equilibrium reaction, the reaction free energy, SE, pulls
the reaction from equilibrium to drive a net binding rate, and

f./f. = exp[(=Fydg — AG® — SE)/kT] (7)

Here, I define OF separate from A.G, to distinguish between the
free energy lost from the system as heat and work, A.G, and the
effects of A,G on the system, 5E (see below). For each energy term, E,
in eq 7, the E-dependence of exp(E/kT) can be partitioned between
forward, f,(E), and reverse, f_(E), rate constants through a coefficient,
ag, that describes the fractional change in E prior to the activation

.47
energy barrier.”” For example, when OE and F are zero,

f,°=exp(—ag-AG°/kT)
and
f °=exp[(1 — ag) AG°/kT)

are the unloaded rate constants.

Chemical and Mechanical Equilibration. If the system spring
equilibrates (i.e., freely exchanges energy) with the surroundings, the
force of the spring is defined by the external F, and eq 1 applies (F in
Figure 1B determines the spring length). If the system spring is held
at a fixed length (the blue barrier in Figure 1B does not move) or if
force is generated in the system spring faster than the spring
equilibrates with the surroundings, changes in F are mechanistically
determined by eq 2 (motor displacements in Figure 1B determine the
spring length). Equation 2 is a classic adiabatic approximation for

https://doi.org/10.1021/acs.langmuir.2c01622
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force generation in which an idealized system spring does not
exchange energy with its surroundings. Force generation deviates
from this linear relationship when mechanical equilibration with the
surroundings occurs on a time scale comparable to that of force
generation.

When active muscle is held at a fixed length, force generation
chemically equilibrates (A,G = 0) with an equilibrium binding
isotherm that is mechanically equilibrated with a maximal external
force, F = F,, from eq 4

F = —[AG°+kT-In(Nyyy/Ny)1/dog (8)

Here, the effective displacement, d g, of a system spring by one of N
parallel force generators varies inversely with N, or d 4 = d/N because
the displacement by one parallel motor is distributed among all other
parallel motors. A motor detached from a track is not somehow
mechanically isolated from the system (it is still part of the
macromolecular assembly) and so d is distributed among all N
myosin motors not just the Ny bound motors.

Force generation can chemically equilibrate with forces other than
F, (e.g, a frictional force, an external force held at F < F,, forces in
other compliant elements within the system, etc.). For example, when
active muscle is held at a fixed force, F < F,, force generation
chemically equilibrates with a binding isotherm that is mechanically
equilibrated with a sub-maximal force, a-F,, where 4 is the fraction of
the maximal force. In other words, force generation chemically
equilibrates with a pseudo-equilibrium binding isotherm, or

F = —a-[AG°+kT-In(Nyy/Ny)1/(d/N)

where the non-equilibrium binding free energy A.G = (1 — a)-[AG® +
kTIn(Npy/Ny)] is lost from the system as heat and work. Shown
below, this is the formal basis for AV. Hill's force—velocity
relationship.”® In general, d ¢ in eq 8 equals d/(a-N), where a = 1
when the system chemically equilibrates with F,, and a < 1 when the
system chemically equilibrates with a pseudo-equilibrated force.
Because d ¢ cannot exceed d, a can never be less than 1/N.

Force generation can also chemically equilibrate with frictional
forces, F; (see below). If force generation in the system spring is un-
damped, a increases linearly and d.¢ = d/(a-N) decreases inversely
with increasing F as described above. According to Huxley—Hill, the
distance a motor working step displaces compliant elements external
to that motor is dz = 0 (force generation is localized to a motor),
which is to say that the working step is fully damped presumably by
actin-bound motors that prevent filament sliding."””*> According to a
chemical thermodynamic model, force generation in a system spring is
never fully damped;'”* it is maximally damped when force
generation chemically equilibrates with a frictional force (a = 1)
and d.¢ = d/N. In the simulations below, I assume the maximally
damped case and will develop the un-damped case separately.

Entropic Force. According to eq S, when AG® = 0, motors can
still generate force F, = N-kTIn(Ny/Nay)1/d.

This is an entropic force. Specifically, the entropy of the system is
kidn €, where Q is the number of available microstates. For a given
Ny, there are Q = N!/[Ny!"(N — Nyp)!] microstates. When one
motor binds a ligand, Ny, decreases by one, changing the system
entropy by

AS = kIn(N!/[(Ny, — D!I-(N = Ny + 1)11)
— kIn(N!/[Ny!- (N — Ny)!'T)

This can be written AS = —k-In[(Ny + 1)/Ny], which for large
N,y is approximately

AS = —kIn[Ny,,/Ny,]

Thus, kT-In[Nayy/Ny] in eq 1 is the reaction entropy, —TAS, and
the force balanced against it is an entropic force.

