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Abstract 

Background: Type 1 diabetes mellitus (T1DM) is one of the most common pediatric diseases and its incidence is 
rising in many countries. Recently, it has been shown that metabolites other than glucose play an important role in 
insulin deficiency and the development of diabetes. The aim of our study was to look for discriminating variation 
in the concentrations of small‑molecule metabolites in the plasma of T1DM children as compared to non‑diabetic 
matched controls using proton nuclear magnetic resonance (1H‑NMR)‑based metabolomics.

Methods: A cross‑sectional study was set‑up to examine the metabolic profile in fasting plasma samples from seven 
children with poorly controlled T1DM and seven non‑diabetic controls aged 8–18 years, and matched for gender, age 
and BMI‑SDS. The obtained plasma 1H‑NMR spectra were rationally divided into 110 integration regions, representing 
the metabolic phenotype. These integration regions reflect the relative metabolite concentrations and were used as 
statistical variables to construct (train) a classification model in discriminating between T1DM patients and controls.

Results: The total amount of variation explained by the model between the groups is 81.0%  [R2Y(cum)] and within 
the groups is 75.8%  [R2X(cum)]. The predictive ability of the model  [Q2(cum)] obtained by cross‑validation is 50.7%, 
indicating that the discrimination between the groups on the basis of the metabolic phenotype is valid. Besides the 
expected higher concentration of glucose, the relative concentrations of lipids (triglycerides, phospholipids and cho‑
linated phospholipids) are clearly lower in the plasma of T1DM patients as compared to controls. Also the concentra‑
tions of the amino acids serine, tryptophan and cysteine are slightly decreased.

Conclusions: The present study demonstrates that metabolic profiling of plasma by 1H‑NMR spectroscopy allows 
to discriminate between T1DM patients and controls. The metabolites that significantly differ between both groups 
might point to disturbances in biochemical pathways including (1) choline deficiency, (2) increased gluconeogenesis, 
and (3) glomerular hyperfiltration. Although the sample size of this study is still somewhat limited and a validation 
should be performed, the proof of principle looks promising and justifies a deeper investigation of the diagnostic pos‑
sibilities of 1H‑NMR metabolomics in follow‑up studies.
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Background
Type 1 diabetes mellitus (T1DM) is one of the most 
common pediatric diseases and its incidence is rising in 
many countries [1]. T1DM is a chronic metabolic dis-
order that results from a lack of pancreatic β-cell insu-
lin production by autoimmune mechanisms [2]. Insulin 
is a key hormone to maintain metabolic homeostasis, 
regulating carbohydrate, lipid and protein metabolism, 
and insulin deficiency in T1DM subsequently induces 
a variety of metabolic derangements [3, 4]. To identify 
novel pathways or early biomarkers indicative of meta-
bolic alterations that are involved in the development of 
diabetes, metabolomics is an increasingly used tool [5]. 
Metabolomics research on pediatric study populations 
is still in its infancy. Up to now, only a few researchers 
investigated the plasma metabolic fingerprint of T1DM 
in children, using mass spectrometry as analytical tool 
[6–8]. One study showed that children who later pro-
gressed to T1DM had reduced serum levels of succinic 
acid and phosphatidylcholine at birth, pointing towards a 
dysregulated metabolism preceding β-cell autoimmunity 
and overt T1DM [6]. In addition, methionine deficits in 
early childhood may lead to an increased risk to develop 
T1DM later in life [7]. When comparing the plasma met-
abolic profile of T1DM and healthy children, differences 
were observed in lipid metabolism (non-esterified fatty 
acids, lysophospholipids and other fatty acid-derivatives), 
and some markers of differential activity of the gut micro-
biota (bile acids, p-cresol sulfate) [8]. However, the use of 
nuclear magnetic resonance (NMR)-based metabolomics 

to obtain a deeper knowledge of the plasma metabolic 
profile of T1DM has not been fully explored in the pedi-
atric population. Proton (1H)-NMR spectroscopy has 
proven to be a robust and reproducible technique with 
very limited sample preparation (no extractions) [9], 
that can detect and quantify a wide variety of metabo-
lites simultaneously, providing information regarding 
the biochemical pathways involved [10]. The objective 
of the current study was to investigate metabolic varia-
tions in the plasma of T1DM children and adolescents as 
compared to plasma of non-diabetic matched controls 
using 1H-NMR spectroscopy combined with multivariate 
statistics.

