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Tumormicroenvironment and heterogeneity play vital roles in the development

and progression of gastric cancer (GC). In the past decade, a considerable

amount of single-cell RNA-sequencing (scRNA-seq) studies have been

published in the fields of oncology and immunology, which improve our

knowledge of the GC immune microenvironment. However, much

uncertainty still exists about the relationship between the macroscopic and

microscopic data in transcriptomics. In the current study, we made full use of

scRNA-seq data from the Gene Expression Omnibus database (GSE134520) to

identify 25 cell subsets, including 11 microenvironment-related cell types. The

MIF signaling pathway network was obtained upon analysis of receptor–ligand

pairs and cell–cell interactions. By comparing the gene expression in a wide

variety of cells between intestinal metaplasia and early gastric cancer, we

identified 64 differentially expressed genes annotated as immune response

and cellular communication. Subsequently, we screened these genes for

prognostic clinical value based on the patients’ follow-up data from The

Cancer Genome Atlas. TMPRSS15, VIM, APOA1, and RNASE1 were then

selected for the construction of LASSO risk scores, and a nomogram model

incorporating another five clinical risk factors was successfully created. The

effectiveness of least absolute shrinkage and selection operator risk scores was

validated using gene set enrichment analysis and levels of immune cell

infiltration. These findings will drive the development of prognostic

evaluations affected by the immune tumor microenvironment in GC.

KEYWORDS

gastric cancer, single-cell RNA sequencing, tumor microenvironment, immune
infiltration, prognostic biomarker

OPEN ACCESS

EDITED BY

Lan Zhao,
Stanford University, United States

REVIEWED BY

Shibiao Wan,
St. Jude Children’s Research Hospital,
United States
Austin Gillen,
University of Colorado Anschutz
Medical Campus, United States

*CORRESPONDENCE

Jianchun Cai,
jianchunfh2@sina.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 14 March 2022
ACCEPTED 06 July 2022
PUBLISHED 15 August 2022

CITATION

Wei X, Liu J, Hong Z, Chen X, Wang K
and Cai J (2022), Identification of novel
tumor microenvironment-associated
genes in gastric cancer based on single-
cell RNA-sequencing datasets.
Front. Genet. 13:896064.
doi: 10.3389/fgene.2022.896064

COPYRIGHT

© 2022Wei, Liu, Hong, Chen, Wang and
Cai. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 15 August 2022
DOI 10.3389/fgene.2022.896064

https://www.frontiersin.org/articles/10.3389/fgene.2022.896064/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896064/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896064/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896064/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.896064/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.896064&domain=pdf&date_stamp=2022-08-15
mailto:jianchunfh2@sina.com
https://doi.org/10.3389/fgene.2022.896064
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.896064


Introduction

Although the incidence and mortality rates have been

declining worldwide, gastric cancer (GC) remains a common

and lethal malignancy, especially in Asian countries (Smyth et al.,

2020). In addition to traditional chemotherapy and surgery,

adjuvant therapies, such as molecularly targeted therapy

(Mundekkad and Cho, 2022) and immunotherapy, are

gradually emerging as the staples of GC treatment.

Uncovering the molecular mechanisms of the initiation and

progression of GC is therefore critical for improving

therapeutic efficacy. Molecular markers help deepen our

understanding of GC subtypes (Bijlsma et al., 2017; Zhao

et al., 2019), and with the technological advances in high-

throughput sequencing, the focus on tumor heterogeneity is

driving progress in precision medicine (Zeng and Jin, 2021)

simultaneously. There is growing evidence that intra-tumoral

heterogeneity includes not only genomic features but also the

complex tumor microenvironment (TME). It is well recognized

that TME comprises various stromal cells, abundant

angiogenesis, and immune cell infiltration (Hanahan, 2022).

Understanding the “soil” on which the “seed” grows into a

tumor has essential implications for the diagnosis and

treatment of GC.

Single-cell RNA sequencing (scRNA-seq) is a potent tool to

obtain complete RNA transcripts at the level of single cells by

RNA extraction, reverse transcription, amplification, and

sequencing (Tang et al., 2009; Ramskold et al., 2012; Picelli

et al., 2014). Compared with traditional sequencing methods

of tumor tissue, scRNA-seq solves the problem that individual

differences between cell types are ignored when the expression of

all the genes in thousands of cells is averaged. It shows clear

superiority in studying the diversity of tumor cell lineages and

predicting interactions between cancer and the

microenvironment (Muller and Diaz, 2017; Kumar et al.,

2021). In terms of GC research, scRNA-seq shed light on the

transcriptome network at different stages of the disease process,

from atrophic gastritis, intestinal metaplasia (IM), and dysplasia,

to early gastric cancer (EGC) (Zhang et al., 2019), as well as the

spatial heterogeneity of microenvironment-related cells in

diffuse-type GC (Jeong et al., 2021). Performing scRNA-seq of

metastatic GC, the origins of transcriptomic heterogeneity in

peritoneal carcinomatosis were analyzed (Wang R. et al., 2021),

identifying CLDN11 and CDK12 as markers of lymph node

metastasis (Wang B. et al., 2021). Nonetheless, combining

large amounts of scRNA-seq data with multi-omics datasets

and determining the clinical implications remains a challenge

(Wang et al., 2022).