Computer Simulations. Using master eqs S and 6, rate constants
defined by eq 7, and model parameters in Table 1, MatLab
(Mathworks, Natick, MA) is used to simulate the time course of
muscle force transients.

Table 1. Model Parameters.”

parameter description value
N number of myosin heads 30"
AG° standard reaction free energy for working —6 kT”
step
d step size 8 nm"’
Keys effective stiffness of system spring 10 pN/nm*>%°
age partition of standard reaction free energy 0.615°'
Apq partition of work 0.3

“The parameter ag, was determined from f,° = exp[ag,-AG°/kT]
assuming f,° = 40 s™' and gives a value for f° = exp[—(1 —
ago)-AG°/kT] of 0.1 s™". All other model parameters are determined
using first principles (equations derived herein).

B RESULTS AND DISCUSSION

Thermodynamic forces are contained within the walls that
constrain them (lattices, cylinders, cells, organs, etc.) not
within molecules that somehow hold forces within their own
walls. There remains no experimental evidence supporting the
Huxley—Hill assumption that force generation is localized to a
molecular motor. Not even in single molecule mechanics
experiments is the force generated by a motor contained within
that motor; it is generated in an optical spring external to the
motor when that motor displaces an actin filament upon
binding.® The springs that contain the force generated by a
motor exist outside that motor, which in muscle are the springs
in the muscle lattice and in all other compliant elements in and
around muscle. Motor working steps (Figure 1A) stretch
springs in the muscle lattice to generate forces that are
thermally equilibrated within the lattice, transferring binding
energy (a system chemical potential, Figure 1A) to the lattice
in the form of a system mechanical potential energy (Figure
1B). The mechanical potential energy of the lattice can then be
transferred back to binding energy upon reversal of the
working step. This reversible transfer of system energy is
performed not by any one motor but by a change in the
distribution of states of a motor ensemble. In other words,
chemical thermodynamics as defined by Gibbs applies to
muscle; the molecular energetics, kinetics, and mechanics
defined by T.L. Hill to formalize Huxley’s corpuscular
mechanic philosophy does not.

According to eq 4 (colored lines in Figure 1C), F increases
with Ny, and according to eq 3 (black lines in Figure 1C), F
decreases with Ny The difference is that eq 4 describes a
binding isotherm along which the energy in the spring is freely
exchanged with the surroundings and the relationship between
F and N is defined by energetics independent of mechanism,
whereas eq 3 describes an adiabatic binding reaction where the
energy in the spring is not exchanged with the surroundings,
and the relationship between F and Ny is mechanistically
determined.

Complex mechanical behaviors resembling muscle mechanic
behaviors emerge from the network of binding pathways in
Figure 1C. Adiabatic binding reactions (eq 3, black straight
lines in Figure 1C) generate F that approaches a AG°®
isotherm. Isothermal binding reactions (curved colored lines in
Figure 1C) occur along the AG® isotherm when energy is
slowly exchanged with the surrounding as work or heat.
Departures from these idealized relationships (lines in Figure
1C) occur when a change in force (a vertical transition in
Figure 1C) or a change in chemistry (a vertical transition in
Figure 1C for a change in AG® or a horizontal transition for
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irreversible detachments) occurs rapidly relative to binding
kinetics. Here, I provide several examples that will be further
developed in separate publications. All simulations of time
courses are eqs 5 and 6 using parameters from Table 1 unless
otherwise specified. I first simulate the mechanical perform-
ance of the system when v = 0 (i.e., not ATP-driven) before
considering active mechanics where v > 0 (i.e., ATP-driven).

Thermodynamic Work Loop. Thermodynamic work
loops are thermodynamic mechanisms not rational molecular
mechanisms. In 1827, Carnot described the work loop for a
heat engine’” as isothermal compression of a gas, adiabatic
expansion of a gas, isothermal expansion of a gas, and adiabatic
compression of a gas. The equivalent work loop for muscle is
isothermal stretch; adiabatic force generation, isothermal
shortening, and adiabatic relaxation (Figure 2A).