Methods
Subjects and characteristics
Children with poorly controlled T1DM (n  =  7) and 
non-diabetic controls (n  =  7) were recruited at the 
Department of Pediatrics of the Jessa Hospital Hasselt 
(Belgium) between June 2012 and November 2013. Inclu-
sion criteria were: (1) aged between 8 and 18; (2) nor-
mal-weight according to the International Obesity Task 
Force (IOTF) BMI criteria [11]; and (3) fasted for at least 
8  h. All subjects were matched for gender (four males 
and three females in both groups), age (12.0 ±  3.0 and 
13.5 ± 2.7 years, respectively), and BMI-SDS (0.03 ± 0.62 
and 0.05 ± 0.55, respectively). Subject characteristics are 
presented in Table  1. T1DM patients were diagnosed 
according to international consensus guidelines [12]. 
T1DM patients had diabetes for 6.8 ± 3.8 years, and were 

Table 1 Subject characteristics

No significant differences were found between T1DM and control group for age, gender, Tanner stage (pubertal status), height, weight, BMI and BMI-SDS

T1DM type 1 diabetes, BMI body mass index, BMI-SDS body mass index standard deviation score

Subject alias Age Gender Tanner stage Height (in cm) Weight (in kg) BMI BMI-SDS

T1DM patients

 1 17.2 1 5 167.0 54.0 19.4 −0.38

 2 15.0 0 5 159.0 58.0 22.9 1.01

 3 11.4 1 2 152.0 37.0 16.0 −0.52

 4 10.0 0 1 148.0 34.5 15.8 −0.31

 5 8.7 0 1 140.0 33.2 16.9 0.59

 6 11.8 1 2 149.0 40.5 18.2 0.37

 7 10.1 1 1 139.5 30.0 15.4 −0.53

Controls

 1 15.0 1 5 172.8 58.9 19.7 0.23

 2 9.9 1 1 139.0 30.3 15.7 −0.38

 3 11.6 1 1 147.0 42.2 19.5 0.92

 4 12.6 0 2 158.7 40.9 16.2 −0.81

 5 12.5 0 3 151.9 41.0 17.8 −0.11

 6 17.8 0 5 168.4 60.1 21.2 0.14

 7 15.2 1 4 179.1 64.1 20.0 0.32
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treated with exogenous insulin (mean insulin dose per 
kg: 0.83  ±  0.22/kg). T1DM patients show high fasting 
plasma glucose levels (mean: 187 ± 82 mg/dl) and hemo-
globin A1c (HbA1c) concentrations above 6.5% (mean: 
9.7 ± 2.8%) (Additional file 1: Table S1). None of the sub-
jects was using lipid-lowering drugs or other medication. 
The study was conducted in accordance with the ethi-
cal rules of the Helsinki Declaration and Good Clinical 
Practice. The study protocol was approved by the medi-
cal-ethical committees of the Jessa Hospital and Hasselt 
University (12.27/ped12.02). Informed and written con-
sent was obtained from all participants and their parents 
or legal guardian.

Biochemical measurements
Fasting venous blood of T1DM patients was collected 
in 2-ml fluoride-oxalate tubes for biochemical analysis 
at the Clinical Laboratory of Jessa Hospital. Plasma glu-
cose was measured by the glucose oxidase method using 
a Synchron LX20 analyzer (Beckman Coulter, Brea, CA, 
USA) and HbA1c was measured using ion exchange 
chromatography (Menarini HA-8160 HbA1c auto-ana-
lyzer, Menarini Diagnostics, Belgium).