We data-mined existing single-cell transcriptome data from

the Gene Expression Omnibus (GEO) to identify

microenvironment-related cell types and draw signaling

pathway networks according to the marker genes or

intercellular communication-related genes. Enrichment

analysis was performed to reveal the function of differentially

expressed genes (DEGs) between IM and EGC. We leveraged

clinical data from The Cancer Genome Atlas (TCGA) to establish

a risk-scoring model by the LASSO-Cox regression algorithm. It

contained the expression levels of TMPRSS15, VIM, APOA1, and

RNASE1, which were highly correlated with clinical outcomes

and immune cell infiltration. The results of our study may

provide new options for prognostic biomarkers in GC.

Materials and methods

Data collection and pre-processing

ScRNA-seq data of normal cells and GC cells from the

GSE134520 dataset were downloaded from the GEO database

from the official website (https://www.ncbi.nlm.nih.gov/geo/)

(Zhang et al., 2019), which had been pre-processed using

CellRanger software. The dataset contains Homo sapiens

samples sequenced by the HiSeq X Ten platform. A total of

13 biopsy specimens from the gastric antral mucosa of patients

with non-atrophic gastritis, chronic atrophic gastritis, IM, and

EGC were selected, and 56,440 cells were included in the dataset.

Cells with an abnormal proportion of mitochondrial genes

should be removed because it reflects the imbalance of cellular

homeostasis and low cell quality. Given the potential existence of

diploid cells, cells with genes < 200 or >5,800 were filtered out.

Furthermore, the scDblFinder function in the Seurat R package

was called to remove the double droplets. Finally, 48,566 cells

were enrolled in our study.

The R package “TCGAbiolinks” (version 2.22.2) was used to

obtain the gene expression in units of fragments per kilobase

million (FPKM) for 407 patients with stomach adenocarcinoma

(STAD) from TCGA. We also downloaded the clinical data for

these patients, which include survival status (367 patients),

stages, age, grades, and survival time. At the same time, the

data of “Masked Somatic Mutation” and “Masked Copy Number

Segment” called MuTect2 were downloaded.

ScRNA-seq analysis using Seurat

First, we installed the R packages in R (version 4.1) and

Seurat (version 4.0.5) (Satija et al., 2015), and used the merge

function to merge the created Seurat object. To reduce the

influence of different sequencing depths in cells, the

normalization for raw counts was performed using the

NormalizeData function (“LogNormalize” method), the top

2,000 variable features were identified using the Find Variable

Genes function (“vst”method), and the data were integrated and

scaled using ScaleData function. Subsequently, we performed

principal component analysis (PCA) with the variable genes as

inputs and identified the significant principal components whose
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p-value distributions were then visualized by the jackStraw

function. In the FindNeighbors and FindClusters function

with a resolution of 0.8, the Louvain algorithm was chosen for

cell clustering. FindAllMarkers function with theWilcoxon rank-

sum test was carried out to identify specific marker genes, which

compared expression values between cells in the cluster and all

other cells. Finally, the results are represented with tSNE

(t-distributed Stochastic Neighbor Embedding) dimension

reduction by RunTSNE function.

Cell annotation and identification of
differentially expressed genes

Cell types were identified based on marker gene sets listed in

Table 1. Subsequently, we used the FindAllMarkers function in

Seurat to detect DEGs among the different cell types, using a

p-value < 0.05 and |log2FoldChange (FC) | > 1 as the thresholds.

Additionally, we used the FindAllMarkers function to analyze the

differences between the EGC and IM groups to extract DEGs

using the same thresholds previously stated. The intersection of

three methods (“wilcox,” “t,” and “roc” test) was taken and

transformed into a list of the final DEGs. Finally, the

expression patterns of these DEGs in the different cell types

were shown using heat maps, and the corrplot R package (version

0.92) was then used to perform a correlation analysis between

these DEGs.