An isothermal stretch (Figure 2A, pathway 1) occurs along a
low affinity AG® (= —2 kT) isotherm when the system spring
is slowly stretched while remaining equilibrated with the
surroundings (eq 4). Two different time courses are simulated
in Figure 2B and are replotted as F vs Ny in Figure 2A.
Simulations of a slow continuous stretch (Figure 2B, dashed
red line) simply follow the isotherm (Figure 2A, dashed red
line). Simulations of a small, rapid increase in F through a
length step (Figures 2A,B, solid red lines showing jump in
force) are followed by simulations of an adiabatic decrease in F
(Figures 2A,B, solid red lines returning to isotherm). These
simulations are repeated (Figure 2A, red saw tooth steps) to
illustrate the mechanism of increased force with stretch along
the isotherm.

These simulations (pathway 1) show that force increases
with isothermal stretch as kT-In(Ny/Ny)/des (eq 4), which is
an entropic contribution to force (see Experimental Section).
In other words, isothermal stretch is effectively the elongation
of an entropic spring. The sigmoidal shape of the force
response to isothermal stretch results from mechanical
buffering. That is, over the buffered range (—1 < In[Ny/(N
— Ny)] < +1) force generated by a small lengthening step is
partially reversed (buffered) by the decrease in force associated
with adiabatic detachment (as illustrated in Figure 2A, red
sawtooth). When the entropic spring is stretched beyond the
buffered range, the spring becomes increasingly resistant to
stretch (the slope, or entropic stiffness, increases) reaching a
maximum entropic force of kT-In[N — 1]/d.; when Ny, = N —
1. Stretched beyond this force, the one remaining bound motor
detaches, and the system spring catastrophically relaxes.
Important physiologically, the sigmoidal shape helps to
maintain force by requiring increasingly larger forces to detach
the last few force-bearing motors.

After an isothermal stretch, force is generated adiabatically
(Figure 2A, pathway 2). Following an increase in binding
affinity from a AG® of =2 kT to —6 kT, simulations of the time
course of adiabatic force generation are shown in Figure 2C
and replotted as F vs Ny in Figure 2A (pathway 2). These
simulations show that F equilibrates with the new binding
isotherm, transferring the 4 kT change in binding energy to
both mechanical potential in the system spring and a small
increase in kT-In[Ny/Ny;]. While isothermal stretch is a near-
equilibrium process that occurs at an externally defined rate,
adiabatic force generation is a non-equilibrium process that
occurs at a rate determined by the rate constants in eq 7.

After adiabatic force generation, the system spring shortens
isothermally (Figure 2A, pathway 3). This is simply a reversal
of an isothermal stretch (pathway 1) only along a higher-
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Figure 2. Simulation of a thermodynamic work loop. (A) Four
binding pathways of a thermodynamic work loop were simulated (egs
S and 6, parameters in Table 1) and plotted against Figure 1C.
Isothermal stretch (pathway 1) was simulated both as a slow
continuous stretch (dashed red line) and as small discrete stretches
that generate force (vertical red lines) and then relax through the
reverse adiabatic force generation (red lines parallel to black lines)
equilibrating at the AG® = —2 kT isotherm. Adiabatic force generation
(pathway 2) was simulated following an increase in AG® from —2 kT
to —6 kT (red line parallel to black lines). Isothermal shortening
(pathway 3) was simulated both as a slow continuous shortening
(dashed red line) and as small discrete shortening steps (vertical red
lines) re-stretched by adiabatic force generation (red lines parallel to
black lines) that equilibrates with the AG® = —6 kT isotherm.
Reversal of adiabatic force generation (pathway 4) was simulated
following a decrease in AG® from —6 kT to —2 kT (red line parallel to
black lines). All simulations in panel (A) were obtained from
simulated time courses of force transients using egs 5 and 6. Examples
of time courses for each pathway are in panels (B)—(E). (B)
Simulations of isothermal stretch for both discrete steps (one shown,
solid line) and continuous stretch (dashed line). (C) Simulations of
adiabatic force generation. (D) Simulations of isothermal shortening
for both discrete steps (one shown, solid line) and continuous stretch
(dashed line). (E) Simulations of the reversal of adiabatic force
generation.