Sample collection, preparation and 1H-NMR analysis
Fasting venous blood was collected in 6-ml lithium 
heparin tubes and stored at 4  °C within 10 min. Within 
30 min, samples were centrifuged at 1600g for 15 min and 
plasma aliquots of 500 µl were transferred into cryovials 
and stored at −80  °C [13]. Detailed protocols regarding 
sample preparation and 1H-NMR analysis have been pre-
viously described elsewhere [14]. Plasma 1H-NMR spec-
tra were rationally divided into 110 integration regions 
defined on the basis of spiking experiments with known 
metabolites [15]. These integration regions reflect the 
relative metabolite concentrations—i.e. the metabolic 
phenotype—and were used as statistical variables to 
construct (train) a classification model in discriminating 
between T1DM patients and controls.

Statistical analysis
Multivariate statistics was performed using SIMCA-P+ 
(Version 13.0, Umetrics, Sweden). After mean-centering 
and Pareto scaling of the variables, unsupervised princi-
pal component analysis (PCA) was performed in order to 
look for clustering and possible confounders within the 
dataset, and to identify possible outliers by a Hotelling’s 
T2 range test and a distance to model plot. In a next step, 
orthogonal partial least squares discriminant analysis 
(OPLS-DA) was used to build (train) a model (statistical 
classifier) to discriminate between T1DM patients and 
controls [16]. The validity of the established model was 
evaluated on one hand by the total amount of variation 

between and within the groups explained by the model 
[denoted as  R2Y(cum) and  R2X(cum), respectively] and 
on the other hand by the predictive ability of the model 
as determined by a sevenfold cross-validation [denoted 
as  Q2(cum)]. To be classified as a variable that strongly 
contributes to the group discrimination, three selec-
tion criteria have to be fulfilled: (1) significantly differ-
ent in univariate statistics (a student t test corrected for 
multiple testing by the Benjamini–Hochberg method), 
(2) an OPLS-DA absolute value of p(corr), i.e. the load-
ing scaled as a correlation coefficient, exceeding 0.6 and 
(3) an OPLS-DA variable importance for the projection 
(VIP) value exceeding 0.5 [16].

Results
Multivariate OPLS-DA statistics was used to train a clas-
sification model (classifier) in discriminating between 
T1DM patients and controls based on data input from 
their metabolic profile or phenotype. A PCA analysis was 
conducted first to look for clustering and possible con-
founders. Figure 1 shows that the subjects were clustered 
in a way that allowed T1DM patients to be clearly dif-
ferentiated from controls and no outliers were detected. 
Moreover, staining the PCA score plots for gender, 
age and BMI-SDS clearly shows that none of these fac-
tors have a confounding effect on the discrimination 
between T1DM patients and controls, as was expected 
for matched groups (data not shown).

In a next step, OPLS-DA was used to build a model 
(statistical classifier) to differentiate between T1DM 
patients and controls (Fig. 2a). The total amount of vari-
ation between the groups that can be explained by the 
model is 81.0%  [R2Y(cum)] while this within the groups 
is 75.8%  [R2X(cum)]. The predictive ability of the model, 
obtained by cross-validation, is quite high with a  Q2(cum) 
of 50.7%, indicating that the discrimination between the 
groups on the basis of the metabolic phenotype is valid. 
The OPLS-DA S-line plot shown in Fig.  2b visualizes 
the covariance [left y-axis; p(ctr)] and correlation coef-
ficient [right y-axis; abs(p(corr)] between the variables 
and the classification score in the model (see caption of 
Fig.  2b for more information). Strongly discriminating 
variables combine a clear covariance [p(ctr)] with a high 
absolute value for the correlation coefficient [abs(p(corr)] 
(Table 2).

The plot shows that the concentrations of lipids (tri-
glycerides, phospholipids and cholinated phospholipids) 
are clearly decreased in the plasma of T1DM patients as 
compared to controls, whereas serine, tryptophan and 
cysteine concentrations seem to be decreased slightly. 
The glucose levels on the other hand are clearly increased 
in the plasma of T1DM patients. These changes were 
also observed as significant by a univariate t test with 
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post hoc Benjamini–Hochberg correction (Table 3). The 
plot further shows that ketone levels (i.e. acetoacetate 
and β-hydroxybutyrate) are slightly elevated in T1DM 
patients. In order to look if T1DM patients and controls 
can be differentiated by a model constructed without the 
15 variables related to the strong glucose signals in the 
1H-NMR spectra, the variables representing glucose were 
removed from the metabolic profile prior to the OPLS-
DA model building (construction of the model with only 
95 variables). The results are also presented in Table  2 
and confirm that the relative concentrations of lipids (tri-
glycerides, phospholipids and cholinated phospholipids) 
and some amino acids (serine, tryptophan and cysteine) 
are reduced in the plasma of T1DM patients.