Enrichment analysis of differentially
expressed genes between early gastric
cancer and IM groups

Gene Ontology (GO) enrichment analysis is commonly

performed in large-scale functional enrichment analyses of

genes on different dimensions and levels. It is generally

performed on three levels, namely, biological process (BP),

molecular function (MF), and cellular component (CC). Kyoto

Encyclopedia of Genes and Genomes (KEGG) is a widely used

database dealing with biological systems such as genomes,

biological pathways, diseases, and drugs. The clusterProfiler

(version 4.2.0) R package was used to perform GO functional

annotation and KEGG pathway enrichment analysis for the

DEGs between the EGC and IM groups to identify

significantly enriched biological processes. The enrichment

results were visualized using bar graphs and bubble graphs.

An adjusted p-value of < 0.05 was defined as the significance

threshold in the enrichment analysis.

Analysis of cell-cell communication

The CellChat (http://www.cellchat.org/) R package (Jin et al.,

2021) was used to calculate the intensity of cell–cell interactions

and communication based on single-cell gene expression profiles

and known ligands, receptors, and their cofactors. Significant

ligand-receptor pairs were further identified based on the

probability of receptor–ligand interactions and the results of

perturbation testing. We then built a cell–cell communication

network by adding the number or the intensity of significantly

interacting ligand–receptor pairs between cell types. In addition,

we visualized multiple ligand–receptor pairs or intercellular

communications mediated by signaling pathways using bubble

graphs to investigate the intensity of ligand–receptor interactions

between cell types or the characteristics of ligands and receptors

in terms of gene expression levels, including their commonalities

or differences. Finally, we performed a systemic analysis of the

cell–cell communication network by identifying the pathways

that contributed most to the incoming and outgoing signals for

specific cell groups, performing a network centrality analysis of

TABLE 1 Cell types of 25 clusters.

Cell type Marker gene Number of cell
(total = 48,566 (%))

Gastric epithelial cells MUC6, TFF2, MUC5AC, and TFF1 26,870 (55.33%)

Metaplastic stem-like cell OLFM4, EPHB2, and SOX9 7570 (15.59%)

Enterocytes FABP1 and APOA1 5340 (11.00%)

T cell CD2 and CD3D 2574 (5.30%)

B cell CD79A 2307 (4.75%)

Fibroblast DCN and PDPN 1431 (2.95%)

Endothelial cell VWF and ENG 1002 (2.06%)

Macrophage CSF1R and CD68 479 (0.99%)

Mast cell TPSAB1 384 (0.79%)

Goblet cell MUC2 and ITLN1 357 (0.74%)

Smooth muscle cell ACTA2 252 (0.52%)
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the identified pathways, and then visualizing the network

centrality scores.

Mutation analysis

With the help of GenePattern (https://cloud.genepattern.

org), the data of somatic mutations and copy number

variations (CNVs) downloaded from TCGA database were

analyzed by GISTIC 2.0 to assess the CNV events at the

chromosomal arm level and the minimum common region

between samples. Then, we use the maftools R package

(Mayakonda et al., 2018) to visualize the aforementioned

analysis results in the mutation annotation format, and the

plotmafSummary function was used to plot the summary file.

Construction of the prognostic model and
clinical statistical analysis for model
evaluation

To identify genes associated with the prognosis of gastric

cancer, we selected the DEGs between the EGC and IM groups as

candidate genes and performed univariate Cox regression

analysis (p value < 0.01). Forest plots were created (R

package: ggplot2) to display each variable’s p-value, hazard

ratio (HR), and 95% confidence interval. We then performed

least absolute shrinkage and selection operator (LASSO)

regression analysis based on these prognostic genes to

construct a prognostic model (R package: Glmnet, survival).

The risk score was calculated by the formula:

Riskscore � ∑
n

k�1
coef(k) px(k).

Here, the coef (k) represents the LASSO-Cox regression

coefficient, n represents the number of genes, and x(k)

represents the expression value of each gene. The TCGA GC

cohort was divided into low- and high-risk groups based on the

median risk score, and then Kaplan–Meier analysis (R package:

survival and survminer) was performed to analyze and compare

the overall survival (OS) between the two subgroups. The time-

dependent receiver operating characteristic (ROC) curve was

adopted (R package: timeROC) to analyze the predictive accuracy

and risk scores. Considering the clinical features, we also created

a prognostic nomogram (R package: rms and survival) to predict

the 1-, 3-, and 5-year overall survival.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) is a computational

method that determines whether a pre-defined set of genes shows

statistically significant differences between two biological states

and is usually performed to estimate the changes in pathways and

biological process activities in gene expression dataset samples.

To assess the differences in biological processes between the

high- and low-risk groups based on the gene expression profiling

datasets, we downloaded the reference gene sets (c2. cp.v7.2.

symbols.gmt and c5. all.v7.2. symbols.gmt) from the MSigDB

and used the GSEA method included in the clusterProfiler R

package (Yu et al., 2012) to perform enrichment analysis of the

datasets and visualize them. An adjusted p-value of <0.05 and a

false discovery rate (FDR, q-value) < 0.25 were considered to

suggest statistically significant differences.