energy isotherm. In other words, the entropic spring shortens
against a relatively large force, which in a thermodynamic loop
is referred to as a power stroke. This thermodynamic power
stroke (the shortening of an entropic spring) is not to be
confused with the molecular power stroke in Huxley—Hill (the
shortening of a molecular spring). Simulations of both discrete
(solid red line) and continuous (dashed red line) isothermal
shortening are plotted in Figure 2D and replotted as F vs Ny; in
Figure 2A. Like isothermal stretch, the simulated discrete
isothermal shortening steps followed by adiabatic force
generation (red sawtooth) show that changes in force during
isothermal shortening are buffered.
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To complete the thermodynamic cycle, adiabatic force
generation is reversed (Figure 2A, pathway 4). Following a
decrease in AG® from —6 kT to —2 kT, simulations of the time
course of the reversal of adiabatic force generation are plotted
in Figure 2E and replotted as F vs Ny, in Figure 2A (pathway
4). These simulations show that this chemical relaxation
transfers the mechanical potential in the system spring to the 4
kT change in binding energy and a small decrease in kT-
In[N,\/Ny] upon equilibration with the AG® (= —2 kT)
isotherm.

Like gas expansion in the Carnot cycle, binding can occur
with both adiabatic force generation and isothermal shortening
(a thermodynamic power stroke). Like gas compression in the
Carnot cycle, detachment can occur with both adiabatic force
relaxation and isothermal stretch (a thermodynamic recovery
stroke). The area inside a thermodynamic loop is the work
performed.

This theoretical thermodynamic loop describes reversible
binding and detachment reactions in the absence of an active
cycle (v = 0), and because it does not involve heat transfer,
unlike a Carnot cycle it has a theoretical maximum efficiency of
100%. Practically, however, heat is lost from the system
through frictional forces, Fj, (see below) and energy is required
to modulate the binding affinity.

Many muscle systems beat periodically, consistent with this
thermodynamic work loop. The rapid wing beats of insects and
birds occur when antagonistic muscles alternate contractions
with the contraction of one muscle stretching the other.”® The
work loop in Figure 2A describes a mechanism by which the
thermodynamic power stroke of one muscle can be used to
generate the recovery stroke of the other, where the work
output can be optimized by changing the binding energy
associated with force generation and relaxation (the height of
the work loop).

The heart is another muscle system that beats periodically.
In fact, the left ventricle of the heart functions through a
pressure—volume loop™” that resembles the mechanics of the
thermodynamic loop in Figure 2A. When relaxed, diastolic
filling stretches cardiac muscle increasing muscle force along a
low-force isotherm (the thermodynamic recovery stroke,
Figure 2A, pathway 1). Muscle activation increases the binding
energy, and the closure of the mitral valve fixes the length of
cardiac muscle so that force is generated adiabatically
equilibrating with the high-force isotherm (Figure 24, pathway
2). Next, the aortic valve opens, allowing cardiac muscle to
freely exchange energy with the surroundings while ejecting
blood isothermally (the thermodynamic power stroke, Figure
2A, pathway 3). Muscle deactivation decreases the binding
energy, and the closure of the aortic valve fixes the length of
cardiac muscle so that force is relaxed adiabatically
equilibrating with the low-force isotherm (Figure 2A, pathway
4). Through this thermodynamic loop, work performed on the
blood by the muscle power stroke along pathway 3 is
performed by the blood on the muscle recovery stroke along
pathway 1.

We are currently comparing best-fit simulations of this
thermodynamic work loop with experimentally obtained
pressure-volume loops in the heart. This is the first chemical
thermodynamic model of a cardiac work loop and thus has
tremendous potential for providing novel biochemical insights
into cardiac function in normal and disease states. Indeed, this
model implies new physical chemical interpretations for several
elements of cardiac pressure-volume loops. For example, the

transfer of mechanical potential energy to binding energy
through the recovery stroke (Figure 2A, pathway 1) could
account for the larger stroke volumes observed by Frank and
Starling® with increased end diastolic volumes. Specifically,
the motors that detach along pathway 1 perform work along
pathway 2, and so the further muscle is stretched along
pathway 1, the more work is performed along pathway 2.
Force Transients. The different reversible binding path-
ways in Figure 1C also imply that through a combination of
adiabatic and isothermal processes, a single binding reaction
can have multiple transient phases following a rapid
perturbation. Analogous to the small lengthening and short-
ening steps simulated in pathways 1 and 3 (Figure 2A),
following a rapid increase or decrease in any form of system

energy (Figure 3A, phase 1), the system held at a fixed length
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Figure 3. Simulations of force transients. (A) Three phases of a force
transient following a rapid increase (phase 1, red) and decrease
(phase 1, blue) in force are simulated (eqs S and 6, Table 1
parameters) and plotted against Figure 1C. Adiabatic force generation
(phase 2, blue) overshoots the AG® = —6 kT isotherm by (1 —
a)AG® if system forces are not equilibrated at the end of phase 2.
Equilibration of forces occurs through isothermal loss (phase 3, blue)
or gain (phase 3, red) of (1 — a)AG® as heat to the surroundings at a
rate of 4 s™'. (B) Time course of the simulations in panel (A).