Discussion
Type 1 diabetes mellitus is a serious health concern 
worldwide that is usually diagnosed in children and young 
adults [1]. T1DM is a metabolic disorder, and in recent 
decades it has been shown that metabolites other than 
glucose play an important role in insulin deficiency and 
the development of diabetes [4, 5]. Metabolomics, the 
study of small-molecule metabolites, has developed into 
an important tool in diabetes research [5]. In this study, 
we investigated metabolic variations in T1DM children 
and adolescents using NMR-spectroscopy-based metabo-
lomics to gain inside into biochemical pathways that are 
altered in early stages of T1DM. Besides the expected 
higher concentration of glucose, we found lower relative 

concentrations for lipids (triglycerides, phospholipids and 
cholinated phospholipids) and the amino acids serine, 
tryptophan and cysteine in plasma of T1DM children and 
adolescents as compared to non-diabetic controls.

Our findings of relatively lower levels of lipids in the 
plasma of T1DM as compared to controls are in agree-
ment with other metabolomics studies [3, 4, 6]. In a pro-
spective Finnish study, it was found that children who 
developed T1DM have reduced serum levels of phos-
phatidylcholine at birth, next to lower levels of multiple 
triglycerides and phospholipids throughout the follow-up 
[6]. In addition, it has been demonstrated that children 
developing T1DM before 4  years of age have low cord-
blood levels of phospholipids, mainly phosphatidylcho-
lines [17]. It is suggested that T1DM progressors are 
choline-deficient at birth, and that choline deficiency 
is the key mechanism leading to lower serum triglyc-
eride levels and their increased accumulation in the 
liver [6]. Choline metabolism also depends on the gut 
microbial composition [18], making the latter an attrac-
tive target for early prevention and treatment of T1DM 
[19]. In addition, low levels of phosphatidylcholine may 
play a role in oxidative damage affecting the pancreatic 
β-cell insulin production, because phosphatidylcho-
lines are thought to have anti-inflammatory properties 
[20]. According to an NMR-based metabolomics study 
in adults, lower levels of triglycerides in T1DM patients 
may also be attributable to treatment with insulin [3], 
which is known to have an anti-lipolytic action [21]. We 

Fig. 1 PCA score plot obtained for T1DM patients (filled triangle) and healthy controls (circle). Each participant is represented by its metabolic profile 
and visualized as a single symbol of which the location is determined by the contributions of the 110 variables in the 1H‑NMR spectrum. The PCA 
score plot shows the first principal component (PC1: 69.4%), explaining the largest variance within the dataset, versus the second principal compo‑
nent (PC2: 12.6%) that explains the second largest variance
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further observed lower plasma levels of serine, trypto-
phan and cysteine in T1DM as compared to controls. In 
current literature, only a limited number of papers can 
be found regarding the relationship between these amino 
acids and T1DM. A study in diabetic db−/db− mice sug-
gested that a strongly decreased concentration of the 
gluconeogenic amino acids serine, alanine and glycine, 

resulted in increased gluconeogenesis [22]. In addition, 
a study in rats suggested that tryptophan suppresses the 
elevation of blood glucose and lessens the burden asso-
ciated with insulin secretion from β-cells [23]. Finally, 
reduced plasma levels of cysteine in T1DM patients can 
be explained by glomerular hyperfiltration, resulting in 
an increased renal clearance of cysteine [24].