Estimation of immune cell-type fractions

The CIBERSORT (Chen et al., 2018) computational method

was adopted to quantitatively convert the transcriptomic data of

tumor tissues into the absolute abundance of immune cells and

stromal cells, to evaluate the changes in the proportion of

22 human immune cell subpopulations. For each tumor

sample, the sum of all the estimated immune cell-type

fractions equaled 1.

Results

Analysis of 25 cell clusters from biopsy
specimens of the human gastric antral
mucosa with scRNA-seq data revealed
high levels of cellular heterogeneity

After filtration based on the quality control criteria and

normalization of the scRNA-seq data, 48,566 cells were obtained

(Supplementary Figure S1A). We selected 2,000 highly variable

genes for downstream analysis and tagged the top ten

(Figure 1B), such as IGLL5, LIPF, TPSAB1, and APOA1. PCA

was performed to identify available dimensions and relevant

genes, and 20 principal components (PC) were selected for

subsequent analysis (Figure 1C). The tSNE algorithm was

successfully applied to divide human cells of the gastric

antral mucosa into 25 independent clusters (Figure 1D),

which were identified by the marker genes for each cell type

(Supplementary Figures S1B,C). Table 1 and Supplementary

Figure S1D showed the numbers and percentages of each cell

type identified with the 25 clusters. Specifically, gastric

epithelial, metaplastic stem-like, and enterocytes accounted

for 55.53%, 15.59%, and 11%, of the total cell count,

respectively. We then identified DEGs between cell types

(Supplementary Figure S1E) and used the top two genes with

the most significant differential expressions to draw dot plots

(Figure 1E). We also calculated the number of each cell type and

the proportion of cells per cell type in the samples of the

different disease groups (Figures 1F,G). The aforementioned
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FIGURE 1
Analysis of the biopsy specimens from the gastric antral mucosa of patients with non-atrophic gastritis (NAG), chronic atrophic gastritis (CAG),
intestinal metaplasia (IM), or early gastric cancer (EGC) based on single-cell RNA-seq data. (A) Flow chart of the study. (B) Scatter plot of standard
deviation demonstrated the significantly differentially expressed genes between the cell types. (C) JackStrawPlot of 20 principal components (p
value < 0.01) used to find clusters. (D) Cluster analysis based on the distribution of different cell types. (E) Prominent marker genes for each cell
type. (F) and (G) Number of each cell type and the proportion of cells per cell type in the samples of the four different disease groups.
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results portray the diverse landscape of the microenvironment

between tumor and non-tumor samples.

Intercellular communication displayed
locoregional immunomodulation in the
carcinogenic process

We detected a total of 11 signaling pathways in the 11 cell

types annotated in the single-cell data using CellChat, including

MIF, MK, PTN, PARs, and GALECTIN. Heat maps were

generated to illustrate the contribution of each pathway to the

incoming or outgoing signals among the cell types (Figure 2A,

Supplementary Figure S2). We selected the MIF signaling

pathway as it contributed the most amongst the cell types,

used a circle plot to illustrate the intensity of cell–cell

interactions (Figure 2B) and performed a network centrality

analysis (Figure 2C) for this pathway. Clearly, the macrophage

is the most dominant recipient; B cell, T cell, and metaplastic

stem-like cell perform key roles in the network. Moreover, we

demonstrated the expression patterns of all ligand-receptor pairs

included in the MIF signaling pathway (Figure 2D,E;

Supplementary Figure S3) in different cell types: CD74 is

mainly expressed in macrophages, endothelial cells, and

FIGURE 2
CellChat analyses of the intercellular communication network for the different cell types. (A) Contribution of the 11 pathways identified to the
outgoing (left) and incoming (right) signals among the different cell types. (B) Intensity of cell–cell interactions in the MIF signaling pathway. (C)
Network centrality scores of the MIF signaling pathway for each cell type. (D) Relative contribution of each ligand–receptor pair included in the MIF
signaling pathway and (E) their expression patterns in the different cell types.
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B cells; CD44 is predominantly expressed in mast cells; and

CXCR4 is primarily expressed in T cells.