responds with adiabatic force generation (eq 3) equilibrating at
the AG® isotherm (Figure 3A, phase 2). However, unlike in
pathways 1 and 3 (Figure 2A), adiabatic force generation need
not immediately equilibrate at the AG® isotherm. For example,
if the distribution of forces (i.e., a) within the system spring
equilibrates relatively slowly, adiabatic force generation, F,
equilibrates with the a-AG° isotherm (see Experimental
Section) before equilibrating with the AG® isotherm through
an isothermal redistribution of internal forces that mechan-
ically equilibrate at a = 1 (Figure 3A, phase 3). Simulations of
the time course of these three phases following both rapid
shortening (Figure 3B, blue line) and lengthening (Figure 3B,
red line) of the system spring are replotted as F vs Ny in
Figure 3A.

Huxley and Simmons observed force transients resembling
those in Figure 3B when the length of isometric muscle is
rapidly changed.’® I have compared best-fit simulations to the
data in Huxley and Simmons, and the simulated transient
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amplitudes and rates resemble those reported by Huxley and
Simmons (data not shown). I have also compared best-fit
simulations to force transients observed by Dantzig et al.*’
following a rapid increase in inorganic phosphate concen-
trations and have found good agreement with the transient
rates and amplitudes that they reported (data not shown).

Active Isometric Force Generation. Work loops and
force transients are defined above in the absence of an active
cycle (v = 0, Figure 1A). Here, I consider isometric force
generation through a relatively slow ATP-dependent active
cycle (v > 0). Irreversible detachments (v in Figure 1A) occur
through an active process in which AM is transferred to M
without a corresponding reversal of force generation. This
process requires an energy source (e.g, the free energy for
ATP hydrolysis), and through this process the binding
equilibrium is perturbed by adding energy,

SE = A,G(F) = AG® + kTIn(Nyy/Ny) + Fdeg (eq 1), to
the system. Because the free energy for ATP hydrolysis is used
to increase the binding energy, and the binding energy is then
used for work, the energy available for work is the binding
energy, A,G(F), not the free energy for ATP hydro-
lysis.”'Figure 4 illustrates two of many possible active
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Figure 4. Simulations of active (v > 0) isometric force generation. (A)
Entropic beating starts with F = 0 and Ny, = 30. Simulated adiabatic
force generation (red line) occurs rapidly along an adiabatic binding
curve (black lines) equilibrating with the AG® = —6 kT isotherm.
Entropic force generation then occurs through the reaction cycle (v).
Both discrete and continuous simulations of entropic force generation
are simulated. Continuous simulations are performed using eqs 5 and
6 with a rate, v, of 1 s'. Discrete simulations are irreversibly
detachment (AN, = S, horizontal red line segments) followed by
simulations of adiabatic force generation that equilibrates with the
AG°® = —6 kT. Entropic force generation continues until no motors
are bound, at which point the system spring catastrophically shortens
returning to initial conditions (F = 0, Ny, = 30). (B) Force recovery
starts with F = 0 and Ny; = 0. Force generation occurs through the
reaction cycle like entropic force generation in panel (A).

isometric force-generating trajectories: spontaneous entropic
beating (Figure 4A) and force recovery (Figure 4B). The ATP-
dependent irreversible detachment of motors is shown in
Figure 4A as an increase in Ny without a change in F
(horizontal red line segments).

Spontaneous beating (Figure 4A) begins in a non-
equilibrium state with Ny, = N (no motors bound), F = 0,
and AG° = —6 kT. Equivalent to pathway 2 in a
thermodynamic loop (Figure 2A) and phase 2 in a force
transient (Figure 3), simulated adiabatic force generation
(Figure 44, solid red line) occurs along an adiabatic binding
curve (eq 3) and rapidly (faster than v) equilibrates with the
AG° isotherm. Force generation then continues at a slower
rate through irreversible detachments, v, following a mecha-
nism that resembles an isothermal stretch (Figure 2A, pathway
1); only here, the steps that perturb the system from
equilibrium are chemical (v) not mechanical. The difference
is that mechanical steps in an isothermal stretch are vertical
transitions away from the isotherm (Figure 1C), whereas
irreversible chemical steps are horizontal transitions away from
the isotherm (increments of ANy = S with no change in F;
Figure 4A, horizontal red line segments). Like a mechanical
perturbation, simulations following a chemical perturbation
show that force generation (red lines parallel to eq 3) re-
equilibrates with the AG® isotherm. The smooth red “entropic
force” line in Figure 4A is a simulation of a slow continuous
reaction, v. Like with an isothermal stretch, active force
generation along the isotherm continues until the entropic
force equals kT-In[N — 1]/d.s when Ny = N — 1, beyond
which the last motor detaches and the system spring
catastrophically relaxes (Figure 4A) returning the system to
its initial state (N)y = N, F = 0, and AG® = —6 kT).