Fig. 2 OPLS‑DA score plot (a) and S‑line plot (b) obtained for T1DM patients (filled triangle) and healthy controls (circle). Each participant is repre‑
sented by its metabolic profile and visualized as a single symbol of which the location is determined by the contributions of the 110 variables in the 
1H‑NMR spectrum. The OPLS‑DA score plot shows the first predictive component (t[1]P: 51.8%), explaining the variation between the groups, versus 
the first orthogonal component (t[1]O: 24.0%) that explains the variation within the groups. The OPLS‑DA S‑line plot visualizes differences between 
T1DM patients (negative) and controls (positive). The left y-axis represents p(ctr)[1], the covariance between a variable and the classification score. 
It indicates if an increase or decrease of a variable is correlated to the classification score. The magnitude of the covariance is however difficult to 
interpret since covariance is scale dependent. This means that a high value for the covariance does not necessary imply a strong correlation, as the 
covariance is also influenced by the intensity of the signal with respect to the noise level. Therefore this measure will likely indicate variables with 
large signal intensities. The right y-axis shows p(corr)[1], the correlation coefficient between a variable and the classification score (i.e. the normal‑
ized covariance). It gives a linear indication of the strength of the correlation. As the correlation is independent of the intensity of the variable, it 
will be a better measure for the reliability of the variable in the classification process. In  b, the red color stands for the highest absolute value of the 
correlation coefficient. Strongly discriminating variables have a large intensity and large reliability
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Table 2 Plasma variables that significantly differ between T1DM and control subjects by multivariate statistics

cvSE standard error of cross-validation, p(corr)[1] correlation scaled loading, VAR variable, VIP variable influence on projection

VAR Spectral range (ppm) Assigned metabolite Model based on all 
110 VARs (including 
glucose related VARs)

Model based on 95 
VARs (excluding glu-
cose related VARs)

p(corr)[1] VIP ± cvSE p(corr)[1] VIP ± cvSE

18 5.4300–5.2752 –HC=CH– in fatty acid chain 0.890 2.07 ± 0.71 0.787 2.77 ± 0.82

24 4.4100–4.3159 C1H and  C3H in glycerol backbone of triglycerides +  
OCH2 of choline in sphingomyelin/phosphatidylcholine

0.856 0.89 ± 0.47 0.740 1.19 ± 0.63

34 4.0310–4.0136 l‑Serine 0.809 0.48 ± 0.30 0.743 0.65 ± 0.40

35 4.0136–4.0010 l‑Serine 0.715 0.43 ± 0.26 0.669 0.57 ± 0.38

38 3.9590–3.8330 d‑Glucose −0.837 3.56 ± 0.24

41 3.7956–3.7820 d‑Glucose −0.815 0.83 ± 0.24

42 3.7820–3.7550 d‑Glucose −0.861 2.19 ± 0.12

43 3.7550–3.7390 d‑Glucose −0.825 1.66 ± 0.14

44 3.7390–3.7141 d‑Glucose −0.782 1.42 ± 0.19

51 3.5914–3.5649 d‑Glucose −0.901 1.44 ± 0.27

52 3.5649–3.5510 d‑Glucose −0.828 1.04 ± 0.19

54 3.5360–3.3980 d‑Glucose −0.836 4.63 ± 0.54

55 3.3980–3.3765 l‑Tryptophan 0.721 0.81 ± 0.28 0.870 1.08 ± 0.35

63 3.1090–3.0860 l‑Cysteine 0.754 0.57 ± 0.37 0.701 0.77 ± 0.54

91 2.1230–1.9720 –CH2–CH=CH– in fatty acid chain 0.752 2.17 ± 0.44 0.734 2.91 ± 0.65

100 1.3450–1.2458 CH3–(CH2)n– in fatty acid chain 0.747 4.04 ± 1.52 0.728 5.41 ± 1.75

110 0.9660–0.8000 CH3–(CH2)n– in fatty acid chain 0.898 3.14 ± 0.73 0.735 4.21 ± 1.03

Table 3 Plasma variables that significantly differ between T1DM and control subjects by univariate statistics

* Benjamini–Hochberg adjusted p value, calculated using the independent samples t test. %-change is the increase (+) or decrease (−) of the mean in the T1DM 
group with respect to the control group

VAR variable

VAR Spectral range 
(ppm)

Assigned metabolite Relative concentration Increased/decreased 
in T1DM

p value* %-change

T1DM Controls

18 5.4300–5.2752 –HC=CH– in fatty acid chain 21.95 ± 3.63 30.95 ± 4.00 ↓ 0.001 −29.1