Identification and enrichment analyses of
differentially expressed genes between
the early gastric cancer and IM groups

By analyzing the differences between the EGC and IM

groups, we identified 64 DEGs in total (p-value < 0.05 and

|log2FoldChange| > 1). Heat maps (Supplementary Figure S4)

were drawn to visualize the DEGs, and a correlation analysis of

these genes was performed (Supplementary Figure S5). As shown

in Figures 3A,B, GKN1 and TFF2 are highly correlated in gastric

epithelial cells; IGJ and IGLL5 are highly correlated in B cells; and

OLFM4, REG1A, and TSPAN8 are highly correlated in gastric

epithelial cells. GO and KEGG pathway enrichment analyses of

the DEGs (adj. p value < 0.05) were visualized using dot plots

(Figures 3C,D). These results prove that cell communication

pathways (cadherin binding, adj. p = 2.5 × 10−4; ficolin−1−rich

granule, adj. p= 8.6 × 10−6; regulation of cell−cell adhesion, adj.

p = 7.0 × 10−5; and estrogen signaling pathways) and

inflammatory response pathways (MHC protein complex, adj.

p= 1.6 × 10−9; endocytic vesicle, adj. p = 2.6 × 10−5; antigen

processing and presentation, and Th17 cell differentiation) were

enriched.

Incidence of somatic mutations and copy
number variations in 64 differentially
expressed genes

We next examined the mutational landscape of 64 DEGs in

TCGA patients with STAD. We found that the missense

FIGURE 3
Analysis of differences between the early gastric cancer (EGC) and intestinal metaplasia (IM) groups and subsequent enrichment analyses. (A)
Heatmap showing the expression patterns of ten differentially expressed genes (DEGs) between the EGC and IM groups in the different cell types. (B)
Heat map of the correlation between the DEGs. Dot plots showing the (C) GO and (D) KEGG pathway enrichment analyses of the DEGs (p-value <
0.01). BP, biological process; CC, cellular component; MF, molecular function.
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FIGURE 4
Mutational landscape in 64 DEGs. (A) Overview of the mutational frequency. (B) Mutation waterfall plot in the different T stages. SNP, single-
nucleotide polymorphism; DEL, deletion; INS, insertion; SNV, single-nucleotide variant; Amp, amplification.
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mutations have the highest mutation rate and the single-

nucleotide polymorphism (SNP) is the most occurred variant

type (Figure 4A). Among these SNPs, the highest proportion of

mutations occurred in the C to T transition mutations. FCGBP

and MUC6 are dominant in the top 10 mutated genes, and

TMPRSS15, VIM, and APOA1 are also included. Figure 4B

showed that the HSPH1 amplification (37%) and MUC6

(29%) and APOA1 (22%) frameshift deletions are the most

FIGURE 5
Prognostic model based on differentially expressed genes between the early gastric cancer and intestinal metaplasia groups. (A) Univariate Cox
regression analysis showing the correlation between six genes and disease prognosis. (B) Diagram of error rates by 10-fold cross-validation. (C)
Kaplan–Meier survival analysis for the high- and low-risk groups in TCGA cohort. (D) Time-dependent ROC curves showing the predictive accuracy
of the prognostic model in TCGA cohort. (E) Risk score distribution and (F) survival status for patients in the TCGA dataset. AUC, area under the
curve.
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common alterations observed. The mutagenesis in these TME-

related DEGs is illustrated as the pro-carcinogenic potential.

Construction of a TME-related prognostic
model based on prognostic genes

To evaluate the correlation between the prognosis for

patients with GC and the expression of the 64 DEGs, we used

univariate Cox regression analysis. The results suggested that

six of the genes (TMPRSS15, VIM, LGALS1, APOA1,

RNASE1, and TSC22D3) are significantly correlated with

the disease prognosis (p < 0.05) (Figure 5A). In addition,

the LASSO-Cox regression algorithm was used to establish a

prognostic model, and the results suggested that four genes

(TMPRSS15, VIM, APOA1, and RNASE1) are highly

correlated with disease prognosis (Figure 5B). Risk score =

(TMPRSS15 p 0.076) + (VIM p 0.225) + (APOA1 p 0.066) +

(RNASE1 p 0.135). The Kaplan–Meier plotter is an online tool

to find survival biomarkers in GC based on the meta-analysis

of GEO, TCGA, and European Genome-phenome Archive

databases (Szász et al., 2016). Using the Kaplan–Meier plotter

that has 875 enrolled patients with GC (Supplementary

Figure S6), we further validated that these four genes have

diagnostic value in association with adverse outcomes. We

also verified their protein expression in the Human Protein

Atlas database (Supplementary Figure S7), which is

corroborated by the transcript levels in Supplementary

Figure S4.

TCGA cohort was then divided into low- and high-risk

groups based on the median risk score. The Kaplan–Meier

curve suggested a lower overall survival rate for patients with

GC with high-risk scores than those with low-risk scores

(Figure 5C). The area under the curve was more significant

than 0.6 for the 1-, 3-, and 5-year survival ROC curves, which

indicated that risk scores accurately predicted patient survival

rates (Figure 5D). The dataset’s risk score distribution and

survival status are shown in Figures 4E,F, respectively. An

increase in risk scores was accompanied by an increased risk

of patient mortality and a shorter survival time (Figures 5E,F).