This entropic cycle repeats leading to periodic force
generation, consistent with spontaneous oscillatory contrac-
tions observed under certain conditions in muscle and other
actin—myosin systems.”> >> Unlike the counterclockwise
thermodynamic work loop (Figure 2A), however, the area
inside the clockwise entropic force loop is energy lost from the
system as heat, not work, illustrating why entropy cannot be
used for work performed on the surroundings. We are
currently comparing best-fit simulations to spontaneous
oscillations experimentally observed in different systems,
including the periodic beating generated by small ensembles
of myosin motors observed in vitro. We have developed
thermodynamic Monte Carlo models to simulate the discrete
force-generating steps observed in some of these studies.””

Steady-state (constant, not beating) forces observed in most
muscle and actin—myosin systems require that entropic force
in the system spring is lost from the system through a
continuous isothermal process (similar to phase 3 in a force
transient, Figure 3) and not through the catastrophic heat loss
of entropic beating. In this case, a steady-state force is reached
when Ny; = Ny, consistent with the observed distribution of
states in isometric muscle.””

A distinctly different force generating pathway (Figure 4B)
begins in a non-equilibrium state where Ny = 0 (all motors are
bound), F = 0, and AG° = —6 kT. Fast adiabatic force
generation cannot occur from this state because no adiabatic
binding pathways (eq 3) lead out of it. Here, force generation
occurs through the reaction cycle at a rate, v, (Figure 4B, slow
kinetics) first equilibrating with the AG° isotherm before
generating force along it. Simulations of continuous force
generation are plotted as F vs Ny in Figure 4B at values for v of
0.1, 1, 10, and 100 s}, showing that when v increases relative
to binding kinetics, the reaction is pulled from equilibrium and
falls short of the AG® isotherm, limiting force generation. We
are currently comparing best-fit simulations to force redevelop-
ment*® observed in muscle fibers through a protocol of a large
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shortening step of isometric muscle followed by a rapid re-
stretch. The simulations in Figure 4B are consistent with force
redevelopment if rapid binding and a redistribution of forces
immediately follows the large shortening step.

Steady-State Isotonic Shortening. As described above,
in an isometric system, adiabatic force generation equilibrates
with the AG® isotherm when F, = N-AG°/d (eq 8, a = 1, Ny
= Ny)- In an isotonic system, the system is held at a constant
force, F < F,, and force generation reaches an pseudo a-AG°
isotherm when F = a-N-AG°/d (eq 8).

When muscle shortens against a constant force, F, it is
constrained neither by adiabatic force generation (fixed length)
nor the binding isotherm (equilibrium), and so the binding
pathways in Figure 1C, while still informative, are not strictly
followed. Nevertheless, it is instructive to first consider
simulations of steady-state isometric shortening occurring
through sequential mechanisms of adiabatic force generation
followed by an isothermal power stroke. Figure S5 shows

8.
5 e for
£6
<
Z4
©
B
2.
0

12 13 14 15 16
N

M

Figure S. Simulations of single isotonic reaction cycles at different
forces, F. Starting from Ny = 1S and F set to a value that satisfies
equilibrium conditions (eq 1, A,G = 0), one motor is irreversibly
transferred from AM to M, increasing Ny to 16 and adding energy, 6E
= A,G = AG® + F-d to the system (horizontal line not shown).
Simulated (eqs S and 6, Table 1 parameters) adiabatic force
generation equilibrates with the a-AG® isotherm. Loss of A,G from
the system by shortening of the system spring (power stroke) is
simulated at a rate of 0.8 s™".