24 4.4100–4.3159 C1H and  C3H in glycerol backbone of 
triglycerides + OCH2 of choline in 
sphingomyelin/phosphatidylcholine

3.28 ± 1.16 5.09 ± 1.16 ↓ 0.005 −35.6

34 4.0310–4.0136 l‑Serine 0.70 ± 0.26 1.21 ± 0.22 ↓ 0.003 −42.1

35 4.0136–4.0010 l‑Serine 0.84 ± 0.28 1.29 ± 0.23 ↓ 0.008 −34.9

38 3.9590–3.8330 d‑Glucose 91.99 ± 16.9 64.44 ± 6.58 ↑ 0.004 42.8

41 3.7956–3.7820 d‑Glucose 7.62 ± 0.60 6.18 ± 0.60 ↑ <0.001 23.3

42 3.7820–3.7550 d‑Glucose 30.58 ± 5.63 20.56 ± 1.95 ↑ 0.003 48.7

43 3.7550–3.7390 d‑Glucose 17.92 ± 3.83 11.85 ± 1.35 ↑ 0.005 51.2

44 3.7390–3.7141 d‑Glucose 17.76 ± 3.24 13.05 ± 1.49 ↑ 0.007 36.1

51 3.5914–3.5649 d‑Glucose 14.45 ± 2.19 10.20 ± 1.06 ↑ 0.002 41.7

52 3.5649–3.5510 d‑Glucose 5.84 ± 1.10 3.65 ± 0.50 ↑ 0.002 60.0

54 3.5360–3.3980 d‑Glucose 116.37 ± 30.40 69.27 ± 8.54 ↑ 0.005 68.0

55 3.3980–3.3765 l‑Tryptophan 0.70 ± 0.32 1.94 ± 0.41 ↓ <0.001 −63.9

63 3.1090–3.0860 l‑Cysteine 2.28 ± 0.47 3.05 ± 0.39 ↓ 0.006 −25.2

91 2.1230–1.9720 –CH2–CH=CH– in fatty acid chain 53.13 ± 7.19 64.03 ± 3.76 ↓ 0.007 −17.0

100 1.3450–1.2458 CH3–(CH2)n– in fatty acid chain 117.69 ± 17.62 155.40 ± 22.01 ↓ 0.004 −24.3

110 0.9660–0.8000 CH3–(CH2)n– in fatty acid chain 89.10 ± 14.79 111.75 ± 7.83 ↓ 0.006 −20.3
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Although the sample size of this study is still somewhat 
limited, the experiments were carried out according to a 
strictly controlled protocol. This pilot study demonstrates 
the proof of principle that metabolic phenotyping of 
T1DM in children by proton-NMR spectroscopy allows 
to differentiate between T1DM patients and controls and 
therefore justifies the start-up of larger studies.

Because NMR metabolomics can be used to search for 
subtle changes in the plasma of children prone to develop 
T1DM, it might become an important tool for the early 
diagnosis and prognosis of T1DM in children. Hence, 
restoring or improving the plasma metabolic profile, e.g. 
by re-establishing lipid and amino acid availability or by 
modulating gut microbial composition, might prevent 
β-cell destruction and delay T1DM progression in chil-
dren and adolescents.

Conclusion
The present study demonstrates the proof of princi-
ple that metabolic phenotyping of plasma by 1H-NMR 
spectroscopy allows to discriminate between T1DM 
patients and controls. T1DM children and adolescents 
show lower relative plasma concentrations of lipids (tri-
glycerides, phospholipids and cholinated phospholipids), 
serine, tryptophan and cysteine as compared to non-dia-
betic controls. NMR-spectroscopy-based metabolomics 
appears to be a promising tool for the identification of 
disturbed biochemical pathways related to the develop-
ment of T1DM. Nevertheless, further identification and 
validation is needed in order to evaluate the use of NMR 
metabolomics in the prediction, diagnosis and monitor-
ing of T1DM in children. Therefore, deeper follow-up 
studies in larger pediatric cohorts are of utmost impor-
tance to further explore the potential of metabolomics in 
the field of pediatric diabetes.
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