Given the impact of clinicopathological features (including, age,

gender, and TNM staging information) on prognosis, a

prognostic nomogram was constructed to predict the survival

of patients with GC in TCGA dataset (Figure 6A). The C-index of

our nomogram model was 0.683, and the calibration plot

(Figure 6B) showed a good fit with actual survival outcomes.

GSEA

GSEA was performed on all genes to analyze inter-group

differences between the low- and high-risk groups. Figure 7

shows the nine most important functions or pathways based

on normalized enrichment scores, such as GOBP: B cell receptor

signaling pathway, GOCC: immunoglobulin complex

circulating, and GOMF: antigen binding. As expected,

increased risk scores are substantially associated with high-

level immune response.

FIGURE 6
Prediction nomograms. (A) Nomogram model based on clinicopathological features and risk scores of patients with gastric cancer in TCGA
dataset to predict their prognosis. (B) Calibration curve of the nomograms for predicting overall patient survival. The diagonal dotted line represents
the ideal nomogram.
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Immune cell infiltration

Based on the previous results, we found that the survival

status of the high-risk group was significantly worse than that

of the low-risk group and hence speculated that there might

exist differences in immune cell infiltration between the low-

and the high-risk groups. The CIBERSORT algorithm was

used to calculate immune cell infiltration in GC. The bar graph

of immune cell infiltration and the boxplot comparing

immune cells between the low- and high-risk groups are

shown in Figures 8A,B, respectively. We found differences

between the two groups in M0 and M2 macrophages, resting

mast cells, monocytes, resting NK cells, and CD8 and

follicular helper T cells. Interestingly, the expression levels

of M0 macrophages, resting NK cells, and follicular helper

T cells increased in the low-risk group, which expressed a

relatively mild immune response. In contrast, the expression

levels of tumor-associated immune cells increased in the high-

risk group such as M2 macrophages, resting mast cells,

monocytes, and CD8 T cells. Considering that the RNA-seq

data of TCGA referred to the expression levels of tissue blocks

instead of blood samples, these tumor-immune infiltrates

often indicate higher malignancy and worse prognosis

rather than protective immunity.

Figure 9 shows the correlations between the expression of

prognostic genes (TMPRSS15, VIM, APOA1, and RNASE1) and

immune cell infiltration. APOA1 expression was positively

correlated with the monocyte infiltration level; RNASE1

expression was positively correlated with the infiltration levels

of M2 macrophages and CD8 T cells, and negatively correlated

with the infiltration levels of M0 macrophages, resting NK cells,

and follicular helper T cells; TMPRSS15 expression was

negatively correlated with the M0 macrophages infiltration

level; and VIM expression was positively correlated with the

infiltration levels of M2 macrophages and resting mast cells, and

negatively correlated with the follicular helper T cells infiltration

level. This evidence suggested that the prognostic genes for GC

are significantly associated with tumor immune infiltration.

Discussion

Among the numerous advances in the treatment of GC over

the last decades, anti-PD-1/PD-L1 immunotherapy has raised

FIGURE 7
Gene set enrichment analysis showing the nine most important functions or pathways in low- and high-risk patients with gastric cancer in
TCGA dataset. (A)GOBP: B-cell receptor signaling pathway. (B)GOCC: immunoglobulin complex. (C)GOMF: antigen binding. (D,E)GSEAmountain
plot of representative enrichments in C2. all and C5. all MSigDB datasets. Significance was set at p < 0.01. GOBP, Gene Ontology biological process;
GOCC, Gene Ontology cellular component; GOMF, Gene Ontology molecular function; NES, normalized enrichment scores.
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FIGURE 8
Analysis of immune cell infiltration in the low- and high-risk patients with gastric cancer in TCGA dataset. (A) Bar graph showing the proportion
of each of the 22 immune cell types in the samples. (B) Boxplot comparing the proportion of each of the immune cell types between the low- and
high-risk groups. The green and red blocks represent the high- and low-risk groups, respectively.
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particular concerns (Joshi and Badgwell, 2021). TME in GC may

influence the response of immunotherapy and affect prognosis

(Moutafi and Rimm, 2021). As transcriptomics technologies

continue to advance, scRNA-seq offers an excellent tool to

research the immune microenvironment biomarkers with

clinical translational potential.