simulations of individual steady-state reaction cycles at
different forces, F. Starting at equilibrium conditions with
Ny = 15, irreversible detachment of one motor through v
perturbs the system from equilibrium adding energy, 6E = AG®
+ F-d. to the system. This corresponds to a horizontal
transition in Figure S from Ny = 15 to Ny = 16 (not shown).
The simulated response is adiabatic force generation (Figure S,
red line labeled “force”) followed by an isothermal power
stroke (Figure S, red line labeled “power stroke”). Figure S
shows that when the system is held at a maximum force, F, =
AG°/d.g entropic force F is generated with no subsequent
power stroke since no energy is available for work. As
described above, this entropic force must be lost as heat to
complete a steady-state cycle (i.e., return to Ny = 15). Figure §
shows that when the system is held at intermediate forces, F,
the energy available for work exceeds by nearly four-fold (AN,
> 1) the work that can be performed by the power stroke of a
single motor (AN, = 1). At low F, a becomes small, and the
relatively large amount of work required by motors to
equilibrate with the a-AG° isotherm begins to stall force-
generating kinetics (ANy < 1). The minimum F is that
generated by one motor (a = 1/N), and at this force (Figure S,
red dot) neither force generation nor a power stroke occur.

Figure S illustrates the significant inefficiencies associated
with formally separating adiabatic force generation from the
isothermal power stroke. At intermediate forces, the energy
available for work exceeds by nearly four-fold the work that can
be performed with a single step (from Ny = 16 to 15). At low
forces, the work required for adiabatic force generation stalls
the reaction, which is a fundamental flaw with the Huxley—Hill
power stroke mechanism. While Huxley—Hill requires that
molecular force generation and the power stroke are formally
separated, in a thermodynamic model of muscle shortening
against a constant force, F, there are no fixed length (adiabatic)
or equilibrium (isothermal) constraints, which is to say that the
binding reaction is constrained by neither eq 3 nor 4 (the lines
in Figure S). There is only the constraint of a constant force, F.

Unlike the simulations in Figure S, if we constrain the
reaction with a constant force, F, and AN,y = 1, the distance
shortened, x, against that force is x = A G/F. The maximum
isometric force, F, = N-AG°/d (assuming N,y = Ny) can be
substituted into eq 1 to obtain the energy available for work by
a working step

AG = (E-d — F-d)/N

Expanding upon our previous analysis,” the distance moved
by N motors is

x=AG/F = (E — F)-d/F

If we take into consideration movement, x against frictional
(dissipative) forces, Fj,

x=AG/F=(E - F)d/(F+F)
the rate of movement (the velocity, V = dx/dt) is
V=v(E — F)-d/(F + F)

where v is the ATP-dependent rate of the reaction cycle. This
equation can be rewritten

v-(E, - F)-d = F-V + F-V 9)

which is essentially the binary mechanical model fitted into
AV. Hill's formalism. Indeed, to characterize the relationship
between muscle force, F, and muscle shortening velocities, V,
muscle physiologists universally use Hill's F—V equation:

by(E, — F) = F-V + ag-V

This equation is widely considered to be phenomenological
when, in fact, it is based on first principles (eq 9) with by = v-d
and ay = Fp

For most muscle types, A.V. Hill's muscle equation (ie., eq
9) accurately fits experimentally obtained muscle force-velocity
relationships. Because eq 9 was derived directly from a binary
thermodynamic model, this model accurately accounts for
observed muscle force-velocity relationships in muscle. The
term F¢Vin eq 9 describes the rate at which work is performed
against a frictional load, F; which is the rate at which heat is
lost with shortening muscle. This term corresponds to the term
ay'V in Hill’s model, which he described as the shortening
heat. Equation 7 predicts that the heat of shortening increases
linearly with V, roughly consistent with Hill’s observations.”’
Observed non-linearities in this relationship® could be
accounted for in this model by an F-dependent frictional
load, Fy.
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Unloaded Shortening, Vo. According to eq 9, when F =
0, the maximum unloaded shortening velocity is energetically

defined as
V., = E,~v-d/Ff

For comparison, the kinetic definition of V is simply the
product of the stepping rate, N-v, and the apparent step size,
deffr or

V.= N-wvdg=vd/a
Combined, the energetic and kinetic definitions of V,, give
a = F/E,

which when written as a-F, = F; is simply a chemical
expression of Newton’s third law (the chemical force generated
by motors is balanced by the frictional force against which they
shorten). As described above, the minimum value for a = Fy/F,
is 1/N. Assuming F; is imposed by resistive motors, F/F,
decreases with increasing N until the effects of N on F;and F,
are proportional at which point this saturating N sets a lower
limit for a of a,,;,, = 1/N.

There are two limits to V,. A minimum V, (= v-d) is
energetically limited by F; = F, (F;cannot exceed the maximum
force generated, F,), which is to say that adiabatic force
generation equilibrates with F; (a = 1). This is the rate of force
generation assumed in the analyses above. A maximum V, (=
v-d/a,;,) is kinetically limited at a = a,;,

In muscle, V exceeds v-d by a factor of approximately S to
10,°°% which according to the above analysis implies a;,
values of 0.1 to 0.2. Using an in vitro motility assay, we have
demonstrated that V, is not energetically limited (a <
1)'#19232%%2 and have recently estimated a value for a = Fy/
F, in this assay of approximately 0.4."” Values for a,;, = az/F,
obtained from measurements of muscle F-V relationships
typically range from 0.2 to 0.3.*

Epilogue. Assigning familiar mechanical devices and
structures (“rational mechanics”) to particles that exist on a
scale that we cannot comprehend is common throughout
scientific history and is a practice that continues today in some
scientific communities. The extent to which this “rational”
mechanical thought fails us is best understood through
historical accounts. The mechanistic difference between
Boyle’s “springs of air” and the kinetic theory of gas is
profound and represents a radical advance in scientific thought
brought about by thermodynamics. This same radical advance
in scientific thinking underlies the profound difference between
“rational” molecular mechanisms of physiological function and
thermodynamic mechanisms of physiological function. We
must understand this difference before thermodynamics can
transform molecular biology; that, or we remain tethered to a
17th century worldview of molecular cartoons.

Single molecule kinetic, structural and mechanic studies
show that binding of a myosin motor to an actin filament
induces a switch-like lever arm rotation that displaces an actin
filament. From this molecular mechanism, we will never find a
rational mechanism of muscle contraction because we lack the
“fineness of perception” to reason a connection. However,
from this molecular mechanism we can determine thermody-
namic mechanisms of muscle contraction. While it may seem
odd from a 17th century rational mechanics perspective, the
physiological function of this molecular mechanism cannot be
determined from the mechanism itself; it must also be
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determined from external constraints on muscle. As I have
shown, when muscle is free to shorten, this mechanism
performs work. When muscle is held at a fixed length, this
mechanism generates force. When muscle is allowed to
contract against a constant force, this mechanism both
generates force and performs work. Based on a single
molecular mechanism, these are the thermodynamic mecha-
nisms of muscle contraction.

It has taken over 80 years to fit the “detailed machinery” into
AV. Hill's thermodynamic model of muscle contraction. Key
to this development was constructing a system spring. This
entropic spring resembles other well-known entropic springs
that contain molecular switches such as titin*' and rubber™
with several significant differences. First, muscle is not a
polymer since the switch linkages between actin and myosin
filaments reversibly detach. The length of the entropic spring is
chemically defined by Ny;/Nyy with a maximum length that is
reached when Ny/Nuyy = (N — 1). While longer than a
molecular spring, the entropic spring is still relatively short.
Unlike other entropic springs, in muscle the switches are not
passive; rather, they catalyze the hydrolysis of ATP and
irreversibly change states through this active process. The
irreversible increase in binding energy through the catalyzed
reaction (an increase Ny;/N,y in eq 1) in effect adds energy to
the entropic spring chemically lengthening it. The relaxation of
the binding reaction (a decrease in Ny /N,y in eq 1) is in
effect the shortening of the entropic spring (a thermodynamic
power stroke). The molecular power stroke model attributes to
a molecule this macroscopic power stroke mechanism, which
accounts for its moderate success at modeling certain aspects
of muscle contraction. However, while a molecular spring is a
familiar rational device that we can use to imagine a
thermodynamic force contained within a corpuscle, there are
no comparable molecular vessels for containing concentration
gradients, system entropy, and adiabatic and isothermal
processes (e.g., work loops).

Thermodynamics has transformed our understanding of how
systems of molecules work, yet its transformative power has yet
to reach many areas of molecular biology. Rational
mechanisms that depict physiological function in terms of
molecular cartoons are grossly inventive and non-physical,
often differing dramatically from the actual thermodynamic
mechanisms. A thermodynamic model of muscle contraction
describes muscle mechanics in terms of protein structural
states, system mechanics, system energetics, and kinetics.
Structural and mechanical details of muscle proteins provide
useful insights into their average effects on thermodynamic
parameters but can mislead when used to characterize rational

building blocks.
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