The first step toward single-cell analysis is to cluster cell

populations with characteristic genes, which is the basis for

mapping cell interactions. In addition to the common

methods used in this study (Andrews and Hemberg, 2018), a

new ensemble random projection-based algorithm, SHARP,

which can cluster 10 million cells in large-scale scRNA-seq

data, has recently appeared (Wan et al., 2020). CNVs analysis

is usually applied for the identification of malignant tumor cells

(Patel et al., 2014), but it has unsatisfactory effectiveness in GC

(Zhang M. et al., 2021). Our research avoided the controversial

topic of separating benign and malignant epithelial cells and

instead categorized the component of TME.We found significant

differences in the percentage of infiltrating immune cells between

early GC and non-cancerous samples and between the low- and

high-risk groups in the TCGA. These findings are consistent with

a previous comparison of samples before and after cisplatin

FIGURE 9
Correlations between the expression of prognostic genes and the levels of immune cell infiltration (A) Correlation between APOA1 expression
and themonocyte infiltration level. Correlations between RNASE1 expression and the infiltration levels of (B)M0macrophages, (C)M2macrophages,
(D) resting NK cells, (E)CD8 T cells, and (F) follicular helper T cells. (G)Correlation between TMPRSS15 expression and theM0macrophage infiltration
level. Correlations between VIM expression and the infiltration levels of (H) M2 macrophages and (I) resting mast cells.
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chemotherapy (Kim et al., 2021). To better clarify the humoral

and cellular immune responses in GC, Sathe et al. (2020)

concurrently sequenced matched peripheral blood

mononuclear cells and revealed the immune remodeling of

NK cells, dendritic cells, cytotoxic T cells, and plasma cells.

Considering the loss of spatial dimension in cell isolation

from tissues, the conjoint analysis of scRNA-seq and spatial

transcriptomics in pancreatic cancer (Moncada et al., 2020) and

squamous cell carcinoma (Ji et al., 2020) has been proposed,

giving us a new perspective on tumor-infiltrating immune cells.

Some differentially expressed non-marker genes confirmed

clustering results from another perspective. Overexpression of

GKN1 in epithelial cells (Yoon et al., 2013), IGLL5 in B cells

(Zheng et al., 2021), TPSAB1 in mast cells (Konnikova et al.,

2021), and RGS5 in smooth muscle cells (Silini et al., 2012) are

consistent with previous studies, while CXCL14 in fibroblasts

(Wu et al., 2020) suggests that the conclusion from bulk RNA-seq

may not be precise or versatile enough. Together with marker

genes, these genes constitute 64 DEGs between IM and EGC,

which reflect transcriptional heterogeneity among different cell

types. In addition, 9 of 64 DEGs are members of the heat-shock

protein family involved in cellular stress responses and pro-

tumor inflammation as molecular chaperones. For example,

Hsp72 has been previously reported to promote the

oxaliplatin resistance of GC cells by inhibiting SDF-2

degradation (Takahashi et al., 2016); Hsp90ab1 is known to

facilitate the epithelial–mesenchymal transition in GC by

preventing LRP5 ubiquitination (Wang et al., 2019). Both

genes are highly expressed by enterocytes and can be

perceived as indicators of carcinogenicity for extensive

intestinal metaplasia.

Macrophage migration inhibitory factor (MIF) is a

multipotent cytokine involved in both inflammatory

processes and anti-tumor immune response, having the

properties of an enzyme, chemokine, and hormone

simultaneously (Sumaiya et al., 2021). As a

proinflammatory mediator secreted by numerous immune

cells, MIF promotes inflammation and autoimmune

diseases mainly by binding with the receptor CD74 and co-

receptor CD44, CXCR4, or CXCR2 (Liehn et al., 2013;

Nakamura et al., 2021; Wallace et al., 2021). Previous

studies have shown that the carcinogenic role MIF plays is

related to the activation of p53, Ras/MAPK, and Akt pathways

in the inflammation–cancer axis (Mittelbronn et al., 2011;

Wang et al., 2017; Liu et al., 2018). This study observed the

prominent MIF signaling pathway network in GC at the

single-cell level. Comparisons and enrichment analysis for

DEGs in IM and EGC supported the enriched pathway

associated with cell communication and inflammatory

response. Mechanistically, MIF-pathway overactivation is

likely a manifestation of either the macrophage aggregation

caused by Helicobacter pylori infection or accumulations of

tumor-associated macrophages, which further predisposes

epithelial cells to malignant transformation. Under various

environmental stimuli, macrophages developing from

differentiated monocytes are classified into classically

activated (M1) or alternatively activated (M2) macrophages.

Generally, IL-12 synthesized and secreted by M1 can induce

the proliferation and differentiation of naïve T cells into

Th1 cells and enhance the NK cell-mediated antitumor

effect; IL-10 secreted by M2 has the opposite effect

(Gambardella et al., 2020). Our prognostic model shows

that the expression of pro-tumorigenic M2 in the high-risk

group is increased, and prognostic genes are also positively

correlated with M2 infiltration. A reasonable explanation is

that MIF facilitates the M2 polarization of macrophages in GC

(Huang et al., 2019; Chen et al., 2021). Recently scholars

(Zhou et al., 2022) found that carfilzomib enables M2 to

express M1 cytokines, showing great immunotherapeutic

potential for solid tumors. For future applications,

experimental validation and subgroup analysis of

macrophages are required.

Physician-scientists have long grappled with the

quantitative assessment of immune TME (Zhang Z. et al.,

2021). In advanced GC, Zeng et al. (2021) built a TME scoring

system for the effects of checkpoint immunotherapy. By

implementing machine learning, Cai et al. (2020)

established a prognostic classification model based on the

expression of VCAN, CLIP4, andMATN3 in a total of 1699 GC

patients. In our study, four high-risk genes derived from

scRNA-seq show the prognostication of poor outcomes.

Vimentin (VIM), a type III intermediate filament protein,

which characterizes the stromal component of TME in solid

cancers, is often regarded as the epithelial–mesenchymal

transition marker. It is closely related to GC cell invasion

and metastasis, and is the most commonly used marker to

detect the acquisition of these mesenchymal traits (Zeng et al.,

2018; Zhu et al., 2019). Apolipoprotein A1 (APOA1), a

component of high-density lipoprotein, exerts a favorable

effect on the prevention of many cardiovascular diseases.

However, its elevated level in the urine of bladder cancer

patients (Peng et al., 2019) indicated shorter survival. For

patients with colorectal cancer, increased APOA1 expression

in the blood is concomitant with CD3+ T cells aggregation in

the core of the tumor as well as the invasive margin (Guo et al.,

2019). TMPRSS15, known as an enzyme gene, is translated as a

serine protease in enterocytes and goblet

cells—enteropeptidase. The link between TMPRSS15 and

tumors has rarely been reported before, but other genes

coding for the same family proteins were proven to be

promising therapeutic targets. TMPRSS2 was found to favor

the immune escape of COVID-19 (Shang et al., 2020), and

TMPRSS4 was upregulated in malignancies of the stomach

(Tazawa et al., 2022), liver (Dong et al., 2020), and prostate
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(Lee et al., 2021). In the present study, we speculate that

TMPRSS15 and APOA1 used for enterocyte identification

might be a cellular trait of intestinal type-GC. Therefore,

the high expression of these two genes heralded extensive

metaplasia and worse outcome. Similarly, despite the little

evidence for a direct relationship between RNase1 release in

endothelial cells (Bedenbender and Schmeck, 2020) and

cancer progression, RNASE1 shows a good prediction

performance based on raw data in TCGA (Li et al., 2020;

Yang et al., 2022).

In conclusion, we analyzed the previously published data of

scRNA-seq as well as TCGA, explored the

inflammation–immunity–cancer axis, and developed a tumor

microenvironment-associated risk score in GC. They well reflect

the immune infiltration level and help construct a prognostic

nomogram model that can assess overall long-term outcomes.

Nevertheless, further in-depth studies are needed to confirm our

results and broaden our view of TME in GC.
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SUPPLEMENTARY FIGURE S1
Analysis of the biopsy specimens from the gastric antral mucosa of
patients with non-atrophic gastritis (NAG), chronic atrophic gastritis
(CAG), intestinal metaplasia (IM), or early gastric cancer (EGC) based on
single-cell RNA-seq data. (A)Graphs showing the 48,566 cells included in
this study after quality control. (B,C) Cluster analysis based on the
disease group and cluster grouping. (D)Pie chart of cell types. (E) tSNE
projections of DEGs in different cell types.

SUPPLEMENTARY FIGURE S2
CellChat analyses of the intercellular communication network for
different cell types. (A) Chord diagram showing the input and output
signal pathways in different cell types. (B) and (C) Number and intensity
of cell–cell interaction signal pathways.

SUPPLEMENTARY FIGURE S3
Relative contribution of each ligand–receptor pair in different cell types.

SUPPLEMENTARY FIGURE S4
Complete heat map showing the expression patterns of ten differentially
expressed genes (DEGs) between the EGC and IM groups in the different
cell types.

SUPPLEMENTARY FIGURE S5
Complete heat map of the correlation between the DEGs.

SUPPLEMENTARY FIGURE S6
Kaplan–Meier (KM) survival curves of four genes in the Kaplan–Meier
Plotter.

SUPPLEMENTARY FIGURE S7
Protein expression levels of four genes in HPA. (A) Vimentin is highly
expressed in stromal cells of GC. (B) Enrichment of APOA1 in tissue-
specific cell types. (C) TMPRSS15 is mainly expressed in proximal
enterocytes. (D) Protein expression of RNASE1 in the gastrointestinal
tract.
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